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Abstract—Below we present our work towards an FPGA
implementation of the classic video game Wii Sports Bowling.
Our project consists of three main parts - the ray casting 3D
renderer, light tracking camera control module, and physics
simulation. The 3D renderer supports rendering of the ball and 10
cylindrical pins at arbitrary positions and rotations. The camera
module tracks the position of a light source to determine the
initial velocity of the ball. The physics simulation outputs the real
time trajectory of the ball and pins through a 2D approximation.
We have also implemented a scoring module for two player
functionality but have not yet integrated this with the project.

I. INTRODUCTION

Our goal is to create an FPGA implementation of Wii
Sports Bowling. A central priority for the rendering module is
maximizing throughput to allow a framerate of at least 60FPS.
The simulation aims to be as accurate as possible within a 2D
top-down approximation, including friction and mass of the
objects. While we were successful in implementing the above
goals, we have not yet fully integrated the camera and scoring
for a playable bowling game. The current implementation
allows the user to control the speed and direction of the ball
using buttons, after which the simulation and renderer display
the throw in realtime. Below we present our progress up to
the project’s current state.

II. RAYCASTING RENDERER (HANK)
A. Overview

Rendering for the game is implemented using ray casting.
The renderer module supports rendering of the ball and 10
cylindrical pins at positions determined by the simulation.
Lighting is computed using Lambert diffusion with a single
point light source. A high level summary of the algorithm
used for the rendering pipeline is given below. In this section,
“camera” will refer to the viewpoint in 3D space used for
rendering. The following algorithm is repeated for all pixels
on the screen:

1) Compute a ray from the camera to the position of a pixel
on the screen in 3D space.

2) Select which objects to consider based on what objects
could appear in the current part of the screen

3) Use mathematical methods to compute the intersection
point of this ray with objects in the scene (currently one
sphere for the ball, and 10 cylinders for the pins).

4) If there is no intersection with any object, color the pixel
black.
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5) If there is an intersection, consider only the closest
intersection and compute the normal to the surface of
the object.

6) Using the hit point, normal vector, light position, and
object paint color at the hit point, compute a color for
the pixel using the Lambert shading formula.

We decided to use floating point values for the renderer to
avoid worrying about precision or overflow (at the cost of
higher FPGA resource use). The renderer does floating point
calculations using 8 Vivado IP modules. All components of
the renderer are connected using AXI-Stream.

B. Python Simulation

We first implemented a Python-based ray casting engine
to simulate the intended output of the FPGA renderer given
fixed ball and pin locations. This implementation has been
simplified several times in an effort to fit FPGA resource con-
straints, and serves as a reference for the exact computations
the FPGA performs. The Python model was very useful in
determining expected outputs when testing renderer modules.
The script also uses its parameters to generate several hex-
encoded floating point constants that the rendering module
needs.

C. Renderer Components

The renderer consists of four main modules -
ray_from_pixel, ray_intersect, hit_point, and lambert.
Ray_intersect and hit_point are encapsulated within the
check_objects module, which also handles the logic for
scheduling objects into the pipeline based on which objects
could be present in the part of the screen that the renderer
is considering. This greatly increases framerate by avoiding
unnecessary ray-object intersection checks.

D. Ray From Pixel Module

This module computes the 3D ray corresponding to a 2D
pixel location. This depends on the pixel coordinates, screen
resolution, and camera FOV. Since screen resolution and
FOV are constant and known ahead of time, the formula has
been simplified so that it may be computed with a single
fused_multiply_add (a*b+c) module from the IP. While we
initially considered using BRAM to store precomputed rays
for each pixel, this module ended up being simple enough
that this was not necessary. While throughput is important for
the renderer, latency (within reason) was not a major concern.
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Fig. 1. Simplified block diagram for renderer module.

E. Check Objects Module

This module takes in a ray corresponding to a pixel, the
positions of objects in the scene, and an object selection signal
that can be used to enable or disable intersection checking for
the ball or pins depending on the screen region. Based on the
object selection signal, certain objects are scheduled into the
pipeline, and the closest interaction point among these objects
is returned from the module. Therefore, throughput changes
depending on the value of object_select (if checking just the
ball, the module will be ready for the next pixel on the next
clock cycle, while if checking everything the module is ready
every 11 clock cycles).

