
River Chess Engine Final Report
1st Arjun Barrett

Department of EECS
Massachusetts Institute of Technology

Cambridge, MA, USA
arjunjb@mit.edu

1st Dylan Isaac
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

disaac@mit.edu

Abstract—We introduce River, a chess engine designed to run

on an FPGA, utilizing hardware-level parallelism for a high-

throughput move search implementation based upon an iteratvely

deepened, alpha-beta-pruned implementation of negamax opti-

mization with quiescence search. Our project led to an engine

that is capable of playing FIDE-style chess at an →2200 Elo

level. The successful implementation of River demonstrates that

hardware-based chess computation is a viable (and significantly

more efficient) alternative to software-based approaches.

The source repository for our project, which include all C
and SystemVerilog code for our software model and hardware
design, is available on

I. MOTIVATION

Traditionally, chess engines have been implemented in soft-
ware, mainly utilizing multithreaded CPU execution for move
search and evaluation. While these software implementations
are often easy to implement, they can be computationally
expensive and power-hungry. This is especially true when
multiple CPU operations are needed to emulate a single
fundamental chess board operation, such as for sliding piece
move generation.

FPGAs provide the unique ability to design optimized gate
structures for particular bit manipulations that may not be
possible to perform efficiently in software. Moreover, FPGAs
expose massive parallelism to the programmer in contrast to
the relatively small amount of instruction-level parallelism and
multicore parallelism possible on most CPUs. As computer
chess is a task that involves both obscure bit manipulation rou-
tines and can be highly parallelized, it is a prime candidate for
implementation in hardware rather than software. If designed
correctly, a hardware implementation of a chess engine has
the potential to be significantly more power & time-efficient
than its software counterpart. We introduce River, a highly
pipelined, hardware-based, streaming chess engine for FPGAs
that was designed based on these principles.

II. SYSTEM OVERVIEW

We introduced the initial design for River in our earlier
preliminary report. Our system architecture has not fundamen-
tally changed since then; the full architectural schematic is
shown in Figure 1. However, after working through concrete
implementations of several of the features we planned to
implement, we now have the final design capable of running
on an Artix-7 FPGA. Below we discuss our design and some
of the issues we came across.

III. SOFTWARE MODEL (ARJUN)
We have implemented a functional, complete software

model for the project in C. RiverSW was written carefully to
mimic the approach we would ultimately use to design River
in hardware. It creates no dynamic allocations, uses no large-
scale memories, and implements all logic in terms of bitwise
operations and small lookup tables.

RiverSW is technically a chess engine in its own right, but it
is extremely slow (and therefore weak in Elo). However, this is
largely an artifact of the Verilog-esque coding style it employs,
and performance increases by several orders of magnitude
once the logic is translated into hardware. For instance, various
complex, multi-cycle operations in RiverSW (e.g. Hyperbola
Quintessence move generation) have been translated into pure
combinational logic in River. Additionally, costly branching
logic present within RiverSW are removed entirely in River.

The implementation of RiverSW proved to be a larger
time investment than we initially anticipated; however, it paid
major dividends in ensuring the correctness of our hardware
modules. By nature, chess programming involves handling an
abnormally large number of edge cases; a software model gave
us the ability to find, target, and fix edge-case bugs much more
quickly. RiverSW helped us quickly discover specific input
positions causing bugs in our hardware implementation and
debug those specific edge cases in simulation. This proved
to be crucial because running an exhaustive search for bugs
in simulation would have been nearly impossible; we found
many bugs that only occurred a few times in hundreds of
millions of nodes in our game search tree, and having an exact
software replica helped us narrow down the search for badly
behaving positions very quickly. The hardware-friendly coding
style of RiverSW also transformed much of the module writing
process into a translation exercise from C to Verilog, which
dramatically accelerated our development speed.

