
FPGA Hole in the Wall
 Nathan Mustafa 

MIT EECS 
Cambridge, US 

nmustafa@mit.edu

Cooper Price 
MIT EECS 

Cambridge, US 
cooperp@mit.edu 

Abstract—We present an FPGA implementation of the 
television game “Hole in the Wall” in which a player avoids 
collision with a wall simulated by the FPGA system and 
displayed via HDMI. The system streams video and game logic at 
video frame rate allowing for real time gameplay. We implement 
this system using the Nexys 4 DDR FPGA, evaluate its features, 
and discuss potential additional features for the system. The code 
for this system can be found here: 

I. INTRODUCTION

The game “Hole in the Wall” is a classic home television 
game from the late 2000s in which contestants standing on a 
platform avoid colliding with an approaching foam wall 
outfitted with shapes the contestants must make with their 
bodies to fit through the wall. 

Fig. 1. Image from the “Hole in the Wall” television show

Our system is an FPGA simulation of this game in which a 
camera captures the shape of the player’s body against a green 
screen while simulating a wall moving at the player - the 
player sees the shape of the wall on a screen connected via 
HDMI as well as an indicator of how far away the wall is. The 
system progresses the game with new wall shapes until the 
player fails and the game ends.

Fig. 2. FPGA “Hole in the Wall” System Diagram

Our implementation consists of three main pipelines: a 
camera pipeline, a game logic pipeline/component, and a 

graphics pipeline. The camera pipeline extracts information 
about the player's location in space - namely their shape and 
position. The game logic pipeline keeps track of and updates 
game state based on the input from the camera pipeline and 
outputs the relevant information for the graphics pipeline to 
utilize such as collision locations, the shape and location of the 
wall, and the state of the game. The graphics pipeline takes 
input from the game logic pipeline and outputs graphics to a 
screen via HDMI by displaying the camera pixels with an 
overlay of the wall shape and its current location location.

We take advantage of the FPGA infrastructure to run our 
game via a streaming pipeline - namely, as much as possible, 
we look to stream data throughout the pipelines and do 
necessary calculations “on the fly”. For example, we pass 
pixel data through our camera, game, and graphics pipeline so 
that calculations are occuring at each cycle.

II. CAMERA PIPELINE

The system begins by receiving camera data from a camera 
and stores the full resolution video data into a DRAM frame 
buffer to cross between the domains of the camera clock and 
our main system clock. As we receive each pixel we mask out 
green values (the green pixels from the green screen) to 
identify what parts of the frame are a player.

Next we identify the pixels corresponding to each player 
using our variation on the k-means algorithm. In short, our 
algorithm computes centroids for each player at every frame, 
performing only a single iteration, before assigning each pixel 
representing a player to the closest centroid. Then it 
recomputes the centroids based on the closest pixels at the end 
of each frame. This allows us to pass the player location 
information to the game logic controller in order to determine 
if and which player collided with the wall. 

Additionally, we calculate the depth of each player by using 
the stereo vision equation to parallax the center of mass 
outputs of multiple cameras and extracting the depth. In order 
to perform computation on center of masses extracted by two 
separate cameras, we pass the extracted center of masses from 
one board to a main “Controller” board that performs the 
parallax computation and the remaining game logic.

A. Parallax
To estimate the depth of players within the game, we 

implement parallax using stereo vision. The system 
configuration consists of two FPGAs positioned 5 inches 
apart, each facing the players. The parallax module utilizes the 
baseline distance between the cameras, the cameras’ focal 



lengths, and the pixel densities to compute the distance from 
the cameras to each player. For this computation, we rely on 
the centroid outputs of each player obtained from the k-means 
module, treating these centroids as shared reference points 
between the cameras for comparison.

Fig. 3. Two Camera Setup with UART

Specifically, depth calculation involves the focal length of 
the cameras and the pixel density, which is derived by dividing 
the resolution width (1280x720) by the camera sensor width, 
as specified by the manufacturer. The inclusion of pixel 
density in the numerator accounts for the disparity being 
measured in pixels. 

Fig. 4. Stereo vision equation used

Fig. 5. Illustration of Stereo Vision

The parallax module performs the computation over 
multiple cycles. The absolute value of the disparity, defined as 
the difference in centroids between cameras for a given player, 
is calculated combinationally. Then division is executed over 
an upper bounded number of cycles to determine the depth. 
The division is upper bounded by the longest division that 
could occur - namely the highest numerator possible divided 
by the smallest denominator - since we use a basic, iterative 
divider. The highest numerator is based on the resolution 
width, sensor width, focal length, and baseline distance and is 
around 1000. The smallest disparity is 1, if the two center of 
masses are directly next to each other (if the disparity is 0, we 
don’t do division and simply output the highest possible 
value). Therefore, division is capped at ~1000 cycles which 
fits well within the vsync period. This multi-step process is 
designed to ensure adherence to timing constraints and 
maintain computational efficiency, although it could clearly be 

improved with a more robust division algorithm. Nonetheless, 
we find our current process to be sufficient for our needs.

