
1

AsymDeck
Final Report

Jonah Romero and Kenneth Collins

Abstract—In this paper, we present an implementation for a
RISC-V32I video game console system and two proof-of-concept
games to run on the system. The console includes multi-controller
support, interchangeable game cartridges, and video support.
We used the Xlinix Spartan-7 FPGA to implement a RISC-
V32I processor, HDMI support, controller controllers, and a
cartridge reader. Additional hardware included an 8-bit latch
(SN54LS373), and 8kb EEPROM (AT28C64). The console is fully
functional and can run two proof-of-concept games (chess and
paint).

Index Terms—Videogame Console, Xilinx, RISC-V32I.

Fig. 1. AsymDeck running the paint game with the processor debugger on.

I. PHYSICAL CONSTRUCTION (JONAH)

THE video game console is constructed of several compo-
nents that communicate to provide a full system experi-

ence. There are three essential features for a good generic
video game console: a large and diverse supported game
library, wide support of different controller inputs, and good
graphics rendering. To implement these features, we utilized
several pieces of hardware:

• A AT28C64 EEPROM containing two thousand RISCV-
32I source instructions.

• A SN54LS373 8-bit latch to provide additional GPIO.
• An AMD Xlinix Spartan-7 FPGA.
• One Teensy 3.2 Controller managing user input

Jonah Romera is with the Department of Electrical Engineering and
Computer Science, Cambridge, MA 02139 e-mail: jblt@mit.edu.

Kenneth Collins is with the Department of Physics and the Department of
Electrical Engineering and Computer Science, Cambridge, MA 02139 e-mail:
kengcol@mit.edu .

Fig. 2. AsymDeck running the chess game with the processor debugger on.

A. Controller

The controller uses a custom PCB that connects a Teensy
3.2 to a joystick and a total of 8 different buttons. The teensy’s
job is to constantly poll these inputs and maintain a record
of which buttons are pressed and where the joystick is. At
the same time, this information is constantly streamed out of
two spi lines (MOSI and SCLK). This data is read into the
FPGA through its GPIO ports and stored in some internal
registers. These registers will be memory mapped, allowing a
user program to access the controller state.

One issue encountered while interfacing with the controller
is that the Arduino switches the data line very close to where
the FPGA samples. Combining this with the noise makes it
difficult to latch onto the correct values correctly. As a result,
the original SPI code written in the lab had to change, and a
slightly modified SPI was used.

Additionally, there were difficulties synchronizing the data
transfer between the FPGA and the Teensy. We needed to
transfer three bytes in total (two for the joystick’s x-tilt and
y-tilt, and one byte for a bit mask of all the buttons). It often
happened that the FPGA would interpret an x-tilt as a button
mask, or a y-tilt as an x-tilt, or some other combination. To
fix this issue, another module was created to synchronize the
two devices, and a fixed order that bytes were sent in. The
easiest solution was to create a start sequence, but we did not
want to tolerate any false positives. For example, if we use a
starting delimiter ’A’, it is possible to press the 8 buttons in
a way that mimics this starting character. To fix this, we used
the start character 0xFF, and we sent each button as its own

2

Fig. 3. A block diagram of the AsymDeck that shows the memory request signals between each module or hardware. The red dashed lines represent the
communication signals between each module and the Data Memory BRAM. The green line represents the Program Memory signals. The decision block
representing the Video Renderer illustrates how it takes input from the frame buffer and the built-in debugger and sends one of them to the TMDS, depending
on the current rendering state.

Fig. 4. AsymDeck Internals

byte, making it impossible to misinterpret the communication

stream.

B. External EEPROM

The AsymDeck does not save the game internally, and
instead loads game data from an external rom. Hence, we can
implement the classic game cartridges we’re all so used to on
consoles.

The AT28C64 EEPROM is an 8Kbit storage that can easily
be flashed with new video games. The IC is a cheap alternative
to more expensive memory storage devices, only costing $2.
One problem with using this IC is that our FPGA only has
22 GPIO pins, and our EEPROM has a 16-byte address bus
and an 8-byte data bus. Moreover, we are already using two
GPIO pins to receive controller input. To reduce this pressure,
we introduce a latch that reduces the number of GPIO pins
we need by 7. When we want to read an address from the
EEPROM, we set an 8-bit address bus to the lower 8-bits of
our target address. We then send a signal to our external latch

3

to latch the values, and finally, we set the 8-bit address bus to
the high bits of our address. In this process, we let the latch
hold onto some of the values for us. With this major problem
solved, we are able to iterate through all the addresses and
load two thousand instructions onto our board.