IV. MOVE EXECUTOR (DYLAN)
The move executor is used by both the UCI module and

engine coordinator; as such, it has strict requirements in terms
of throughput and latency. To meet these requirements, we
opted for a larger, highly parallelized design that can execute
a move onto a board within a single cycle. Additionally,
great care has been taken to implement true FIDE chess
rules, including edge cases such as en-passant pawn captures,
castling, and piece underpromotions. It has been largely based



Fig. 1. Initial system-level block diagram. The primary changes between this diagram and our final design were (1) pipelining optimizations in the engine
coordinator, (2) a removal of score history from the move evaluator in favor of quiescence search, and (3) a captures-only input flag for our move generator
to accelerate quiescence search.

on RiverSW’s move executor, but is modified to eliminate
branching and conditional execution through extensive use of
64-bit masks.

We opted to represent the board with a one-hot encoding
for most of the pieces, as doing so allowed us to accept a
small increase in board size for much lower latency. This
representation allowed for most of the engine logic to be done
in parallel using bitwise operations in the move executor and
generator.

V. MOVE GENERATOR (ARJUN)

Move generation is a key step in any chess engine and
is often tricky to implement correctly. Although we initially
anticipated that the verification of this module would take
a large portion of our total time, we found that in practice
the move generation was easy to get right with a verifiable
reference model (i.e. RiverSW).

We implemented move generation using a blocking finite
state machine that takes in a position and generates all legal
moves from that position, one at a time. This may initially
seem like a poor choice in an otherwise highly pipelined
system, but because each position generates upwards of 30-50
moves, this architecture is not a bottleneck.

The specific implementation involves combining the results
of individual move generators for each piece, using count-
trailing-zeros hardware to generate move structures from bit-

boards using combinational logic. The module updates indi-
vidual piece substructure states as needed depending upon the
piece move generator it uses on any given cycle to generate
all of the legal moves from a position.

We originally designed the move generator as we had
originally intended (one move per cycle of throughput, with
a blocking FSM on the input position). However, this proved
to create a long critical path in our design. In order to relax
our timing constraints, we opted to change this into a 2-stage
pipeline with a throughput close to, but not quite equal to, 1
move per cycle.

One optimization in the hardware implementation that
wasn’t present in our software model was a “captures-only”
mode for the quiescence search, which helps dramatically
reduce the latency of evaluating positions deep in the search
tree. On average, this improved the performance of our overall
system in its search to a fixed depth by a factor of 2.

The move generator makes use of multiple-bit tricks to
extract what moves are possible for each piece. Due to the
complexity of the module (600 lines of dense SystemVerilog
code), RiverSW proved to be an excellent investment for the
design of the move generator.

VI. MOVE EVALUATOR (ARJUN)

We have decided not to opt for an advanced neural move
evaluator and instead have focused on a simple combination



of position and material heuristics that are very easy to
implement and compute. Similar to the move generator, the
move evaluator benefited greatly from the development of
RiverSW. We may add some extra complexity to the move
evaluator as follow-up work for the project; however, we
have found while playing against the hardware model that the
evaluator works quite well as is.

The move evaluator also detects illegal moves and check-
mate (which we can treat identically to a “very bad” eval-
uation), as this can reduce the size of our search space
dramatically without too much effort. It is also a necessary
addition to avoid worst-case behavior of our engine generating
illegal moves (though this cannot happen with a search depth
of more than 2 in general, as both of these situations have
a highly unfavorable terminal node evaluation that will be
skipped).

Another improvement we utilized based on the output of the
move evaluator such that we have “best-first” move ordering.
This allows our engine to generate beta cutoffs for the alpha-
beta search more quickly, which can reduce the search space
by multiple orders of magnitude. In RiverSW, we opted
to use quick-sort over a very approximate move evaluator.
When translating this into hardware, we opted for a simple
single-cycle streaming parallel insertion sorter over true static
evaluation results; this yields both a better move ordering
and a faster output. Since we receive moves over time, we
could amortize the work of sorting across the move generation
process, allowing us to access a fully sorted list of moves only
a few cycles after we finish move generation.

