Voxel Ray Tracer Final Report

Yohan Guyomard
Massachusetts Institute of Technology
Cambridge, MA, USA
yohang @mit.edu

Abstract—We propose a ray tracing engine capable of ren-
dering vast voxel worlds, in realtime and implemented entirely
in hardware on a Field Programmable Gate Array (FPGA).
Our intended use-case is as an alternative graphics front-end
for the video game Minecraft; our system leverages the existing
gameplay mechanics and world generation/storage infrastructure
of the game, and focuses entirely on computer graphics. Our
renderer is highly-parallelized and as such, we present a novel
memory hierarchy built specifically for this problem.

Index Terms—Digital Systems, Field Programmable Gate
Arrays, Computer Graphics, Ray Tracing, Voxel

I. INTRODUCTION

A voxel world is a discrete representation of 3D space,
where each unit cell is axis aligned and associated with some
information. In our case, each voxel is a Minecraft “block”
and the overall world depicts user-traversable sceneries like
mountains, lakes, plains, etc. Using algorithms from computer
graphics, snapshots of this data structure can be conveyed
visually through a monitor. Our system does just that; we
use the Xilinx Spartan-7 Urbana Board to render Minecraft
worlds to an HDMI display.

Ray-tracing is a rendering technique which simulates the
path of light by shooting rays from the camera into the
scene. It is trivially parallelize-able as each pixel is computed
independently from its neighbors. However, millions of pixels
must be computed for each frame and this technique is
generally reserved for high-end hardware. To achieve this,
we introduce the Voxel Traversal Unit (VTU) — analogous
in function to computing exactly one pixel (at a time), and
instantiated many times to take full advantage of FPGASs’
reconfigurable hardware.

We utilize a Minecraft server as the source-of-truth for the
world’s state, and stream voxel data as needed using a custom
plug-in and the Urbana board’s built-in USB/UART bridge.
This necessitates some arbitration scheme, as N VTUs cannot
simultaneously access the one UART bus lest our system
be severely bottlenecked by the arbiter. We overcome this
through a series of caches, ranging in size and access-speed.
Our system aims to minimize the FPGA/server exchanges and
VTU stall time, hence rendering frames faster.

II. VoxeL TRAVERSAL UNIT

A crucial aspect of our project, and ray tracing overall, is
scene traversal — given some starting point and direction,
what is the first object that a ray has hit? An efficient
implementation of this procedure is necessary for “accept-
able” frame-rates. The VTU is responsible for this, and steps

Win Win Tjong
Massachusetts Institute of Technology
Cambridge, MA, USA
winixent@mit.edu

through the world one unit voxel at a time until it has collided
with a non-empty block (i.e. “not air”’). Note that the number
of steps is indeterminate, and is limited by either the bounds
of the world or some render distance limit in the worst-case.

A. Fast Voxel Traversal

We leverage the Fast Voxel Traversal algorithm proposed by
[1], which requires only two numeric comparisons and one
addition to go from a voxel to its neighbor. The setup for
this method is a little more involved, but we expect that
minimizing the time per-iteration is absolutely critical.

At each step, the VTU queries the voxel at its current
location and breaks if it’s hit a non-transparent block. In
System Verilog, this is encoded through a valid signal which
other subsystems use to orchestrate N VTUs’ operation. We
require each iteration to take a minimum of two clock cycles,
which is a limitation of our memory subsystem. In some cases,
we are able to traverse four blocks at a time (see Section III),
and this extra cycle is used to compute eager-lookaheads
without needing to alter [1] or risking negative slack.

B. Fixed Point Arithmetic (Yohan)

The original algorithm proposed in [1] uses floating point
numbers for its computations. Implementing IEEE-754 is out
of scope for this project, so we opted for a fixed-point repre-
sentation instead.

