AR Crayon Physics

1*' Younghun Roh
Department of EECS

2" Disha Kohli
Department of EECS

3" Daniel Vargas
Department of EECS

Massachusetts Institute of Technology — Massachusetts Institute of Technology — Massachusetts Institute of Technology

Cambridge, MA, USA
yhunroh@mit.edu

Abstract—We present Augmented Reality (AR) Crayon Physics
implemented with FPGA. Crayon physics is a game that allows
users to draw objects which follows the laws of physics, and
interact with the existing objects to move a ball into the goal.
In this project, we add an augmented reality aspect as well as
a user-directed sandbox, and discuss possible extensions such as
the inclusion of a multiplayer mode.

Instead of conventional touchscreen or mouse-driven input, a
camera will be used to capture players’ gestures as they draw
objects with their fingers in the air. If time permits, we will aim to
allow user gestures to directly manipulate the sprite (i.e. flicking,
pushing, etc) via physical sensors and actuators.

We plan to explore different gameplay modes, starting with
a sandbox mode, and expanding to include pre-built levels, and
multiplayer mode if feasible.

This project will be divided into three distinct components—
the physics engine, which will compute the effects of gravity and
object collisions, followed by the game logic finite state machine
and user experience design, rounded out by the finger tracking
for user interaction in the sandbox and levels.

I. SANDBOX LOGIC (DISHA)

The sandbox allows users to place fixed and movable
objects on the screen that the ball can interact with when
the simulation commences. Most of the time, the program
is in an idle state, when the user is not actively interacting
with it. However, if a user toggles the two right-most switches
(sw[7:6]) to produce a non-zero input, the program will move
to either a line_draw, rect_draw, or circle_draw state, allowing
the user to use their fingers to define two points for the
corresponding shape. If a user presses btn[2] while holding
their fingers, the program will fix the pixels corresponding to
those points and store the resulting shape. If the user also has
sw[2], the shape will be classified as movable. Otherwise, it
will be considered a fixed shape. Until btn[1] is pressed, the
program will remain in one of the draw states, but once the
shape has successfully been stored, the program will return to
the idle state. The user can repeat this process however many
times they desire, but when they wish to start the simulation,
they must press btn[1]. Once btn[1] is pressed, the physics
engine is executed, the ball drops from its resting point at
the top of the screen and interacts with the fixed and moving
objects. Once the physics engine finishes executing (whether
that results in the ball being on another object or off the
screen entirely), the program returns to an idle state. At any
point, while in the idle state, the user can press btn[2] to
reset (“restart”) the positions of all objects to their initial state

Cambridge, MA, USA
dishakl @mit.edu

Cambridge, MA, USA
davarg5 @mit.edu

(while still being on the screen—note this is different from
“reset”, which returns the user to a blank screen entirely with
no non-ball objects present). In addition, users can use btn[0]
to “reset” the sandbox.

II. PHYSICS ENGINE (YOUNGHUN)
A. Representation Schemes

All numerical values within physics engine are handled in
either 16 bits or 32 bits, with signed fixed decimal point rep-
resentation. For convenience, we denote 16-bit representation
as SF16 or SFIX16, and 32-bit representation as SF32 or
SFIX32. As shown in diagram below, SF16 will have 1 sign
bit, 10 integer bits, and 5 decimal bits. (i.e., decimal value
x will be represented as an 16-bit signed integer, which has
value of the nearest rounded value to 32x). SF32 will have 1
sign bit, 20 integer bits, and 11 decimal bits.

SF16 and SF32 will support addition/subtraction, division,
multiplication between same types, and the unary sqrt func-
tion. Addition, subtraction are straightforward integer arith-
metic, with same overflow and underflow behavior. Division
and multiplication should be handled with care of shifting
decimal bits. We will use the same divider from the class,
which will take 2 cycles, and use native xilinx multiplcation.
Multiplication should be supported between SF16 and SF32,
along with the same types, and it may output SF16 or SF32
depending on the circumstances. sqrt function is explained in
the following section.

