
6.2050 Enigma and Bombe Machine
Final Report

Kevin Min
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA
km1317@mit.edu

Anna Simmons
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA
annasim@mit.edu

Taylor Wagner
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA

twagner5@mit.edu

Abstract—The Enigma Machine is an encryption machine that

was used by Germany during World War II to safely send coded

messages. In response to this, Alan Turing designed the Bombe

machine to decode the encrypted messages and break the Enigma

Machine, ending the war years earlier. In this project we attempt

to model both the Enigma Machine and the Bombe machine,

using 3 FPGAs. One of these FPGAs sends encoded messages

as the Enigma machine would have done, while another will be

recieves and decodes these messages using the same process, with

both FPGAs knowing the encoding process. This transmission

will take place using infrared signals. The third FPGA simulates

the Bombe machine and attempts to intercept these signals and

break the encryption, without knowing the specific encoding

settings that the two communicating FPGAs are using.

Index Terms—FPGA, Enigma, Bombe, encryption, IR

I. BACKGROUND

This project explores cryptography, specifically the Enigma
machine encoding process and the Bombe machine decryption
process, using three FPGAs. The FPGAs will communicate
using an infra-red transmitter and receiver, and will be hooked
up to HDMI displays to display the messages. The current
input method is using the on-board buttons and switches.
The main benefit of using an FPGA is to allow for quick
encoding/decoding, particularly with the large amount of
computation needed for the decoding process in the Bombe
machine.

II. SENDING THE MESSAGE

The first FPGA is the message sender and is responsible for
encoding the message using a known rotor configuration. After
encoding each letter they transmit the message letter by letter
over an infrared signal to be picked up intentionally by the
message receiver and then decoded using the enigma module
settings.

A. Data Module (Kevin)
This module takes in the inputs from the switches and

buttons, and processes the information to send to the enigma
modules when all the information is available. Depending on
the value of sw[15 : 14], the remaining switches will get stored
as either the rotor choices, rotors initial rotations, or the letter
to send. We considered also implementing functionality using
an external PS/2 keyboard for easier input, but ultimately we
ran out of time to add this.

B. Enigma Module (Taylor)

This module constitutes the main body of the project. It
is designed to simulate the original Enigma machine, using a
series of three rotors and a reflector to take in letters one at
a time. Each unencoded input letter passes through the three
rotors in order, then the reflector, and passes back through the
rotors in the opposite direction to yield the output, where each
rotor forms a bijection between the 26 letters. The rotors can
be selected from a pre-chosen set of five, and set to any of the
26 possible initial rotations, for a total of 5·4·3·263 = 1054560
initial settings. As with the actual Enigma machine, the rotors
will turn after every letter to make the encryption harder to
break, with the first rotor turning after every letter, the second
one turning when the first one completes one full rotation, i.e.
every 26 letters, and the third one turning when the second one
completes one full rotation. This ensures that the encoding
effectively changes with every letter passed in, so common
decryption methods like frequency analysis fail. The reflector
ensures that the encoding and decoding processes are the same,
provided that the initial rotor settings are the same, so this
module can be used for both the transmitting FPGA and the
receiving one, provided both agree on the initial rotor settings.

This module takes input wires for rotor selection, rotor
initial rotation, data valid in, reset in, data in, and sends back
a ready signal alongside the encoded letter and a data valid
signal, where rotor selection corresponds to the 5 ·4 ·3 choices
of which rotors we use and in what order, and rotor initial
rotation corresponds to the 263 total rotations at the start.
When the module sends a ready signal, it can take in 1 letter,
which it will take 8 cycles to output the encoded letter. During
these 8 cycles, the module is putting the letter through the 3
rotor mappings, the reflector, and backwards mappings of the
3 rotors. It also will perform the necessary rotor shifts during
this period.

We originally wanted to also add the plugboards to our
module, which were an additional feature in most military-
grade Enigma machines that swapped around up to 10 pairs
of letters at the very start of the encryption process, yielding
an extra factor of 26!

210·6!·10! → 1.5 · 1014 possibilities, making
a brute force code-breaking method nearly impossible, which
would necessitate a smarter approach that used the fact that



Fig. 1. System Diagram for Message Sender

letters cannot get encoded to themselves due to the way the
reflector worked. However, we ultimately ran out of time for
this and settled for the simpler version that is much easaier to
brute force.

The configuration of the enigma rotors can be seen in Figure
5. This displays all 5 rotors as well as the reflector. Note in
the implemented enigma module only 3 of these rotors are
chosen and their order can also be reconfigured.