As mentioned, the parallax module is used to determine the 
players depths in order to determine if the players are the 
correct distance from the camera. The depth information is 
passed to the game logic controller, which uses the depth to 
determine if the player is following the rules about the desired 
depth.

Our parallax module passes our cocotb tests to verify 
accuracy, and works on our boards using up to 4 centroid 
values from each board. Because the centroid values are not 
inherently ordered, the module must figure out a 
correspondence between centroids from each board. The 
module does this by checking which centroid is the closest, 
which we assume corresponds to the same centroid on the 
other board.

B. Center of Mass Transmission via UART
In order to extract the depth of players via parallax, the 

center of mass from the separate cameras must be transmitted 
to a single board. We do this by sending the center of masses 
from the “Peripheral” board - which ends its 
computation/pipeline after sending these center of masses - to 
the “Controller” board - which utilizes the received center of 
masses to compute depths and continue with the Game Logic 
and Graphics pipelines - via UART transmission. 

There are up to 4 centers of masses calculated on each 
board, with x and y components for each center of mass for a 
total of 8 values that need to be transmitted. To fully utilize the 
available peripherals on the board as well as minimize latency 
of the system, we choose to send all 8 center of mass 
components in parallel across 8 wires. Although the y 
components are only 10 bits wide compared to the x bits 
which are 11 bits wide, we choose to pad the y components to 
11 bits for simplicity when transmitting since computation has 
to wait for the x bits to arrive as well. 

We send our 8 values once a frame after the k-Means 
algorithm has finished calculating the center of masses from 
the previous frame. We send our values at a baud rate of 
115200 which means the transmission for the 11 bits of data 
plus 2 bits of start/stop bits takes 11285 cycles. We note that 
this is significantly under the available (1280 + 220 + 110 + 
40) * 30 = 49500 available cycles of vsync between each 
frame. Additionally, we buffer our received signals across two 
registers to avoid metastability which adds 2 cycles of 
unnoticeable latency. 

C. k-Means
In broad terms, our algorithm differs from the traditional 

k-means algorithm in that it does not iterate on the centroids 
until it reaches a best fit. This would require us to iterate 
through all player pixels in a camera frame multiple times 
within the time it takes to display a frame. This is not possible, 
so we had the idea that perhaps there is enough temporal 
locality between the player pixels in between frames, that 



recomputing the centroids across frames by initializing 
centroids using the previous frames’ centroids would be 
enough to find the best fit. 

Early experiments, conducted in software using Python 
prototypes, helped to validate the design choices underpinning 
the hardware implementation. In these tests, a simplified 
k-means routine—one that did not perform multiple iterations 
over the same data—was shown to converge reliably to stable 
centroid positions. Even when starting from poor initial 
guesses, the centroids gravitated toward the correct player 
locations within a handful of frames. This gave us confidence 
that our single-pass, frame-by-frame approach would translate 
effectively to a hardware environment. By avoiding the 
iterative convergence typically associated with k-means, we 
achieve a more efficient module that still delivers accurate 
player tracking results.

The k-means is implemented as a finite state machine 
(FSM) to ensure reliable and predictable behavior in hardware. 
The key steps include receiving pixel coordinates tagged as 
player pixels, assigning those pixels to the nearest centroid, 
accumulating position data for each centroid, and ultimately 
updating the centroid positions to reflect the new frame’s data. 

To identify the closest centroid, the module computes 
Manhattan distances between the incoming pixel and each 
active centroid. This corresponds to the closest centroid 
assignment block in figure 6. Manhattan distance is chosen not 
only because of its simpler arithmetic operations—composed 
of a few additions and subtractions instead of square 
roots—but also because it sufficiently captures spatial 
proximity in this application. This choice reduces hardware 
complexity and computation required for each pixel, where 
timing requirements are tightest. Each pixel, once assigned to 
a centroid, contributes to that centroid’s cumulative position 
data, which is collected in the COMs (center of mass) block 
shown in Figure 4. This accumulation takes place over the 
course of the active draw section of a frame, ensuring that at 
the end of the frame, the average position of all assigned 
pixels can be easily computed. The average serves as the 
updated centroid position, capturing the prevailing player 
location without multiple iterative passes.

Because the number of active centroids can range from one 
to four, depending on how many players are present in the 
game, the FSM logic dynamically adjusts its selection and 
update routines. If there is only one player, the module 
maintains a single centroid and updates it with the player’s 
pixel positions. For two, three, or four players, the hardware 
scales by managing multiple centroid computations in parallel. 
This flexibility is central to ensuring that the k-means module 
remains effective and efficient across a range of gameplay 
scenarios—scenarios that might include players entering or 
leaving the game mid-session (updating the board switches 
mid-session would also be necessary, however). 