10 L3

1
|5| integer | decimal |

20
| ; | integer | deéilmal |

Most physical values, including position, velocity, sizes
and masses, will be represented as SF16 in the memory,
and may be converted to intermediate SF32 type during the
computation. Time, which is used within the physics engine,
is represented as SF32 for precision.

In-memory object representation scheme is described in
section 4.a. Within physics engine, each object is decomposed
to several primitive parts, to compute the collision. Each
primitive part may be either circle and line segment, where
point is described as a circle with radius 0. One object can
have at most 8 parts - rectangles will have 4 circles and 4
lines, lines will have 2 circles and 1 line, and circle will have
only one circle. Each primitive part may have at most 4 SF16

btn[2]
btn[0]
sW[1:0] = 01 &8& sw[2]
line_draw_
SW(1:0] = 01 8& Isw[2
btn[0]
line_draw_
»
movable
.
e btn[0]
sw[1:0] = 10 && sw(2]
once
idle - objects reset btn[0] p

are cleared

sw[1:0] = 10 && !sw[2]

btn[0]

rect_draw_
movable

btn[0]

sw[1:0] = 11 && swi2]

circle_draw

Ear fixed

swl1:0] = 11 && !sw[2]|

circle_draw

_movable

once restart finishes executing (valid_out)

Y

(valid_out)

btn[3]

once physics engine finishes executing

y btn[1]

* execute

Fig. 1. Sandbox logic FSM

Camera
draw_rectangle I
i

Camera input
L2 A draw_line >

color_filter

>2CoM's
m;’

(3 §oeeencesaseanacansg

nothing —J

sw(1:0]

render_cursor

frame_buffer

render_circle

der

BRAM —

frame_buffer

positions, dimensions.

State

EE‘ Physics Engine

update positons

Fig. 2. Overall Block Diagram

restart

HDMI

values to specify, and it needs to have type indicator for empty,
line, and circle. Therefore, we need 66 bits to describe each
primitive part.

B. sqrt module (Daniel)

The sqrt module takes in a 32-bit signed fixed point decimal
and computes the square root of it. There is a parameter,
FRACTIONAL_BITS, which specifies the number of dec-
imal/fractional bits in the input. The format of the input
is therefore {1 signed bit, 31 - FRACTIONAL_BITS bits,
FRACTIONAL_BITS bits}. With this information, a binary
search algorithm is used to find the square root. There are 3
states in this module when it is trying to find/calculate the
square root:

¢ mid_calc: this is where the middle value between the
current low and high values of the iteration is calculated

o square_calc: this is where the middle value is squared,
which is the value that is used to check against the input
to see if the correct square root was found

o check: this is where the check is done to see if the square
root was found, and then the output is set accordingly

C. Atomic Computation Modules (Younghun)

Physics engine has three atomic computation modules,
which will handle the math of each step between objects.
For convenience, we denote the maximum number of objects
as OBJ = 16, maximum number of parts per object as
PARTS = 8, and maximum number of collisions in one
frame as MAXCOL = 64.

Most costly module is get_part_collision, which
does collision time calculation between two primitive parts.
This module uses sqrt function, and should end in 50 cycles.
This will run OBJ x (OBJ — 1)/2 « PARTS «* PARTS «
MAXCOL times per frame, which is 12 % 23 x 8 x 8 x 64 =
1130496. We will parallelize this module by factor of 8 for
each object pair (so that each object pair will take at most
50%*8 cycles), and by factor of 6 for each collision (so that we
compute 6 pairs at one time).

Another module is update_collision_vel, which
updates velocity for collision response. This should end in 16
cycles, since it has multiple divisions. This happens only once
per collision, therefore this will run at most M AXCOL = 64
times per frame.