Fig. 5. ROM Latching Diagram

Difficulties here lie within the timing of all our signals.
Similar to the latching logic in class, these chips also have
setup times, hold times, and propagation delays. A special
FSM was implemented to take all of these variables into
account. This ensures that we correctly load the external
program into an internal instruction cache that the processor
can use. During debugging, an LED array was set up to watch
the inputs being received by the FPGA. This allowed us to do
single steps and watch the latching protocol in real time. This
LED array can still be seen in the final product despite it not
having a functional use.

II. MMU (JONAH)
The system already has several different memory banks:

ROM, RAM, Controller IO, and frame buffers. This is a lot to
keep track of, and we want the processor to be agnostic to this
separation. To address this issue, we create a single memory
management unit that accepts memory requests and forwards
them to the appropriate memory system. A memory request
consists of:

• A memory address
• A memory width (byte, half-word, or word)
• The memory operation (read or write)
• A value to write in the case of a write request.

For this project, we define the word as 32 bits and the half-
word as 16 bits. The memory address received by the MMU
maps to one of the memory banks, resulting in the following
ranges:

Memory Sub-system End Addr Start Addr

ROM 0x0000 FFFF 0x0000 0000

RAM 0x1000 FFFF 0x1000 0000

Frame Buffer 0x201C 200F 0x2000 0000

Controller IO 0x3000 0004 0x3000 0000

The MMU is ideally a 0-cost abstraction over all the
sub-memory systems it manages, reducing it to a bundle of
combinational logic. However, one key detail limits this, and
that is the fact that memory width is also a specification on

the bus. This means memory requests of any size should be
valid. However, by default, many of the memory sub-systems
only support fixed width sizes. The memory system thankfully
uses an FSM to correctly forward data in a size appropriate
way. For example, since our RAM’s width is only a byte, this
takes four cycles. This is the best we can do. If we were to
make our RAM’s width 32 bits, writing to a byte or half-word
would require 2 cycles to load an address and another cycle
to write the new word back.

While writes are efficient, reading from memory does incur
a cost with our MMU since transactions are synchronous and
reading takes two cycles. This results in a missed opportunity
to pipeline. In the future, it would be helpful to offer more
memory functionality. For example, offering bulk memcpys
would speed up several programs we were running on the
console.

III. C INFRASTRUCTURE (JONAH)
To enable a seamless game developer experience, we lever-

age the GCC suite for RISC-V32I to create game binaries
compatible with our system. We define a custom linker script
that considers our system’s memory layout and builds binaries
with the resulting .text and .rodata sections. We define several
helpful headers for interacting with the device peripherals
and a custom-build script that takes the developer’s source
code and produces an Intel Hex file for flashing to the game
cartridge.

Additionally, a simple rendering library was created to
render sprites, such as the chess pieces in our chess game.
Accompanying scripts take images and convert them into the
associated C arrays.

A. Proof Of Concept Games (Jonah)

To test our system fully, we developed two simple appli-
cations that can be tested: a painting simulator and chess.
We originally had concerns about whether the two thousand
instruction limit would be enough to demonstrate a game.
However, both games are well within the instruction limit. The
painting simulator takes 321 instructions to implement, and the
chess game takes 1483 instructions. As mentioned later in the
CPU section, the ”M” extension could reduce these program
sizes. Before we had developed this extension, the games
would have to manually compute division, multiplication, and
modulo with for loops, causing larger binaries.

IV. VIDEO GAME GRAPHICS

We have designed and tested the AsymDeck to render
games at 60 frames per second with a 720p resolution on a
PLL2210W monitor. However, the frame rate does vary game-
to-game. We used the HDMI port on the board and modules
from HDMI lab assignments to do so. The HDMI signals
are encoded using the Transmission Minimized Differential
Signaling (TMDS) encoding scheme. We used the variable
hcount_hdmi to denote the horizontal position of the pixel
and vcount_hdmi as the vertical position of the pixel. In
addition, we used the following timing dimensions for the
sync, front, and back porches:

4

Fig. 6. Paint Game Binary.