Basic operations like addition, comparisons, etc.
are trivial to implement, if at all changed from
the wunderlying representation. We also optimize two
common operations: fixed_fast_inv_sqgrt and

fixed_fast_recip_ltel. These methods are used in
the setup routine of voxel traversal, but are also ubiquitous
to computer graphics and will likely manifest elsewhere.
The optimizations are motivated by the fact that addition,
subtraction and multiplication are cheap in hardware, but long
division or otherwise is unfeasible.

fixed_fast_inv_sqgrt is taken directly from Quake
[2] and uses a lookup table instead of floating point
hacks; two iterations of Newton’s method are used.
fixed_fast_recip_ltel builds on this idea, allowing
for division by numbers <1 in a fixed number of cycles
(untested whether this can be done in one cycle).

mailto:yohang@mit.edu
mailto:winixent@mit.edu

Yo Error
o
Tad h

[a——
LA

Graph 1: Fast inverse square root approximation
=012 F
=
e
54} .
= 0.06 -,
.
LIS s
il
0.5 1
X
Graph 2: Fast reciprocal (<= 1) approximation

As shown above, these approximations can perform quite well
and should be sufficient for our use cases.

C. Shading (Yohan)

Once a VTU has intersected with a block and finished traver-
sal, it passes its result to a shader module for computing the
pixel’s final color. We use simple lambert shading as discussed
in [3]. This involves a dot product between the normal of
the ray’s intersected voxel and some incident light source —
while the results aren’t photorealistic, it’s convincing enough
considering the simplicity of this method.

Better results can be achieved by computing more rays per
pixel. For instance, determining whether a voxel is illuminated
involves casting a ray from it to the light source, and checking
whether something is in the way. This yields direct-illumi-
nation shadows, and is a major improvement over Lambert
shading. Reflections can be computed in a similar fashion by
setting the secondary ray’s direction to the surface normal of
the first hit. Global illumination, radiosity and path tracing
are possible extensions of this approach, but are out of scope
for this project.

The diffuse color of each voxel is encoded in a lookup
table, mapping 8-bit BlockType’s to RGB565 values. We
currently do not support texture mapping, however the process
would be similar with a LUT.

D. VTU Orchestrator (Yohan)

We introduce the orchestrator which, given N VTUs, assigns
a batch of pixels to compute in parallel; calculates ray’s
directions; and writes to a frame-buffer.

This is implemented as a simple arbiter that prioritizes VTU
#1, then VTU #2, VTU #3, etc — each cycle, it chooses
the highest-priority VTU that isn’t busy (i.e. its valid flag
is asserted). The orchestrator then writes that VTU’s (valid)
output to the frame-buffer, changes its ray origin/direction
inputs and increments the index of the next pixel in line. This
introduces some throttling, however it is unlikely that any

given VTU can significantly outpace the orchestrator so this
approach is sufficient.

Pixels are computed in row-major order, and are combina-
torially assigned a ray origin and direction (note that this
computation only occurs for the “next pixel in line”, not all at
once). We use the pinhole camera model and an orthographic
projection with configurable focal length. Thus, every ray has
the same origin — the camera’s position — and we’re pre-
computing the camera’s orthonormal basis each frame (world
orientation — screen space) such that computing each ray’s
direction involves only two additions and multiplications.

The frame-buffer is stored in BRAM, which limits the
resolution of our renderer. We choose to embrace this as a
stylistic choice, and render at 256 by 128 pixels, RGB565
bit-depth.

III. VoxeL CACHES

We originally conceived a novel memory architecture inspired
by modern CPUs, but tailored to our specific use case. It
consisted of three levels of caches:

e L3: The largest, and slowest, it stores 1283 voxels
in DDR3 RAM. This is the FPGA’s “copy” of the
Minecraft world, and is updated each time the player
moves.

e L2: This has N ports for simultaneous queries, and sup-
ports single-cycle accesses. Cache misses are resolved
with the L3 cache.

e L1: Each VTU has a sparseness representation of the
world (1-bit “is air or not air?”’) stored in its own BRAM.

A. L3 Cache (Win Win)

Rather than directly streaming the voxel data from the server
client into the L2 cache, we decided to first store those
incoming data into a buffer first. Due to the sheer amount
of data being streamed through, updating the entire cache for
every time a frame updates would cause output to refresh
at a rate nowhere near 30 frame per second (FPS). Instead,
an effective strategy we decided to proceed is to utilize a
version of the ring buffer [4]. The version we implemented
has a shape that is cubic instead of a ring as it makes easier
to visualize. However, the concept is the same in the way it
updates: instead of shifting a whole set of data to make room
for a new one, we use a pointer to indicate the front-facing
data to indicate where and how the next state should update.