VII. ENGINE COORDINATOR (ARJUN)
The engine coordinator takes the role of the top-level from

lab. It handles communication between the UCI module ,
execute, generation, evaluator, move-stack, and sorters. Ad-
ditionally, it holds logic that doesn’t fit neatly into any of the
previously mentioned modules. The engine coordinator also
contains an FSM.
The FSM contains states:

• READY
• NEXT
• GENERATING
• WRITEBACK
• FINISH
We encode the current state of the engine in the position

stack, which is a large component of the engine coordinator
that stores alphas, betas, scores, and generated move informa-
tion for each node in the path of the current depth-first search.
Most of this information is simply stored in registers, and we
impose a limit of 64 on the maximum depth of the DFS to
store this in fixed-size hardware. However, we store the move
lists in BRAM because they can grow to be quite large (there
could theoretiaclly be up to about 220 legal moves in each of
the 64 nodes of the moves stack, and each move is 15 bits
in our representation). We also limit the number of moves we
consider at each depth to the 64 moves yielding the best static
evaluations; this is much more than the maximum number of

legal moves in any position in a chess game (typically 40-50),
so it’s a very good approximation that saves a lot of BRAM
in most cases.

The FSM in the coordinator is the heart of the module. The
engine starts in the READY state and accepts “go” commands
from the UCI module to begin a move search on a new board.
At any given search depth (including the start at depth 0), the
engine starts in the NEXT state, verifies it isn’t a terminal
node, and then enters the GENERATING state. It waits in
the GENERATING state as the move generator sequentially
generates every move in a board. As moves are produced, they
are executed by the move executor, and the output positions
are evaluated to generate a move key. This key is used to
sort the moves using an insertion sort algorithm. After sorting
completes, the engine enters the WRITEBACK state, and the
moves are stored into a subsection of a 60 kilobit BRAM based
that corresponds to the current depth in the move stack. We
recursively iterate on the next move until we reach a maximum
target depth; at this point, we extend the search by searching
only for loud moves (moves that capture pieces or move out
of check; this is the quiescence search). After evaluating all
moves in a position, we enter the FINISH state and return
to the next shallower depth; providing the evaluation of the
current position to the parent; this is either the static evaluation
of the position for a terminal quiescent node, or otherwise the
minimax evaluation for the subtree. The parent ingests the
evaluation to update its own minimax state (alpha, beta, and
score), inducing a beta cutoff if needed, and continues to the
next node in its subtree (or returns to the parent if all its
children have been evaluated).

Once we reach the root node in the FINISH state, we have
executed minimax for the entire tree for some target depth;
we choose to iteratively deepen (increment the target depth)
or return the best move found depending upon move time
constraints.

VIII. INTERFACING WITH UCI (DYLAN)
UCI is a standard command-line protocol that allows chess

engines to communicate with game boards and other chess
programs via a standardized text interface. Although it is
primarily designed for software-based chess engines, it allows
compatibility with hardware-based engines like River without
modifications. We implement support for the UCI text protocol
directly within our FPGA to make our engine more self-
contained, rather than depending upon a complex software
adapter.

Since sequential character-by-character command-line in-
puts are not automatically compatible with FPGAs’ design phi-
losophy of extreme parallelization, we’ve decided to contain
the UCI protocol to a singular FSM, which provides parallel
inputs and outputs to the rest of our design.

To avoid making our UCI implementation too complex, we
only implement the debug, position, go, uci, move,
bestmove, and info commands. However, the current sub-
set is sufficient to interface neatly with a wide variety of chess
gameboards including Lichess.



Since the UCI module was creating at a relatively early point
in the project, it became extremely beneficial for test-benching
the rest of the modules. By using UCI to load arbitrary boards,
it was a useful tool in sim to test move executor and generator.

A. Physical Communication
In order to support communication with a diverse set of

systems, we decided to first have an in-software program
collect UCI commands from an arbitrary source. We then have
this program forward commands to and from our FPGA over
USB.