We also need a update_collision_vel module to
update velocities and positions of each objects, given the
time amount to proceed. Since this is simple multiplications,
additions, and BRAM IOs, this should take 2 cycles per object.
This will run at most OBJ x MAXCOL = 1024 times per
frame.

obj_a_parts

obj_b_parts[0]
obj_b_parts[1]
obj_b_parts[2]

obj_b_parts[3]

obj_b_parts[4]
® get_part_collision —

obj_b_parts[5]

® get_part_collision
obj_b_parts[6]

® get_part_collision
obj_b_parts[7]

® get_part_collision

min_col_time, b_part_index [¢———

get_part_collision [

get_part_collision —

get_part_collision —

Q| B ® | &

get_part_collision —

a_part_index

get_earliest_collision

D. Physical Details

Due to the unexpected integration complexities, we imple-
mented the most fundamental free-fall logic, without collision.
This simulates the simple equation of motion, s(t + dt) =
s(t) + vdt.

The anticipated collision logic is more complicated. It
decomposes the given object — circle, line segment or rectangle
— into primitive parts — circle, or line segment — to calculate
the collision time. We calculate the circle-circle collision time
and circle-line collision time for all pairs of the parts, and use
the earliest of them. Circle is decomposed into one part, line
to three parts (a line and two points), and rectangle to 8 parts
(4 lines, 4 points).

Circle-circle collision calculation is straightforward - we
calculate part of the velocity vector parallel to the displace-
ment of centers, and calculate the time until the centers get to
the distance of the sum of their radii.

Circle-line collision calculation is done by calculated the
inner product of the velocity and the displacement, based on
the equation of the distance between the line and the point. We
check the signed distance, and when if the center point ever
enters the rectangle encompassing the line segment, padded
by the radius of the circle. Note that we have to calculate
circle-circle collision, because the endpoint of the line does
not have the same collision response with the line itself. (i.e.
circle hitting the edge of the line)

Collision response is calculated based on the mass and
the angle of the impact surface. We can easily calculate the
tangential and normal vector of the impact surface of the

circle or the line, and we reverse the relative velocity in that
direction. We also scale down the resulting velocity based on
the coefficient of restitution.

All above logics are implemented and tested in python, but
only the first one is implemented in verilog. We have not
implemented the torque, rotation or the normal/friction forces
in python.

III. USER INTERACTION (DANIEL)

In our game, we allow the user the option to place objects on
the screen before the game starts. These objects will be used
to help get their ball to the target location (star, bucket, etc.) in
order to win the game. In order to achieve this action, we will
use color tracking to recognize two of the user’s fingers, which
will be used to move the object around the screen. There are
3 options of objects to place: rectangles, lines, and circles.
sw[7:6] indicate which object is getting drawn:

e 00: nothing
e Ol: circle

e 10: line

o 11: rectangle

A. center_of_mass module

We use the previously written center_of _mass module (from
lab 5) in order to track the user’s fingers. The user will
have two gloves on, with the tip of each index finger colored
differently. One index finger will be colored pink, and the other
blue. Therefore, we initialize two center_of _mass modules in
the top_level, that will each use a different color channel for
the mask: one module will use a chroma red channel and the
other will use a chroma blue channel. As the user moves their
fingers, the center_of_mass information will be getting sent to
draw modules as inputs:

e X_com_1
e y_com_l1
e X_com_2
e y_com_2

B. draw_circle module

The draw_circle takes in the 2 center_of_mass points, which
are the two endpoints of a diameter on the circle. With this
information, x1 and yl are set to the coordinates of the
center_of_mass point on the left, while x2 and y2 are set to
the coordinates of the center_of_mass point on the right. Then,
x_center and y_center are set to the center of the circle. From
there, the differences of hcount from x_center and vcount from
y_center are used to determine whether the pixel should be
colored. The criteria for whether a pixel should be colored is as
follows: (difference(hcount, x_center))? + (difference(vcount,
y_center))?> < radius?. When btn[2] is pressed, the module
then outputs the two endpoints of the diameter of the circle to
get sent to storage ({x1, y1}, {x2, y2}).