At first, we thought about sampling 1282 worth of voxels
with each voxel be 5 bits wide. However, due to our intended
resolution which is much lower than most average display
resolution, we decided to reduce it to a smaller dimension,
which allowed us to fit it all into the block ram (BRAM)
instead. The intended type of storage we planned on using was
the DDR3, and although the advantage of a DDR3 storage
is its size, we decided to use the BRAM instead due to its
flexibility to read and write simultaneously. This way for every
new frame, the buffer can start to write the oncoming plane
of voxels and also read from the buffer on the same cycle.
According to the AMD Product Guide, the Spartan S7 50 chip
has BRAM capacity of approximately 2.7 Mbit. If we reduce

the sample size to at least 643, with a 5-bit representation of
voxels, we estimated about 1.3 Mbit of the 2.7 Mbit will be
used, which is enough to fit the entire cache.

64

64

64

Fig. 1: The three possible ways the buffer updates depending on the axis
where the player’s location is displaced towards

B. L2 Cache (Yohan)

The L2 cache supports simultaneous single-cycle accesses
from the N VTUs. It is based on the assumption that only
a subset of the world is visible each frame and that rays
will frequently query the same blocks, especially if they are
computed in parallel. Thus, it doesn’t need to be large and
we are able to use a fully associative cache as its underlying
representation.

module 12_cache # (PORTS, CACHE_SIZE) (
// snip

// N-Ports Interface

input BlockPos [PORTS-1:0] addr,
output BlockType [PORTS-1:0] out,
output logic [PORTS-1:0] valid
)i

BlockPos [CACHE_SIZE-1:0]
BlockType [CACHE_SIZE-1:0]

tags;
entries;

Above is the SystemVerilog code for an N port interface.
The entire cache can be thought of as a list of (voxel
position, voxel type) which is combinatorially brute-
searched each cycle (i.e. all at the same time).

In practice, this behaves quite well. Although this paradigm
did not make it to our final product, simulation results showed
around 50% cache-hits on average (4 ports, 32 entries in
cache).

C. LI Cache (Yohan)

An additional cache is motivated by the fact that we can’t
scale the L2 cache to store an arbitrarily large amount of
voxels. Moreover, we assume that Minecraft worlds are sparse
(mostly air), and that the L2 would ultimately be filled with
just air blocks — it should only require 1 bit to store whether
a voxel is air or not, what a waste!

Ultimately, ray traversal is only interested in the voxel it’s
intersected, not the intermediary ones. Thus, we compute a
sparseness representation of the world and assign a copy to
each VTU. This is stored in BRAM, so we have to down-
sample the 128 voxels in L3 by a factor of 4, yielding
(%)3 = 32,768 bits, or just small enough to fit.

In this cache, each 0 signifies that all of the voxels in that
43 sector are air and can be skipped. A 1 means the VTU
should fallback to the L2 cache.

Another common approach to sparseness is the voxel octree
data structure. It is generally more compact, but more difficult
to compute. Since we are regenerating the L1 cache each
frame, we opted for this simpler approach.

D. In Reality

Unfortunately, the L3 cache never worked as intended. Inter-
facing with the DRAM proved more difficult than originally
planned. Therefore, we decided last-minute to omit our entire
“fancy” cache architecture, and the L3 cache would instead
be stored in BRAM. As such, we reduced the chunk size from
1283 to 643.

However, with this paradigm, there are very few benefits to
L1 or L2, since everything is in BRAM (2 cycle access). It’s
a shame, since L2 had already been implemented, however
we decided that every VTU would directly interface with the
L3 cache (a thin abstraction over a 2-port BRAM). Then,
every L3 is updated at the same time (i.e. their write ports
are interconnected) and read by at-most 1 VTU (i.e. their read
ports are not interconnected).

