
Hardware-Accelerated Real-Time Video Share
Abdulaziz Aljuaid

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
aaljuaid@mit.edu

Dakota Goldberg
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
dakotag@mit.edu

Abstract—We propose a design that allows two FPGAs

equipped with cameras to exchange high-quality video in real

time. High-fidelity transmission has always been the target of in-

hardware acceleration, one of the main use cases of FPGAs; we

want to leverage the speed gains of utilizing an FPGA to process

high amounts of data. The majority of our implementation lies

in the JPEG-like compression scheme we use to encode raw

camera frames. We transmit compressed data from one FPGA

to a computer via UART or to another FPGA over a high-speed

differential pair connection.

I. INTRODUCTION

The fundamental constraint in real-time video transmission
is bandwidth. A single frame of uncompressed HD video has
at least 3 MB of data, which means that sending a second of 60
FPS video requires one to send 1440 Mb per second if they are
not compressing their data in any way. With the goal of making
real-time video transmission between two FPGAs feasible,
we designed and implemented a JPEG-inspired compression
scheme and efficient packet construction pipeline to compress
video frames in sequence, significantly reducing the number
of bits needed to represent a second of video, then transmit
the compressed frames to be decoded on another device.

II. SETUP

For video capture, we use an OV5640 color image sensor
and transform the raw camera signals into pixel space with a
series of specialized modules designed to process and prepare
image data from the camera sensor. The camera is clocked at
200 MHz, and we use a clock domain crossing FIFO buffer
to generate a 74.25 MHz clock for our system logic.

III. ENCODING

A. JPEG Compression

The Joint Photographic Experts Group (JPEG) is a com-
pression format which utilizes frequency-domain conversion
to enable compression through partially discarding high fre-
quency content, as well as other techniques. In total, the
main steps in the compression procedure are initially chroma
conversion and subsampling to discard unnoticeable chroma
components and decrease amount of information fed into the
rest of the pipeline. This is then followed by image division
into 8x8 blocks for the purpose of applying the 2-dimensional
Discrete Cosine Transform (DCT), then quantization to further
narrow down higher frequency content, and finally entropy

Fig. 1: Encoding pipeline block diagram. The blue ↭ indicates
that there exists one instance of this module for each channel.

encoding to combine redundant zero-runs for further com-
pression. As a compression technology, JPEG encoding can
potentially achieve 1:10 to 1:50 image compression ratios
with minimal impact on visual quality while being relatively
simpler than other compression formats used for video.

B. Chroma Conversion and Subsampling (Abdulaziz)

Since most of the information is encoded in the luminance
component of the image, this can be leveraged to down-sample
the chroma content and lower the bandwidth requirement
with minimal loss of quality. A subsampling ratio of 4:2:0
(half the vertical and horizontal resolutions for chroma) was
implemented in the pipeline, reducing the total bits to be sent
by half. However, one major trade-off was the separation of the
three channels into separate pipelines, increasing the overall
complexity by having multiple data-paths, and required a more
robust packer module implementation that is able to combine
the three streams into one serial connection.

C. Transform Buffer (Abdulaziz)

To enable processing of the image in 8x8 blocks in real-
time, reordering of the camera input was needed. This is
accomplished through the Transform Buffer module, which
stores 16 lines of the input frame via one two-port BRAM, and
outputs pixels in vertical fashion, incrementing the horizontal
count every 8 cycles, thus sending 8-pixel vertical vectors one
by one and sweeping an HRES*8 block in the process, as



Y Cb+Cr YCbCr

4:4:4

4:2:2

4:2:0

4:1:1

Fig. 2: Common subsampling ratios. [2]

shown in the figure. Moreover, since the reading and writing
patterns are different for the transform buffer, pixel values are
written to one 8-line section while read from the other 8-line
section to avoid read-write problems. Lastly, the module keeps
track of valid_out, hcount_out, and vcount_out as
a function of input coordinates and validity.