After objects are scheduled into the pipeline, the
ray_intersect module starts computing the intersection of each
object with the current ray. The module supports both spheres
and cylinders with any position or rotation. If the object is a
cylinder, the rotation is expressed as a unit vector representing
the central axis of the cylinder. If the object is a sphere,
the rotation is a zero vector. Luckily, most of the same
hardware can be used for ray-cylinder intersection and ray-
sphere intersection since the cylinder formula simplifies to
something similar to the sphere formula when the axis vector
is set to 0. There are a few pieces of conditional logic that
change based on the object type. The formula for ray-cylinder
intersection is provided below, where d is the direction of the
ray, c is a vector from the origin of the ray to the center of the
cylinder, a is the axis of the cylinder, and r is the radius of the
cylinder, where the resulting a, b, and ¢ are provided to the
quadratic formula. The module outputs a t value that represents
a distance along the ray where the intersection occurred.

a =
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The hit_point module takes the t value from ray_intersect
and computes the coordinates of the intersection, the normal
to the surface of the object, and the color of the object at the

intersection point. This module also has minimal conditional
logic based on whether the object is a sphere or cylinder.

After passing through the ray_intersect and hit_point
pipelines, all object requests for the same ray are collected by a
module that computes which object has the closest valid inter-
section point using a fully pipelined tree comparison structure.
In the meantime, object data is stored in a BRAM. Once the
minimum is computed, the corresponding intersection data is
read from BRAM and sent out of the module.

F. Lambert Shading

Given the intersection point, normal, and object color, this
module computes lambert diffusion shading using the dot
product of the normal and the light direction. This module was
initially problematic because it required two expensive vector
normalizations. To cut down on DSP and LUT usage, the
vector magnitudes were replaced with a constant that does not
change significantly for the objects in the scene with our fixed
light location. This causes objects close to the light source
to appear very slightly dimmer than they should based on
correct Lambert diffusion, but this effect is not very apparent
in practice.

G. Frame Buffer

When rendering just the sphere, the renderer can keep up
with the display signal and would not require a frame buffer.
However, if the renderer has to check all objects, it takes
multiple clock cycles per pixel. Therefore, the renderer runs
independently from the display hcount and vcount and stores
its results in a BRAM frame buffer. The buffer handles only the
part of the screen that can have 3D objects and is itself divided
into two regions, one where only the ball can be present and
one where pins can also be rendered. Since the 3D region is
only about a quarter of the screen, and only a third of the 3D
region can have pins, the renderer can easily keep up with the
screen refresh rate, and could actually render at up to 180FPS
with the current 3D region dimensions.

Fig. 2. Renderer output.



H. IP

The renderer requires 8 modules from the Vivado floating
point IP - addition, multiplication, fused add/multiply, division,
square root, less than comparison, float to fixed conversion,
and fixed to float conversion. The greatest challenge of the
rendering system has been decreasing the resource use of
large modules containing many instances of these IPs. All
IPs were initially set to the “Full DSP use” setting, which
means 2 DSPs for most operations. This resulted in 156 of
120 available DSPs on the Spartan7 being used. After setting
addition and multiplication to “Medium DSP use” (1 DSP),
the DSPs were manageable but the capacity of LUTs was
exceeded. The current successful design balances this by using
full DSP adders and medium DSP multipliers, along with the
simplifying heuristics in the lambert module described above.
To use the IP in simulation, fake IP modules were developed
with the same pins as the real IP. These modules use built-in
Verilog math functions and artificial pipeline delays to match
those of the real IP.

1. Hardware Challenges

Even after tweaking the IP settings and adding simplifying
heuristics, the renderer eventually reached a point where it
could not fit on the Spartan 7 FPGA without significant
compromises to either rendering speed or functionality. As a
result, we switched to the Nexys Artix 7 board. Unfortunately,
this board only has VGA, which somewhat diminishes the
smooth appearance of the Lambert shading. Migrating the
rendering system from HDMI to VGA was otherwise fairly
straightforward.