Our implementation of the Enigma is modeled after the
Norenigma that was used by the Norwegian Police Security
Service after WWII.

Fig. 2. Rotor Configuration for all 5 rotors plus the reflector

C. IR Transmission (Anna)
Messages are sent over infrared signals. One by one, letters

are encoded by the enigma module and these letters are stored
in a 5 ↑ 1024 BRAM. When it is ready to transmit a signal,
the ir transmitter module takes in 1 letter at a time, 5 bits,
and transmits the corresponding signal to that 5 bits over an
IR LED based on specific bursts of lights and silence. The
specific signal encoding starts with a synchronization period
of 2.4 milliseconds of light followed by a sequence of 5
bits where a ’0’ is encoded by 600 microseconds of silence
and 600 microseconds of light and a ’1’ is encoded by 600
microseconds of silence and 1200 microseconds of light. The

end of the message has an extra 600 microseconds of silence
period. See Figure 3 for an example of this signal for the
letter ’J’. Because the IR receiver is tuned to infra-red lights
of 40kHz frequency, the ’on’ periods of the IR signal are
bursts of a 40kHz frequency at 50% duty cycle. We use Pulse
Width Modulation to achieve this frequency. Using IR signals
lets us communicate across different FPGA boards to send this
message. When not transmitting a message, this signal stays
’off’ i.e. silent.

Fig. 3. Infra-red Signal for the letter J: ’01010’

D. Display (Kevin)

This display is designed to look similar to the actual enigma
machine, with a ”keyboard” that darkens the letter being
pressed, and another set of ”lights” that shows the encoded
letter being sent. This display is designed for a 1024 ↑ 720p
screen and runs on a 74.25 MHz pixel clock.



Fig. 4. Message Sender Display

III. RECEIVING THE MESSAGE

A. IR Decoding (Anna)
We decode the infra-red signal using an IR sensor that

detects IR light at 40kHz frequency. This receiver interprets
the light as either ’on’ or ’off’ where, for our purposes,
’on’ means the IR light is oscillating at 40kHz and ’off’
means it is silent. This IR receiver decodes the message
through the ir decoder module. It decodes 5 bits at a time,
one letter, by sensing the IR light transmission from the
ir transmitter signal output over the LED. This module is
expecting the specific periods of ’on’ and ’off’ for the light for
the synchronization period and for interpreting ’1’s and ’0’s as
outlined in the IR Transmission section. Once it successfully
receives a full 5 bit message it outputs that message with a
data valid signal. This output is the encoded letter and will
then be run back through the enigma module to get the original
letter. If the decoder interprets any IR signal that doesn’t
follow the expected protocol, it will return to an ’idle’ state
and wait until a signal with the expected protocol is received.

B. Display (Kevin)
This module uses a 5↑ 1024 BRAM to store messages of

up to 1024 letters at a time, with the letters being taken from
the decoding Enigma module one at a time. It then outputs
said message on the screen using a pre-generated sprite sheet
of letters, displaying 32↑ 16 = 512 letters on a 1024↑ 720p
screen, and a 74.25 MHz pixel clock. It also has an input wire
that allows ”scrolling” one line at a time, in order to display
all 1024 letters. This same display will also be used for the
Bombe machine after breaking the message, and there will
potentially be a module that can write the decoded messages
to a text file using UART and Python for the final project, for
displaying large messages in a more convenient format.

IV. BREAKING THE MESSAGE

A. Bombe Module (Kevin)
The Bombe module is our stretch focus for this project.

Unfortunately we did not entirely finish it, but we got the
module working in simulation, and it was not flashing properly
onto the FPGA for unknown reasons. It utilizes the FPGA’s
ability to process lots of data in parallel, by simulating 8

simultaneous Enigma machines. The original plan was to have
32 simultaneous Enigmas, which was what the original Bombe
actually had, but the FPGA did not have enough resources
for this. At 9 cycles for each letter, messages of up to 1024
letters, and 5 ·4 ·3 ·263 possible settings for the Enigmas, and
8 simultaneous Enigmas this is a maximum of roughly 120
million cycles to decode a message, or just over a second.

The module takes in the same inputs as the enigma module,
except for the rotor signals, which will be replaced with a
known phrase. The known phrase is a phrase that is likely
to be found in the message; with the actual Bombe machine
used in WWII, this would be a phrase that the British would
manually guess, using external sources. For example the
Germans would often send a weather report in the morning,
so the code breakers would use the phrase ”weather report”
in their Bombe machine. This word is then used to test the
possible scramblings of the Enigma machine, and to quickly
rule out the overwhelming majority of possibilities.