(x_center, y_center)

C. draw_line module

The draw_line module takes in the 2 center_of_mass points,
which are the two endpoints of the line. With this information,
x1 and yl are set to the coordinates of the center_of_mass
point on the left, while x2 and y2 are set to the coordinates of
the center_of_mass point on the right. From there, we check
the slope of two lines:

e One line with endpoints (x1, y1) and (hcount, vcount)
¢ One line with endpoints (x1, yl) and (x2, y2)

If these two slopes are the same within a margin of error,
then the pixel at (hcount, vcount) should be colored in. When
btn[2] is pressed, the module then outputs the two endpoints
of the line to get sent to storage ({x1, y1}, {x2, y2}). Example
below:

(x2,y2)

(x1, y1)

D. draw_rectangle module

The draw_rectangle module takes in the two center_of_mass
points, which are opposite corners of the rectangle. With this
information, x1 is set to the smaller x value and x2 is set
to the larger x value. Same thing is done with the respective
y values. From there, the pixels that get colored in are the
ones where x1 < hcount < x2 and yl < vcount < y2. When
btn[2] is pressed, the module then outputs the four corners of
the rectangle to get sent to storage ({x1, y1}, {x2, y1}, {x1,
y2}, {x2, y2}). Example below:

(x1, y1) (x2, y1)

(x1, y2) (x2,y2)

IV. OBJECT STORAGE (DISHA)

The object_storage module interfaces with all of the other
key modules in our project (e.g. user interaction, rendering,
physics engine) and is comprised of several sub-modules to
encompass all of its functionality. object_storage critically
houses the four identical BRAMs that store the data of all
of the objects on the screen. Thus, once a user creates an
object to their liking, the draw modules send object_props, a
87-bit array structured as follows:

« [86 : 86] is_static (to indicate whether or not the object
is affected by physics during the simulation).

o [85:84] id_bits (used to identify the type of the object—
this is the output of sw[7:6] in section III.

 [83:0] contains the four 21-bit numbers representing the
x and y coordinates of the up-to-four critical points of
the object (i.e. in the case of a rectangle, this splice
would contain a concatenated bit representations of all
four vertices in x1y1T2y2x3y3x4ys fashion). If not all
four 21-bit numbers are needed, the critical points will
be placed in the most significant bits of the list, followed
by trailing zeroes. For instance, in the cases of a line and a
circle, only two 21-bit numbers are needed (the endpoints
of the line and a diameter of a circle, respectively).

Since the object_storage module is used for reading from
and writing to the BRAMs, we use two flags, is_write_valid
and is_read_valid, to determine which of the two actions
(if any) are being requested. In the case that a module is
requesting to read information, object_storage also takes a
packed [3:0][6:0] current_addr, which can accommodate up
to four read requests at once.

Regardless of whether or not the object_storage module
is accepting a read or a write request, it outputs the parsed
information from object_props as it is being stored in memory
to be used or discarded by the other modules.

Internally, the object_storage module is comprised of one
instance of draw_to_storage_conversion module and four in-
stances of the storage_breakdown module, as well as four
instances of xilinx_true_dual_port_read_first_2_clock_ram in
order to create four dual-port BRAMs. (We decided on dual-
port over single-port, since the render and physics engine
modules will both frequently need to read from and write
to each BRAMs, likely at the same time at certain points.)
The storage_module just de-concatenates the final value that is
stored in the BRAM into a format that is usable for the render

and physics engine modules. The draw_to_storage_conversion
module, on the other hand, requires additional clarification.

A. draw_to_storage_conversion

This module handles converting object_props into the for-
mat that they are stored in the BRAMs and returns the
de-concatenated elements, as they are returned by the ob-
ject_storage module. Specifically, the 103-bit width of each
BRAM entry is distributed as follows:

« [102:102] is_static (same as before)
[101 : 100] id_type (also same as before)
[99 : 84] pos_x (described below)
o [83:68] pos_y (described below)
[67 : 32] params (described below)
[31 : 16] vel_x (velocity in the x-direction, as discussed
in section II. This module initializes it to 0).
e [15: 0] vel_y (velocity in the y-direction, as discussed in
section II. This module initializes it to 0).