J. Integration With Simulation

The renderer supports full 3D movement of objects, while
the physics simulation is 2D. The 2D locations of objects in
the renderer reflect their simulated positions from a top-down
view. To show pins falling, the rendering system detects when
the 2D position of a pin has moved and rotates the axis of
the pin to display the pin falling as it moves away. This was
only possible with the Artix 7 FPGA, as computing the rotated
axis for the pin requires an expensive vector normalization that
cannot be simplified.

The renderer uses floating point while the simulation uses
fixed point for lower resource use, so values must be passed
through a fixed to float conversion before being processed
by the renderer. The current design includes a separate float-
to-fixed converter for every pin coordinate, although a more
optimized design could reuse one converter, as the simulation
updates very infrequently compared to the renderer clock.
However, the resource use would still overwhelm the Spartan
7 FPGA even with this optimization.

III. PHYSICS SIMULATION (DENI1Z)

The physics simulation calculates the trajectory of the ball
and the pins and determines the score of each player. Initially,
the goal was to use a camera to detect the player’s swing and
to determine the ball x and y velocities accordingly. However,

due to large resource usage of 3D rendering, we used the
Nexsys Artix 7 FPGA rather than the original Spartan 7 FPGA.
Due to limited time and difficulty in adjusting the pin inputs
and clock frequencies, the module could not be implemented
and fully tested on the new FPGA. The camera module and
its replacement will be discussed in the next part.

A high level description of the physics simulation and the
block diagram are below:

1) User inputs initial x-position, x-velocity, and y-velocity
of the ball using buttons and switches.

2) Ball module computes the ball’s x-y coordinates taking
into account the friction and spin of the ball.

3) Collision module assigns the ball and the pins a diameter
and checks if they intersect. In case of an intersection,
it calculates the new velocities of the pins according to
elastic collision. It also determines which pins have been
hit.

4) Pins module updates the x-y coordinates of the pins
according to their new velocities.

5) Score module updates the player, round, and score.
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Fig. 3. Simplified block diagram for the Physics Simulation modules.

A. Original Camera Module

In the original plan, the FPGA with the camera was posi-
tioned on the floor, looking upwards to capture the swing of
the player from under. The player held a breadboard with four
parallel 5Smm red LEDs in series with two 470 ohm resistors.
The circuit was powered by a 9V battery, and a button was
implemented which kept the light on as long as it was pressed.
At the start of the swing, the player would turn the LEDs on
and when the swing is complete, they would turn them off.
These LEDs will be referred to as “light” from here on.

Light detection was implemented through thresholding and
masking. The camera would detect light by masking the pixels
that satisfied the Cr thresholds (red color content). Masking
according to Y (illuminance) was also tested; however, the
threshold varied greatly based on the ambient lighting of
the room, making it hard to set a value that would work
in a general case. It was determined that light detection
worked reliably when the lower Cr threshold was 136 and
the upper threshold was 255. By subtracting the light’s x and
y coordinates when the light was first turned on from the x
and y coordinates right before the light was turned off, ball



velocity was determined. An example velocity calculation was
as follows:
Tj — Xy

V. =
ot -t

Although this module is not implemented in the final
project, it was implemented in the original FPGA and was
tested in the following ways: Crosshair output was observed to
determine whether the center of mass followed the light; light
detection was tested by outputting a 1 or a 0 on the seven-
segment display, and lastly velocity calculation was tested by
outputting the x and y velocities on the seven-segment display.
The challenges that arose due to changing FPGAs will be
discussed in a later section.