Fig. 3: Read-write logic of the transform buffer

D. 1D Discrete Cosine Transform (Abdulaziz)

To construct the 2D DCT module, a pair of 8-point one-
dimensional dct modules that can operate on signed fixed-point
inputs were needed. Internally, the one-dimensional transform
operates as a matrix multiplication between a precomputed
8x8 matrix of cosines, and an 8-value vector of pixels handed
to the matrix multiplication module from a small 2x8 cache.
To maintain consistent throughput, the module takes as input
one pixel value per cycle and, in that cycle, computes the
multiplication result of one row as a frequency component of
a single value. Thus, for every eight pixels the module will
calculate the eight frequency coefficients, all in the span of
eight cycles.

E. 2D Discrete Cosine Transform (Abdulaziz)

The main compression method used in JPEG, DCT converts
spatial data into the frequency domain, for the purpose of
further compression by discarding high-frequency components

in the 8x8 pixel block. In-hardware, the 2D DCT is constructed
via a pair of 1D DCT modules operating differently on the
data stream passing through the module. In particular, while
one DCT module operates row-wise on the data, the other
would need to operate column-wise. To accomplish this, a
single 2-port BRAM was used to store two 8x8 blocks, such
that, similarly to the transform buffer, the second operating
DCT module can take data in transpose to the first one, without
missing or stopping the data stream.

Fig. 4: 2D (i)DCT structure

Fig. 5: type-ii dct, in this case n=8. [3]

To accomplish this, the input pixels are transformed into
signed fixed-point values, which are then fed to matrix mul-
tiplication that implements the Type-II DCT, computing one
row-column multiplication value per cycle.

F. Quantization (Dakota)

To reduce the number of values needed to represent the
8x8 blocks in the frequency domain, we divide each value
fij of the 8x8 block by qij from quantization matrix Q

and round the quotient to the nearest integer. Quantization
reduces the number of nonzero values (making the block
easier to compress and transmit) while also optimizing for
human perception by dividing higher frequencies by larger
quantization coefficients.

We use one quantization matrix for the Y channel and
another for the chroma channels [4]. These are both stored
in BRAM and accessed using IP. The signed quantization
division is carried out by a fully pipelined divider.

G. Entropy Encoding (Dakota)

Typical of JPEG compression pipelines, we use run-length
encoding, compressed further with a few Huffman codewords,
to encode the quantization coefficients. To optimize for runs
with many contiguous zeros, we read the data in order from
low frequencies to high frequencies, resulting in the zig-zag
ordering in Figure 1.

We use two alternating dual read/write BRAMs to store
elements from one block into memory as we read elements



Fig. 6: The element ordering used for entropy encoding [1].

from the next one according to the zig-zag pattern. Then we
carry out the run-length encoding algorithm, sending encoded
runs as they are formed.

The first value in the sequence of quantization coefficients is
encoded using Differential Pulse Code Modulation (DPCM),
which stores the difference between the first value of the
current block and the corresponding value of the previous
block. The subsequent coefficients are encoded as runs of the
following types:

1) Nonzero coefficients are encoded as (run_length,
value_width)(value) where run_length is a
number between 0 and 15 equal to the number of zeros
occurring before this value. Because we value_width
holds the bit length of value, we can save a bit by
storing value in ones-complement.

2) If there are more than 15 zeroes in a row, they are
encoded with fixed-width tuple (15, 0)(0), where
the middle zero in the tuple is represented with as many
bits as we’d typically use for value_width.

3) The encoding ends with The encoding ends with Huff-
man codeword (0, 0) to indicate no more nonzero
values in the block.

There are a few properties of this process that make its
implementation non-trivial. First, although we output runs to
the next module as we form them, we won’t know which run
contains the last nonzero coefficient until we reach the end of
the block. To solve this problem, we keep track of the number
of runs up to the most recent nonzero coefficient and send
this number to the following modules on the last cycle of this
block to ensure they only pack runs up to that point.

Further, because our packet format requires we know the
entire length of the data we are sending and stores this in the
packet before the data, we keep track of length as we do run-
length encoding. On the last cycle of every block, we send all
the metadata necessary to properly encode and pack the block,
including the number of runs, total length of the runs (up to
the last nonzero run), the encoded DC coefficient, as well as
the x and y coordinates of this block, which are essentially
hcount and vcount with the bottom three bits discarded.

This process reduces redundancy in the data, optimizing it
for efficient storage and transmission. There is one entropy
encoder module for each channel.