• Horizontal Front Porch: 110
• Horizontal Sync Width: 40
• Horizontal Back Porch: 220
• Vertical Front Porch: 5
• Vertical Sync Width: 5
• Veritcal Back Porch: 20
Our new extensions from this preexisting design include

using two frame buffers and displaying overlaid ASCII text
for debugging.

A. Frame Buffer (Jonah)

In previous labs, while mentioned, screen tearing was never
addressed. The camera was running at comparable speeds to
the monitor rendering, so the effects were minimal, especially
if there were not any fast-moving objects. We do not have such
fortunate circumstances with the game console. For example,
a complicated game will have more sprites it needs to draw,
and it will not be running even close to the same speed as the
HDMI protocol, and screen tearing will be painfully obvious.
To fix this, we provide the user with two frame buffers.
They’re mapped to the same memory space (0x201C 200F
- 0x2000 0000). However, only a single one is active at a
single time. The console can toggle between frame buffers by
writing to 0x2FFF FFFF (Frame Buffer Swap). The inactive
frame buffer is passively written to the monitor. The resulting
C code would invoke: draw frame(); switch frame buffer();

resulting in no screen tearing since we only render finished
frames.

B. ASCII text buffers (Kenneth)

We implemented text buffers to display the contents of the
processor’s 32 registers, opening the possibility of text-based
games and other games that use text. We control whether the
game or ASCII text is written on the screen by transitioning
between two states in the video renderer: GAME and ASCII.

We created a 5 x 7 bitmap of each alphabetical English
character (uppercase and lowercase), the numerical characters,
and a few special characters than the standard 8 x 8 bitmap to
minimize board utilization. The FPGA would select an ASCII
character by using the relevant ASCII Hex value. This Hex
value would be generated from an ASCII interpreter that took
in values and indices of unpacked arrays to determine the
appropriate ASCII index. We used the index of the unpacked
register file array to determine which symbolic characters to
write on the monitor. Then, the values in each register are
used to determine the appropriate Hex value to display at a
specific point on the screen. We chose to display the register’s
contents in the hexadecimal format as we saw it as the most
readable format while still allowing character compression.

Each character’s starting point on the screen was determined
by how much space each character would take on the screen
and how many more characters were left to display. Since the
original bitmap was too small to read, we doubled the bitmap
and padded it with zeros to create a 16x16 bitmap. We chose
to pad the bitmap with zeros to make determining the position
of where to display the bitmap easier since the last four bits of
hcount_hdmi and vcount_hdmi could be used to traverse
the modified bitmap.

Then, we determined each ASCII character’s starting point
by right-shifting the current position by 4. This scheme allows
us to avoid the issue of needing either a complicated module
or long if-elseif-else statements to do the same task.

Due to the screen rendering line by line, the number of
cycles to render one text line is 16 times the bottom right
position of the last character in the text line.

As of now, the text buffer is implemented for the top left
portion of the screen, but it would not be difficult to extend
this logic to the rest of the displayed screen. Doing so would
open the possibility of supporting text-based games since it
would only require allocating space on the board and an ASCII
interpreter that reads from it when signaled by the processor.

V. RISC-V32I CPU (KENNETH)

One of the challenges in developing a CPU was overcoming
the issue of all of the combinational logic happening simul-
taneously. As a result, we had to think about balancing the
number of states in the processor FSM with the number of flip-
flops used. Since our proof-of-concept games did not require
the fastest processor, we targeted a processor that handles one
instruction at a time. This design would allow us to avoid
the issues of data and control hazards that would present in a
properly pipelined processor.

5

A. Single-Instruction Processor

We divided the processor into four stage FSM:
• Fetch-Decode Stage: The processor sends a read request

to the MMU using the program counter (PC) as the
address. Since the instruction is stored in BRAM and
has a double word length, the instruction has a two-
cycle latency. The processor stays in this state until the
instruction is returned, then it decodes the instruction and
transitions to the Execute Stage.

• Execute Stage: The processor uses the decoded instruc-
tion to call the relevant non-memory modules and return
the results in one cycle. It transitions to the MEM stage.

• Mem Stage: In this stage, the processor handles any
memory-related instruction that can have varying latency,
as the logic only occurs when the MMU is not busy.
When it is not busy, it makes the relevant request and
tells the MMU the length of the data it wants to read or
write from.