B. Camera Replacement Module

As a replacement for light detection, first the camera_input
module was used. This module directly simulated the camera
by randomly generating values for whether the light is on and
the x and y coordinates of the light. This information was then
fed into the camera module. To keep the game aspect of the
project, the camera module was fully changed to compute the
x-y speeds and the starting position of the ball. The up button
is being used to determine the starting x-position of the ball.
When the button is pressed, the ball moves towards right and
stops when the button is released. When the ball moves out of
the frame, it goes back to the leftmost point. The right button
is used to set the x and y speeds of the ball. When Switch 0
is on, pressing the right button increases the x-speed by one.
When Switch 1 is on, pressing the right button increases the
y-speed by one. The speeds turn back to 0 when speed 6 is
reached. Turning switch 2 on indicates that the x-speed is in
the negative direction. The x and y velocity values are sent to
the Ball module, while the ball’s starting x and y positions are
sent to the renderer.

C. Ball Module

The ball module takes in the initial x and y velocities and
the positions. At each time step, the ball’s velocity decreases
depending on friction, which is a parameterized value. It also
has support for altering the x velocity according to the spin
of the ball, however, the spin calculation is not implemented
so this value is set to zero. The module does not take new
input until the ball reaches the end of the lane, signifying the
end of a roll. When the ball reaches the length where the pins
start, the collision module starts checking for collisions. This
module is turned on every 3 million clock-cycles to produce
a visually appealing ball movement with the given velocities.
The module uses values multiplied by 1000 to reduce the need
for floating point IPs. The IP is used after this module to make
the ball’s coordinates compatible with the renderer.

D. Collision Module

The collision module differs slightly from the way it was
implemented in the Spartan 7 FPGA. Due to the limited
resources and the high number of comparisons needed to
determine if a pin was colliding with the ball or another pin,

a highly pipelined finite-state machine (FSM) was used in the
Spartan 7 FPGA. Since resources were not a problem in Artix
7, pipeline stages were reduced to four to make it easier to
debug the implemented physics equations. There was not a
limit on how many pipeline stages we could have because
the simulation only needs to produce new values once per
frame over the time span of millions of clock cycles. As such,
dividing the calculation over a number of clock cycles did
not negatively affect the modules. The diagram of the FSM is
below.
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Fig. 4. Finite state machine (FSM) for the collision module.

The first stage of the collision module determines the
distance between the pins and the ball. It uses a for loop with
10 cycles to account for each pin and looks at the sum of the
squared differences between x and y values. The result is the
squared distance between two points as shown below.

dist; = (1 — x2) * (1 — 22) + (y1 — y2) * (Y1 — ¥2)

The second stage checks whether the ball and pin would
overlap if they were circles. To do this, it takes the square
of the sum of the radiuses and compares it to the distance
mentioned above. In case of a collision, it updates the x and
y velocities according to the elastic collision formula:

ma —mpg
Vpf = ————— % Vyg; + 2 % * VB
!
ma +mp ma +mp
mA mag —mp
VBf = 2% —————— % Uy; — * VB
ma +mp ma+mp

The third stage calculates the squared distances between
each pin. This is done through nested for loops: the outer loops
is from 0 to 9 inclusive, while the inner loop starts from i+1,
where i is the outer loop’s value, and goes to 9 inclusive. By
starting the inner loop from i+1 unnecessary calculations are
avoided. Otherwise, every pin combination would be checked
twice since looking at the collision between pin 9 and pin 8
is equivalent to looking at the collision between pin 8 and pin
9.

The last stage checks for collisions between pins and
updates their velocities accordingly. It has the same logic as
in the second stage but uses nested for loops discussed in the
third stage.

In the advanced version of the collision module, the post-
collision velocities were calculated taking the relative veloc-
ities into account to more accurately model the interactions
between objects. The difference is in the collision calculation
stages of ball-pin and pin-pin collisions (stages 2 and 4). The
added logic is as follows: the relative velocity components are



calculated by taking the difference in x and y velocities of the
objects:
rel_v, = vx1 — VX2

, the collision vectors are calculated by taking the difference
in X and y positions of the objects:

dr =1 — 29

. The vector magnitude is computed using the collision vectors.
The value we get from this calculation is the square of the
vector magnitude to avoid dealing with square roots:

mag = dx *x dx + dy * dy
. All of these values are then used to compute the projection

factor:
rel_vg * dx + rel_vy * dy

proj =
mag

. The post-collision velocities are found as:

2 % Mg * proj x dx

V_T1 new = U_T1 + - m
1 2

This version of the collision module was tested without the
3D rendering. It barely met the timing constraints so we could
not combine it with the renderer since we were very close to
the timing constraints while using the simplified version. One
reason it only barely met timing was because the module used
combinational logic along with sequential. The difference in
the reaction of the pins was not noticeable using this module
when the pins and the ball were close together but was more
apparent when they were further away. Since this issue was
discovered very late in the project while integrating the two
modules, and in the renderer the objects are close together, we
decided to focus more on other parts of the project and used
the simpler version.