To maintain throughput and synchronization, the centroid 
calculation is split into two pipeline stages. In the first stage, 
the module reads incoming pixel coordinates, calculates 
Manhattan distances to determine the closest centroid, and 
pipes that information forward. In the second stage, the 
assigned pixels are aggregated into their assigned centroid. 
Such parallelism is needed to ensure this module meets 
timing.

Fig. 6. Kmeans Module Diagram 

III. GAME PIPELINE

The Camera Pipeline outputs the streamed camera pixels as 
well as if the given pixel is a player or not. The Game Pipeline 
accepts this input to update the game state. This component 
additionally accesses BRAM memory predefined wall shapes 
are stored for game usage. Using this information, it calculates 
the following updates to the game state: 

● Moving the wall forward as time progresses
● Checking if the player intersect with the wall shape
● When the wall reaches the player, deciding if they 

collided or not
● Updating the game progress by accessing a new wall 

shape or ending the game at the end of each round

We expand on how the system implements these tasks 
below. 

A. Wall Storage
Using a Python program that provides a wall generation UI, 

we generate and store wall shapes in a .mem file used to 
populate the FPGA BRAM. 



Fig. 7. Screenshot of the wall generation UI

Wall shapes are represented as bitmasks where 1s 
correspond to walls and 0s to holes in the wall. To avoid 
excessive memory usage from storing bit masks at the same 
resolution as the camera input we store bit masks at a 16x 
lower resolution, i.e. for a 720x1280 video we store 45x80 
bitmasks. This resolution provides significant flexibility with 
wall shapes while allowing for up to 10 wall shapes to be 
stored per BRAM (with 75 total BRAMs on the board). 

With this representation of walls, detecting wall collisions 
are trivial. The system can simply intersect whether a given 
pixel was masked to be a player with the upscaled wall 
bitmask value at the pixel’s position - which can be efficiently 
calculated by dropping the bottom four bits of a pixel's 
horizontal and vertical position. 

Accessing the wall bit masks from memory only happens 
once a round, so the system waits for the result to return from 
memory at the end of each round with a small and 
unnoticeable 2 cycle delay.

B. Game Logic
The game’s logic is primarily handled by the Game Logic 

Controller Module. This component of the system spends the 
majority of the time advancing the simulated wall at a 
frequency that ramps as the game progresses. Once the wall 
reaches the simulated platform in which players are confined 
to in the real game, the controller monitors for any colliding 
pixels. If found, the controller outputs a “game over” signal to 
the graphics pipeline - otherwise, the game continues with a 
new wall fetched from memory and the speed of the game 
increases. Once the game has gone through a preset number of 
rounds, a win screen is displayed. 

Fig. 8. Diagram of the finite state machine implemented by the game 
controller

In terms of specifics, the game controller starts a game 
when button 2 is pressed on the board. Using the selected 
number of players, corresponding to switches 2 and 3, the 
round will start with a wall made for the inputted number of 
players and progress the game. If the players are out of the 
depth range when the wall reaches them or if the player 
collides with the wall, the game will end. Note that collisions 
are determined based on a threshold of a certain number of 
pixels corresponding to a player intersecting with the wall. 
This is to account for noise in the mask. 

The rounds continue until the third round, which will 
display the win screen when completed. From the win or loss 
state, pressing button 2 will take you back to the initial state. 

IV. GRAPHICS PIPELINE

As the final step in the system’s pipeline, the Graphics 
Pipeline outputs the updated game state and game 
visualization to the player via HDMI. 

Fig. 9. Artwork demonstrating what the player’s view looks like when 
playing 

The Graphics Controller receives game state from the Game 
Pipeline such as pixel data, collision and wall information, and 
game state. Given this input, it calculates a pixel value to 
output by overlaying collision and wall data on top of video 
data. Note that pixels that are detected to be player-wall 



collisions are always displayed to the screen even though they 
only influence the game state when the collision occurs while 
the wall is in the “play area”. Additionally, an indicator of the 
depth of the wall in relation to the play area is displayed in the 
top right via a sprite overlaid on top of the screen output.

Figure 8 shows the graphics UI, the pink pixels correspond 
to the walls and the progress bar is shown in the top right. 
Note the depth indicator in the top right: the pink vertical line 
represents the wall's position, which moves to the right as the 
round progresses. The black lines are the players positions, 
and the blue lines represent the acceptable range the players 
need to stand within in order to pass the round. 

Figure 8 is a good representation of what the game looks 
like while being played. Below is an image of the win and loss 
screens that display when either of those states occur. 

Fig. 10. Loss and Win Screens

Each pixel is then TDMS encoded and sent via HDMI 
connection to the connected display. From there the players 
can view the game from the display and follow its prompts to 
enjoy FPGA hole-in-the-wall!