• Writeback Stage: If the instruction is not a memory
instruction, this stage has a single-cycle latency. If it is a
memory instruction, it will also have a varying latency,
taking 2 - 8 cycles before it can transition back to the
Fetch-Decode Stage to process the next instruction.

Currently, the processor only handles RISCV-32I instruc-
tions, but we hope to extend it to include the instructions
from the ”M” and ”F” extensions. The ”M” extension would
enable a reduction in the instructions needed to program games
that use multiplication and/or division. Therefore, a reduction
would enable more complex and longer games to program as
fewer instructions would be needed to code the game logic.
We have implemented the ”M” extension, but we were not
able to put it on the board before the deadline.

We also planned to program the ”F” extension in the
console, as it is needed for some of the more advanced
retro games, such as Quake, that we wanted to support.
Furthermore, to support these games, significant upgrades to
the processor would be required, such as handling more than
a single instruction, handling data and control hazards, and
other optimizations to run the games beyond the sub-1 frame
per second.

While this implementation is not what we initially had in
mind, it is sufficient for our purposes since the targeted games
do not need much computational power.

B. Debugger

One of our biggest challenges in this project was simulating
the AsymDeck due to the hundreds of instructions that needed
to be checked to track an error properly. Normally, the way to
check to make sure a processor is handling each instruction
properly is to check the state of the registers. However, due to
software specifications, it was hard to obtain a readable signal
from the packed array.

Our solution to this issue was to display the registers file on
the screen using the ASCII text buffers while the game was
running. We created a 256 x 512 text buffer on the top left
of the display since there were 32 registers to display and 16
characters needed to write the register’s symbolic name and its

current value. In addition, we added a mode to the processor
that would hold an instruction until either given new user input
or the mode was turned off so that the user can see the registers
update with each instruction.

We also planned to add a feature allowing the user to halt
the processor on a specific instruction by turning on the mode
and inputting the PC via the switches on the board.

VI. RETROSPECTIVE

We have learned a few lessons through development:

• We learn that not all hardware languages are designed
the same. In our case, it resulted in the initial design of
the processor being canned and creating a single instruc-
tion processor inspired by it. The main issue is that in
translating the processor from MiniSpec (more software-
oriented HDL) to SystemVerilog (more realistic HDL),
we lost the nuance that combinational logic happens
simultaneously rather than line by line. It cost us tens
of hours of work as we spent time in office hours not
realizing this issue. We only wished we had realized it
sooner as the progress on the stretch goals since switching
has been moving much faster and would have created a
possibility of implementing the retro game support.

• It would have been helpful to use a RISCV-32I emulator
or develop the debugger sooner, as debugging the pro-
cessor was a long and arduous task. Testing the code on
a working processor would have been much simpler than
the process we used. One person would read the assembly
instructions and mentally calculate the result, while the
other person would check the simulated waveform to see
if it matched.

• Several modules existed in our code base, with large
buses that needed to be connected to multiple other
modules. We opted to use SystemVerilog interfaces to
minimize errors when copying these buses. These pro-
vided a very helpful abstraction. However, they were
incompatible with the Cocotb and icarus setup we used in
class. This forced us to use the Vivado GUI, while it was
difficult at first setup. It ended up being very helpful. The
waveform viewer felt better than GTKWave, and we were
able to quickly add IPs and other FPGA configurations.
For example, it made adding a configuration memory
device very easy, which we wanted so that way the
console could be power cycled without losing our build.
In the future, it would be nice to try using other simulators
that support interfaces with Cocotb since it was very
pleasant to use the higher-level language features.

• Debugging a physical system with external hardware
made debugging parts of the system difficult at times,
such as the ROM and controller input. Debugging these
systems included manual inspection of the code, oscillo-
scopes, and LED arrays. It would have been very helpful,
however, to have known about the ILA (Integrated Logic
Analyzer) IP sooner, as it was able to provide system
signals in real-time as the system was interacting with
real devices.

6

APPENDIX

The source code for the project is

	Physical Construction (Jonah)
	Controller
	External EEPROM

	MMU (Jonah)
	C Infrastructure (Jonah)
	Proof Of Concept Games (Jonah)

	Video Game Graphics
	Frame Buffer (Jonah)
	ASCII text buffers (Kenneth)

	RISC-V32I CPU (Kenneth)
	Single-Instruction Processor
	Debugger

	Retrospective
	Appendix