IV. SorTwARE IMPLEMENTATION (YOHAN)

A software-only version of this project has been implemented
in Rust. It is used to characterize real-world behaviors of
caches, e.g. hit/miss ratio and whether our architecture is
actually beneficial.

nannou - fpgacraft

Although software is not the focus of this class, this approach
was immensely beneficial. Graphical and algorithmic quirks
were able to be identified using a debugger, and the rapid
turn around time helped tremendously. Moreover, the code
was organized such that porting to Verilog would be easier:
// Very weird to code this way! But it makes
se since this ultimately ends up on the
FPGA
impl TopLevel {
pub fn rising_clk_edge (&mut self) ({
// Propagate signals to owned submodules
self.orchestrator.reset = self.reset;
self.orchestrator.rising clk_edge () ;

if self.reset {
self.orchestrator.camera_heading_in
= Vec3: :FORWARD;
self.orchestrator.camera_pos_in =
Vec3::default () ;
}
}
}
The Verilog implementation was tested to give exactly the
same results as above. However, the software implementation
renders in around 500ms whereas cocotb can take tens of
minutes. We are also characterizing the performance of the
caches and our overall architecture (roughly) by logging some
statistics each frame:
This frame had
49.83148% hit-ratio
Took 3367185 cycles, simulation ran for 501lms
This frame had 3346653 accesses with
49.83146% hit-ratio
Took 3367056 cycles, simulation ran for 491ms
This frame had 3346616 accesses with
49.83144% hit-ratio

3346782 accesses with

V. CoMMUNICATION ProTocCoL

A. UART Receiver (Win Win)

Amongst the choices for which communication protocol we
can use, we decided to proceed with UART due to the benefits
that it provides. We are aiming for an output rate of 30 fps,
and for a single frame update, we expect to transmit 5 % 1282
bits of data to update the buffer in the L3 cache. Overall, we
expect a transfer rate of 30 * 5 * 1282 = 2 Mbit of information
per second. Coincidentally, the UART in the Urbana board is
capable of transferring at a rate of 2 Mbit/s, which meets our
specification.

Another feature that drew us to using the UART is the asyn-
chronization rate of transmission and receiving. We expect
that the data transmission from the server may not align in
time with the rate in which it is received at the L3 cache,
so to ensure that these two rates do not affect one another,
setting them asynchronously was the best choice to go with.

B. UART Transmitter (Win Win)

The UART transmitter works in opposite to the receiver,
where it will take the user’s input commands and send it to the
Minecraft server client, where it then will update the current

game status. The input command data that will be transmitted
will not be as intensive as the UART receiver, and the rate
of transmission will most likely not be as fast to it, which is
why the asynchronous feature between the two is very helpful
for our purpose.

C. User Input (Win Win)

A frame will update only if the player is detected to have
been displaced from their current position. To trigger this
displacement, an input is needed by the player to determine
the direction to move towards. At first, we thought that the
built-in buttons on the Urbana board could be used as the
input. However, we realized that will not work due to other
usage for the buttons. So instead, we chose to use arcade
joystick for control input, which will provide us with the same
4 inputs (forward, backward, left, and right).

o s (1000
o |ao o A
a
oo B D— oo
[m] [u]
Sinus _seimitsu Sanws _semitsu mt
= = Seimitsu o N "
Dn | Red ——= fjon Black | & D H D 3
Le Black Le Red H 2
Ri %{\/ Ri | Red = *
Gnd | Black 180° Gnd | Black
. e = imits
Joystick Wiring Guide M' 'LS-"-“ Wire T
View is looking inside of stick. '.-*L,s-— -g»‘E-— PC
180°

seimitsu 1807

[m]
Q
o | : o
H £ o)(o Sanwa a] 5
[m] B "‘I I;I I o D v v o]
Sanws_semisy Q> Sanos_sormiay
Up Black 2 flp | Rea
Dn Dn Red
Ite [Red | X3
Ir e I= rrevoas by rdeion
|Gna[Biack | EE e 1730photabucketconVproflerdagn

Fig. 2: The wiring schematic of an arcade joystick comprised of 4 limit
switches.