There will also be an output code valid signal, which is
high when the Bombe machine finds a possible combination.
One of the issues with the Bombe is while it can usually
reduce the possible decodings to a single digit number, it is
still up to human decoders to finish the process. This signal
is here to tell the user when the Bombe has found a possible
encoding, so they can manually check it before the Bombe
module continues the search.

V. DESIGN EVALUATION

A. Timing of Modules
• Enigma: This module is clocked on the onboard 100MHz

clock. The module can take in an input every 8 cycles,
meaning it has a latency of 80ns and a throughput of
1/80ns.

• IR: For the IR signals, sending one letter, a 5 bit message,
takes between 9 and 12 milliseconds, which means it
has a latency of 9-12 milliseconds. The throughput is
between 1

9 and 1
12 letters per millisecond. The variability

in this timing is because a ’1’ and a ’0’ are encoded with
different lengths of time.

• Display: The display operates on a 74.25Mhz clock,
drawing 60 frames per second. The transmitting Enigma
display has a throughput of 15 cycles, and the receiving
display has a throughput of 12 cycles.

Currently, the slowest part of our system comes from inputting
the letters, because we use the onboard switches. In the future
this can be improved by integrating an PS2 keyboard to type
the messages instead.

B. BRAMs
In total we use two BRAMs on the FPGA that sends the

message, one BRAM on the FPGA that receives the message,
and one BRAM for the FPGA that breaks the message with
the Bombe. All of the BRAMs store letters and have a width
of 5 bits and depth of 1024.

For transmitting the message, both BRAMs are written
to with encoded letters from the enigma module. The first



Fig. 5. System Diagram for Message Receiver

Fig. 6. Message Receiver Display

BRAM operates on a 100MHz clock and is read by the
ir transmitter module which then transmits these letters
over an IR signal. The second BRAM is written to on the
100MHz clock and read on the 74.25MHz clk pixel clock.
The enigma display module reads the letters from this
BRAM and displays one letter at a time as it is encoded.
We chose to have two BRAMs because we have modules
operating on different clock domains and this let us meet
timing requirements. Ideally we would have liked to have
consolidated this into one BRAM because they are both storing
the same information, encoded letters, but this required some
careful setup to meet the timing constraints, as we would have
needed to read and write from the same port, and we decided
this was not a priority and did not achieve this.

When receiving the message we use one BRAM which
writes decoded letters on a 100MHz clock from the enigma

module that is decoding letters. This BRAM is inside the
text display module which reads from it on the 74.25MHz
clock, displaying these letters on the screen as they are
received.

The BRAM for the Bombe operates on the 100MHz clock
and stores the incoming encoded message from the IR signal.
Once the entire message is stored, the Bombe module uses
that message to start the decoding process.

C. Timing Requirements
From analyzing the Vivado logs, we succesfully met our

timing constraints on sending and receiving the message. For
transmitting the message our worst negative slack (WNS) was
1.922 nanoseconds and our total negative slack (TNS) was 0.
For receiving the message, our WNS was .331 and TNS was
0.

D. Use Case
• Commitment: We successfully met our commitment goal

of a functioning system that sends and receives encoded
messages using the enigma module. We used IR signals to
send these messages and onboard switches for the inputs.

• Ideal: We have two functioning displays for sending and
receiving the message. We did not incorporate a PS/2
keyboard.

• Stretch: We have a Bombe module working in simulation
but were not able to integrate it to work on the board
successfully.

VI. INSIGHTS

Integrating our modules together to create the full transmit-
ting and receiving system took longer than expected. Specifi-
cally, since we were working with different clock domains, we
struggled with meeting timing and had negative slack at first.
After updating the BRAMs to make sure the addresses and
input/outputs were updated on the correct clocks we were able
to meet the timing constraints and ensure the system worked
as expected.

Using onboard switches takes a long time to send messages
which also meant that it took a while to check if our system



Fig. 7. System Diagram for Message Breaker

was working when we were testing it. If we had focused on
incorporating the PS/2 keyboard, inputting messages would
have gone much faster and likely would have been easier to
test.

VII. REFERENCES

•
• Enigma Wiring

https://www.cryptomuseum.com/crypto/enigma/wiring.htm

	Background
	Sending the Message
	Data Module (Kevin)
	Enigma Module (Taylor)
	IR Transmission (Anna)
	Display (Kevin)

	Receiving the Message
	IR Decoding (Anna)
	Display (Kevin)

	Breaking the Message
	Bombe Module (Kevin)

	Design Evaluation
	Timing of Modules
	BRAMs
	Timing Requirements
	Use Case

	Insights
	References