H. Encoding Buffer (Dakota)

As the entropy encoder is encoding a block, it writes
the encoded runs and block metadata into a custom FIFO
buffer for that channel, which uses both dual-port BRAM and
registers to store these values for use by the packer module.
Metadata is stored in register buffers, and run data is stored
in BRAM.

This buffer is needed to accumulate the backlog of encoded
blocks that builds up as the packer prepares packets for all
three channels (Y, Cr, and Cb) to be sent over a single trans-
mission line. Therefore, the encoding buffer is parametrized by
BUFFER_DEPTH, which determines the number of BRAMs
we use and the size of the register buffers. This is a function
of the ratio of the rate that data comes into the encoding
buffer from the entropy encoding module and the rate that the
packer can pack and send data from each channel. Therefore,
BUFFER_DEPTH is different for the luminance and chroma
channels.

Fig. 7: Waveform illustrating the encoding buffer’s commu-
nication interface with the packer. (For simplicity, does not
show value-in signals from the entropy encoder.)

The packer interfaces with the encoding buffer through a
request system. Each encoding buffer can accept two types
of requests from the packer: request_metadata and
request_run. The encoding buffer is a FIFO buffer by
nature, so it handles this request by sending the data that has
been in the encoding buffer longest.

IV. TRANSMISSION

A. Channel Merging with a Round-Robin FSM (Dakota)

Up to this point, we process each color channel within its
own series of modules. Because the packer outputs a single
data stream, before we can give data to the packer to wrap
into packets, we must combine these three channel streams
together. To do this, we use a round-robin finite state machine
in our top-level module that cycles through the channels and
sends requests to fetch a complete block from one channel’s



encoding buffer before moving to the next channel in the
sequence.

Because we use 4:2:0 subsampling for the chroma channels,
for every four Y blocks, we only have one Cr block and
one Cb block. Or rather, for every 2 Y blocks, we have one
chroma block. Therefore, our packing process is driven by the
following state machine:

Y Cr Y Cb

At each stage, we first send a request to the current channel’s
encoding buffer to get the metadata for the next block. Once
we have the metadata, which includes the number of runs
(num_runs) up to the final Huffman end token, we send one
run request per cycle to that encoding buffer until we’ve made
num_runs requests. One the final request, we send a single-
cycle block_end signal and advance our state machine to
the next state to repeat the process. With a multiplexer, we
route the current channel’s encoding buffer’s output signals
into the packer.

B. Packer (Dakota)

The packer takes in blocks, comprising of metadata fol-
lowed by multiple cycles of run data and formats them
correctly according to our packet format. The packer writes
in-progress packets into a FIFO buffer workspace, and then
ultimately outputs a single stream of bytes (or bits, depending
on which transmission regime we are operating within). One
byte is outputted every cycle, and the size of the FIFO
workspace is a function of whether we output bits or bytes.

As we pack each bit of a packet, we also compute a
parity bit for the variable-length data. The parity bit, which is
followed by the stop bit, gets added to the end of the packet
on the cycle that the packer receives the block_end signal.

C. Packet Format (Dakota)

Fig. 8: Packet format for an encoded block.

Breaking this down:
1) We hold our transmission line high, so the start bit is

represented with a 0.
2) CHANNEL is a 2-bit indicator identifying the channel of

the packet’s block.
3) X and X represent the location of the top-left corner of

the block this packet carries. Their widths are a function
of the image size, which is known by both parties prior
to communication.

4) LENGTH is a log2(64·(4+(log2(WIDTH+1))+WIDTH))
bit value containing the length of the encoded block data
to follow. The bit length of LENGTH is derived from size
of the maximum possible DATA bit-string.

5) DATA has length LENGTH and stores the encoded block
data from our pipeline.

6) PARITY is a parity bit for redundancy and recovery.
The LENGTH input provides a natural error-checking
mechanism as well.

7) The stop bit is necessarily a 1.

D. Transmission Setup

For the version of our project where we decode using
Python, we send our packets in bytes to a computer using
UART to be decoded and reconstructed with a script.

Although we didn’t end up having time to complete the
FPGA-to-FPGA encoding/decoding transmission scheme, the
design for this version of the project was to connect the
packer’s serial output channel to a Differential Signaling
Output Buffer primitive (OBUFDS). The output of the OBUFDS
instance is the final result of our data capture and encoding
pipeline and would be sent to the paired device to be decoded
and displayed.