A joystick is commonly comprised of two potentiometers,
but an arcade version of the joystick is instead comprised
of 4 limit switches. The convenience of this type of this
switch compared to the potentiometers variant is that this one
provides digital signal without the need to have analog to
digital converter (ADC). By connecting the joystick to the
first four pins of PMOD A I/O pins, each button input in
the joystick can concatenate into a 4-bit value. By padding
it with four additional Os, this can form a byte packet which
is then transmitted through UART into the plugin to update
the server.

VI. EVALUATION

A. Voxel Traversal Unit + Orchestrator (Yohan)

20

40

The voxel transversal unit (VTU) and orchestrator had been
tested to work as intended. The following is an image rendered
from our system, in simulation (cocotb). Using 1 VTU, it took
38 milliseconds.

B. L3 Cache (Win Win)

We decided to change our approach for the L3 cache from
using DDR3 to BRAM instead solely for its doable imple-
mentation and simultaneous read and write of data. While
cache was able to do as intended on the BRAM, the ring
buffer style state change never came to fruition. Although it
was tested to make sure it does as it was intended, it did not
translate well to the final implementation.

VII. RETROSPETIVE

A major area of development would be identifying the key
elements of the project and devise contingencies in place in
case it does not work. We did not consider, at first, that the
L3 cache could work with the BRAM under reduced sample
size. The late change that took place for the implementation
has costed us the time that could have been used to ensure
intended behaviors translate when it is integrated with the rest
of the modules.

Another possibility to worked on was to utilize a second
FPGA hardware for its BRAM. This way, the size limitation
are expanded to allow more modules — especially the three
different levels of caches — to take advantage of its features.

VIII. CONTRIBUTION

Yohan handled the main ray tracing portion of this project,
which includes the algorithm and any dependency for it. His
knowledge of Rust and Java programming language allows for
the implementation of the game’s server and plugin to set up
serial communication.

Win Win worked on communication and data storing
between the game and the FPGA. He also worked on HDMI

to stream output of the ray traced algorithm on to an external
device.

IX. Resourcke CoODE

The resource codes can all be found in the following repos-
itory link: https://github.com/yohandev/fpga-final-project.git.

ACKNOWLEDGEMENTS

We would like to thank Joe and the staff team of 6.2050
for providing insightful guidance and support throughout the
project.

REFERENCES

[1] J. Amanatides and A. Woo, “A Fast Voxel Traversal Algorithm for Ray
Tracing,” in Eurographics, 1987. [Online]. Available: https://api.sema
nticscholar.org/CorpusID:60696902

[2] Wikipedia contributors, “Fast inverse square root — Wikipedia, The
Free Encyclopedia.” [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Fast_inverse_square_root&oldid=1256998505

[3] “Introduction to Shading.” [Online]. Available: https://www.
scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/
diffuse-lambertian-shading.html

[4] Wikipedia contributors, “Circular buffer.” [Online]. Available: https://en.
wikipedia.org/wiki/Circular_buffer

https://github.com/yohandev/fpga-final-project.git
https://api.semanticscholar.org/CorpusID:60696902
https://api.semanticscholar.org/CorpusID:60696902
https://en.wikipedia.org/w/index.php?title=Fast_inverse_square_root&oldid=1256998505
https://en.wikipedia.org/w/index.php?title=Fast_inverse_square_root&oldid=1256998505
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/diffuse-lambertian-shading.html
https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

	Introduction
	Voxel Traversal Unit
	Fast Voxel Traversal
	Fixed Point Arithmetic (Yohan)
	Shading (Yohan)
	VTU Orchestrator (Yohan)

	Voxel Caches
	L3 Cache (Win Win)
	L2 Cache (Yohan)
	L1 Cache (Yohan)
	In Reality

	Software Implementation (Yohan)
	Communication Protocol
	UART Receiver (Win Win)
	UART Transmitter (Win Win)
	User Input (Win Win)

	Evaluation
	Voxel Traversal Unit + Orchestrator (Yohan)
	L3 Cache (Win Win)

	Retrospetive
	Contribution
	Resource Code
	Acknowledgements
	References