E. Pins

The pins module calculates the x and y positions of the
pins according to the velocities passed in from the collision
module. The velocities are also updated taking friction into
account and passed back into the collision module for the
collision calculation in the next time frame. The pin positions
are also passed into the renderer.

F. Score

The score module stores the scores of each player as an ar-
ray of scores per round. It performs the necessary calculations
for strike and spare scores. It also updates the player after
a player makes two swings. The scores are calculated based
on the number of pins hit data that comes from the collision
module. The round, player, and score data is passed on to the
renderer.

G. Sizes

All of the x values used in this project were 10 bits while
y values were 9 bits. All of the velocities and intermediate
values were 16 bits.

H. Hardware Challenges

As mentioned before, the main challenge was changing from
Spartan 7 to Atrix 7 FPGA. The biggest effect of this change
was on the camera. All the pins were redefined for the camera
and VGA support was added. However, when camera was
plugged in, it would take a few resets for it to start streaming.
When we ran the same code another day, the camera only
gave a green screen and we could not get it streaming. This
is likely due to VGA not being able to support the high clock
frequency. We tried to debug the camera issue, however, since
we changed FPGAs late in the project we did not have time to
get it fully functional and decided to go with the safer option
of using button inputs and putting time into other modules.

IV. EVALUATION AND CONCLUSIONS

On the rendering side, all goals were achieved aside from
rendering a plane for the bowling lane. We had also hoped
to implement Lambert diffusion with multiple light sources,
although even a single light source turned about to be expen-
sive in terms of FPGA resources. Implementing the rendering
module yielded many interesting insights on handling large
amounts of math in FPGA designs. Most notably, we found
that the use of floating point values was not necessarily worth
the increased resource use compared to fixed point, as well as
the verbose code required for instantiating so many IPs. To
manage this complexity, the rendering math is split across 22
modules including the top level ones documented above. While
the latency of the renderer is not an issue, this also resulted
in a system with 352 pipeline stages. As a result, we feel that
the renderer could have been implemented more simply with
32-bit fixed point using appropriately scaled values.

On the simulation side, the camera could not be used. The
ball module and pin module were implemented as expected
with support for friction and swing. Two versions of the
collision module were implemented: one which assumed head-
on-head collisions, and one that took the relative velocities
into account. The simpler version was used because of tim-
ing issues when integrated with renderer. The score module
was implemented and tracked the player, round, and score,
however, we did not have time to render it. If we had more
time, we could have solved the issues with the camera and the
VGA. The complex version of the collision module could also
be optimized to better fit timing by pipelining and integrated
into the project.

During the project, along with the technical skills, we
learned the importance of paying attention to the resources
used. We learned how to structure a project and implement it
piece by piece after testing.

A. Resources

39684 LUTSs were used, 51 brams were used, and 168 DSP
Blocks were used. Most of the DSP blocks are used by the
renderer, however, the collision module also uses 20 of them.
The 120 DSPs in Spartan 7 were not enough for this project
but Atrix 7 had enough. The timing was met with 1.880ns of
slack.



V. CONTRIBUTIONS
A. Hank Stennes

Hank worked on the 3D rendering system that takes in the
ball and pin locations to render the scene. Beyond this, Hank
worked on adding the float to fixed conversion layer and pin
rotating logic to integrate the simulation with the renderer.

B. Deniz Erus

Deniz worked on the physics simulation that computes the
motion of the ball and pins. Deniz also worked on the camera
motion tracking system, scoring module, and button input
system.

VI. VIEW OUR CODE
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