V. DECODING (ABDULAZIZ)

We planned for two types of decoding: 1) sending our
data to a computer to be decoded and displayed using a
Python script and 2) sending our data over differential wire to
another FPGA to be decoded on hardware and displayed via
HDMI. We completed the first decoding scheme and half of
the modules required for the second.

Fig. 9: Decoding pipeline block diagram. The blue ↭ indicates
that there exists one instance of this module for each channel.

The decoding stage is implemented very similarly to the
encoding stage. In particular, The inverse Discrete Cosine
Transform utilizes a very similar module, but with a different
precomputed matrix (Type-III DCT is implemented in the
iDCT module). However, some major differences include
the dequantization module being implemented as a trivial
multiplication step, and the lack of a Line Buffer, and in
its place a FIFO is used to combine the three channels
together before conversion into RGB colorspace. After this
step, the reconstructed pixel, with its location, is handed into
the familiar DDR-HDMI pipeline for display.



Fig. 10: Type-III DCT, or the iDCT, N=8. [3]

(a) Hardware DCT (b) Software DCT

(c) Hardware Reconstruct (d) Software Reconstruct

Fig. 11: A comparison of hardware and software implementa-
tions of DCT and Inverse DCT

VI. EVALUATION

A. Color & frequency conversion

The Chroma Conversion to DCT part of top_level was
implemented as one testbench, utilizing Cocotb to feed in
pixel data from a few test images, data collected through the
module’s outputs were reconstructed again via Pillow, and
some examples for luminance reconstruction are shown in
FIGURE. Overall, the simulated hardware approach produces
similar results to applying the DCT using scipy. However,
some artifacts exist including some quantization due to using
4 bits to represent the channels in the current implementation
(versus all 8 bits with the software approach). Additionally,
both reconstructions suffer from noticeable quantization, as
the software-level IDCT was operated directly on the 8-bit
luminance values generated from Pillow images. Nevertheless,
the simulation results are as expected, and the modules match
the software approach.

VII. RETROSPECTIVE

We learned a lot from working on this project — not only
about hardware acceleration and how compression schemes
work at an object-level but also how to approach a large
design project, good heuristics for iterative development, and
communication strategies for collaborating on an integrated
pipeline. Some reflections on the project and specific lessons
we learned include:

1) It’s important to get a very basic version working before
adding complexity. We initially had two development

cycles planned: 1) develop our encoding pipeline on
hardware and use UART and Python to decode 2)
implement hardware decoding and transmit data between
two FPGAs via a differential connection. Step 1) turned
out to be a lot harder than we thought, but that was
largely because we were trying to compress everything
optimally the first time around. This more difficult task
took longer to develop (delaying the amount of time
we had working on hardware) and made things more
difficult to debug. Further, especially on collaborative
projects, integration often reveals necessary design adap-
tations, and the sooner you can address those, the better.

2) Beware the sunk cost fallacy, and don’t fall into technical
debt. When you have a project that depends heavily
on an established protocol between modules, it’s very
tempting to not want to make a change that affects
tested and working modules, even if that change will
ultimately improve the entire system or is necessary for
making another module work better. You may likely
spend more time trying to make a module work under
the constraint of not changing other modules than you
would just updating the entire system. If you are really
struggling to make a module work within the constraints
of your overall design, maybe there’s a problem with the
design itself.

REFERENCES

[1] J. Griffin, “The Ultimate Guide to JPEG Including JPEG Compression
& Encoding,” The Webmaster, Jan. 4, 2023. Available: https://www.
thewebmaster.com/jpeg-definitive-guide/. [Accessed: Oct. 30, 2024].

[2] “Chroma Subsampling.” Wikipedia, Wikimedia Foundation, 24 Sept.
2024. Available: https://en.wikipedia.org/wiki/Chroma subsampling

[3] “Discrete Cosine Transform.” Wikipedia, Wikimedia Foundation, 14
Nov. 2024. Available: https://en.wikipedia.org/wiki/Discrete cosine
transform

[4] libjpeg-turbo contributors, “jcparam.c - libjpeg-turbo.” Available: https:
//github.com/libjpeg-turbo/ijg/blob/main/jcparam.c. [Accessed: Nov. 10,
2024].

[5]