V. EVALUATION

Our primary form of evaluation for our system are the 
features and capabilities of our game. We have reached our 
goals of creating a multiplayer game with UART 
communication, parallax depth calculations, k-means 
multi-player tracking, and also game logic for multiple 
players. We have even reached our stretch goals, making a 
wall creation script that lets us design walls to play in game. 
With more time, we would have liked to add more features to 
make the game feel more like a fully packaged game such as 
the ability to set difficulty, adding audio, adding a team and 
versus mode, and general improvements to graphics.That’s to 
say, we have developed a strong foundation for the game with 
all the main components that could be desired - and all that 
would be left would be to polish the game with minor 
gameplay improvements. 

Notably, we faced the issue that the player depths extracted 
from parallax - although generally within the correct range - 
tend to shift rapidly. We discovered this is because one of our 
cameras is blue-tinted which makes it noisily and randomly 
mask the background as if they were players which causes its 
calculated centroid to shift rapidly. This rapid shift in the 
transmitted center of mass causes the depth to shift rapidly - 
although it is generally centered on the correct depth. We 
would recommend solving this by building different mask 
thresholds for both cameras.

Additional criteria of evaluation include latency and 
memory usage. In a game played on a human timescale, 
latency is negligible as any noticeable latency would have to 
be very large. Throughout our system, we take advantage of 
the human timescale of gameplay such as in our k-Means 
algorithm which assumes that there is little player movement 
between iterations of the algorithm (i.e. between each frame). 
At the same time, however, this algorithm allows for center of 
mass calculations at each frame which is a non-trivial feature. 
Another instance of negligible latency is the 2 cycle delay on 
wall bit mask access from BRAM.

Our main timing requirement is completing all 
end-of-frame calculations, namely calculating and sending 
centroids as well as calculating depth, between each frame. As 
mentioned above, there are 49500 cycles of vsync in which we 
can perform this calculation. Our UART transmission takes 
11285 cycles, parallax takes at most ~1000 cycles, and 
k-Means - which is bounded by division - takes ~10000 
cycles. Therefore, we are guaranteed to complete in the 
available v-sync time. 

In terms of clock cycle timing, we look to meet our 10ns 
clock period timing constraint. Our k-Means module and 
parallax modules both posed challenges in terms of timing 
requirements because they both do lots of computation, and 
also division. This is why both of those modules are pipelined, 
as without the pipelining they did both cause negative slack. 
Other sections of our system are primarily passing data with 
minor computation and, therefore, pose little challenge for 
meeting timing. In total, we meet timing with .156ns of slack. 

In terms of memory usage, the system uses significant 
memory to buffer video input - however, this is unavoidable 
for “high” resolution video and several bits of information are 
already dropped down to a 16 bit 565 pixel format in order to 
reduce memory usage. The other source of memory usage is 
the storage of wall bit masks in BRAM. The usage of BRAM 
is dependent on the number of generated wall shapes - for our 
20 walls we use 2 BRAMs. It is worth noting, however, that 
the memory usage is fairly efficient as up to 7,500 wall shapes 
can be stored on the 750 BRAMs on the board - and even 
more if the resolution of the bit masks were to be decreased. 

Finally, we would like to point out some implementation 
insights we would pass along. Simulating our k-Means 
algorithm in software before implementing it on hardware 



gave us confidence that our novel algorithm would work as 
desired. Extensive testing of all our modules additionally 
significantly helped the development process. Finally, since 
we were working with two FPGAs with generally similar 
pipelines, we decided to make a custom build script that 
utilizes macros to build different parts of the code depending 
on which FPGA (controller or peripheral) is being built. We 
strongly recommend this, along with strong use of a version 
control software, to make development fast and efficient.

VI. CONTRIBUTIONS

Cooper has primarily worked on the k-Means algorithm 
implementation, parallax computation, green-screen masking, 
and graphics display. Nathan has primarily worked on the bit 
mask storage, UART communication, game logic, the custom 
build script, the wall generation UI, and graphics display. Both 
have collaborated on the skeleton for the system code, design 
and planning for the system, write-ups, and assisted each other 
on each of the modules.

ACKNOWLEDGMENT

We acknowledge and thank the 6.2050 course staff for 
instruction and assistance throughout the creation of this 
project. Specifically, we acknowledge Kiran Vuksanaj and Joe 
Steinmeyer for mentoring and providing significant input to 
the system ideation process. Additionally, we acknowledge the 
use of 6.2050 course material from lab assignments 
throughout our system.


	I.​INTRODUCTION
	II.​CAMERA PIPELINE
	A.​Parallax

	III.​GAME PIPELINE
	IV.​GRAPHICS PIPELINE
	V.​EVALUATION
	VI.​CONTRIBUTIONS
	ACKNOWLEDGMENT