Since each shape has at least one critical point (a line
has two endpoints, a circle has a center—which we calculate
by taking the average of the two diameter endpoints—and a
rectangle has four vertices), we decided to store it (with pos_x
and pos_y both stored as 16-bit numbers to standardize with
the physics calculations) separately as a way of anchoring the
object and stored the rest of the data under params in order to
standardize the process across different shape types. As such,
params varies across object types:

o Line: this is the simplest case; params simply contains
the concatenated xoyo (i.e. the other point in the line).

o Circle: params contains the value of the radius, which
we calculate by taking the sum of the squares of
the differences between the center of the circle and
one of the measured critical points, square rooted
(i.e. \/(pos_x —x1)? + (pos_y — y1)?. To calculate the
square root of this quantity, we used the sqrt module
defined in section II(b).

o Rectangle: this was the most complex case because of the
manner in which we decided to store the remaining criti-
cal points. A rectangle requires at least five quantities to
be identifiable (e.g. two x-coordinates, two y-coordinates,
and an angle). However, to reduce the amount of space
required and store the data in a way that is conducive for
the physics engine and for the future possible inclusion
of rotation (currently, all of our rectangles are parallel
to the screen, but we hope to introduce rectangles of
all angles), we decided to store the top-left point (pos_x
and pos_y), then find the next two points clockwise from
the first (first_clockwise_x, first_clockwise_y) and (sec-
ond_clockwise_x, second_clockwise_y), and store the
displacements (dz; and dy; in the x and y-directions
between the first clockwise point and pos, as well as dys,
the displacement between the first and second clockwise
points. To help with this, we made an additional helper
module, nth_smallest, which uses takes four points and
returns them sorted using a bitonic sort. Then, the first

element is pos, while the first element with a larger y
than pos is first_clockwise.

V. RENDERING AND USER EXPERIENCE (DISHA)

To account for the difference in clock speeds between the
rest of the pipeline (100 MHz) and the HDMI (74.25 MHz), we
decided to use two rotating 360p frame buffers, one that stores
the current data for the frame, and one that stores the data
from the last frame. The HDMI would be fed the data from
the previous screen while the current screen would be written.
We would additionally be erasing pixels immediately after
they are read to keep the frames consistent. This data would
then be scaled up four times to fit the standard 720p display
screen. To prioritize user experience, We decided to use a black
background (i.e. value of 0) and two colors to represent all of
the objects on the screen (blue if static, red if dynamic) in
order to minimize the amount of additional storage required
for rendering. However, this doubled the number of bits we
needed to store the pixel data (1 for black and white versus 2
for three colors), and hence, we ran out of FPGA storage on
a full resolution frame buffer and decided to stick to 360p in
the frame buffer and scale up on the screen.

The render framework is largely handled in the render mod-
ule, which takes in start and end addresses (which mark where
the objects are stored in the BRAM), and then instantiates
the object_storage module to read four simultaneous objects
from the four BRAMs. Once the objects are recovered, the
information is passed into separate render_object modules
based on the id_type of the object. The render_object module
sequentially returns a new pixel that is contained in the object
every clock cycle. These four points are then concatenated by
the render module and read at the top level, at which point they
are fed into the frame buffer one pixel at a time. Even though
the process is bottle-necked by the frame buffer’s capacity
to only process one pixel at a time, determining whether
or not a pixel is in an object takes longer than one clock
cycle on average (because rectangles require four comparisons,
one for each distinct line that makes up the set of edges
and circles require at least two to account for pipelining the
(z — pos_z)* + (y — pos_y)? quantity that is checked against
the radius), and hence having four BRAMs instead of just one
is advantageous.

ACKNOWLEDGMENT

We would like to thank Jan Park and Professor Joe Stein-
meyer, for their continued guidance throughout this project,
as well as all of the lab assistants and teaching assistants for
6.205 (in particular, but not limited to, Hasan Zeki Yildiz,
for their thoughtful insight into the render design process and
Kiran Vuksanaj for their continued guidance in understanding
the specifics of Verilog). We would additionally like to thank
Pleng Chomphoochan for the same.