On the hardware side, to support USB communication,
we use our FPGA’s FTDI USB chip. This chip is used to
translate between UART and USB communication, simplifying
the design of the module.

B. Architecture
The UCI module consists of:
• Read FSM

– READY
– DEBUG
– POSITION BOARD TYPE
– POSITION NEXT
– POSITION MOVES
– TRASH

• Write FSM
– READY OUT
– INFO
– BEST MOVE

• charbuff - character buffer for managing in-coming
commands

• best_move_buffer - character buffer for managing
out-going best move commands

• info_in_buffer - character buffer for managing out-
going info commands

• Internal board representation
• Move executer
• I/O ports for reading and writing individual characters to

the UART/USB interface
• I/O ports for communicating with the rest of the design

using the AXI protocol.
The bulk of the complexity of the UCI module comes from
the two FSMs. The two FSMs decide how to use the listed
assets based on their current state.

Each state within the read FSM represents a relevant posi-
tion within the process of reading a particular command.

Conversely, each state within the write FSM represents a
relevant position within the process of sending a particular
command.

IX. EVALUATION

There are two primary perspectives from which we can
evaluate the success of our experiment with implementing
a chess engine in hardware: (1) the strength of the engine,
and (2) the improvement in efficiency versus a software
implementation.

Unfortunately, it is difficult to exactly determine River’s
Elo due to differences in measurement techniques between
different sources, time controls, and other factors. However,
from our own play against the engine, and from approximate
performance statistics such as average centipawn loss per
move, we estimate its Elo to be between 2000 and 2200 (i.e.
master level). This is not as strong as state-of-the-art software
engines can achieve; this is not because River is poorly written,
but rather that River uses no transposition table or NNUE due
to their complexity and difficulty to pipeline. It nonetheless
competes with significantly more complex software engines
due to its massively better throughput, even on much less
advanced hardware.

We managed to reach almost all of our ideal goals, which
was exciting considering the complexity of the project. The
only ideal goal we didn’t hit was the parallelized DFS stack.
After running into a slice-count bottleneck, we learned that
effectively doubling most of our design wouldn’t be feasible.
However, this doubling wasn’t required to reach our ideal Elo.
Additionally, we reached the stretch-goal of playing against the
FPGA online through Lichess. Overall, the project managed
to achieve what we set out for.

Most of our modules have a throughput and latency that we
are happy with. The UCI, move executor, sorter, and engine
coordinator all work on a 100MHz clock. Additionally, for
these modules, we can accept an input every cycle at 100MHz.

However, we needed to drop our clock frequency down
to 50MHz, although in theory we could have increased it
to 60MHz. Our move evaluator module in one of the steps
requires adding 64 integers, as such this became our main
source of propagation delay. Although we already made the
evaluator a two-stage pipeline, due to time, we weren’t able
to make it deep enough to increase our frequency back to
100MHz.

It’s a common theme that the move evaluator was the most
difficult module of our project. Halfway through development,
we ended up running out of slices on our FPGA, overshooting
by only around 900. After extensive testing and re-building,
we found that the main culprit was the evaluator. Since the
evaluator was integral to the performance of our project, we
opted to transition from using the Spartan 7 to the Artix 7. Our
final build on the Artix 7 utilizes 77% of the boards slices, 50%
of the board LUTs, and 60 Kbits of BRAM. Additionally, if
we were to further pursue the project by adding a transposition
table, we would also need to use the board’s DRAM.

Another issue we came across appeared to be a PLL
instability issue. Although our engine worked 100% of the
time in sim, it only worked 90% of the time in hardware.
Since it seemed to be almost random when it happened, and
it only occurred when sending quick successive commands to
the UCI, we assumed it was a bug in the code of uci handler.
However, after debugging the system using the info command
supported by the uci module, we learned that random bits
in our board representation were being flipped. Due to the
nature and number of bits being flipped, it wasn’t possible
for it to be a logical error in our code. As such, we decided



it was an issue with clocking. To solve this, in the interest of
time, we added a delay in our forwarding script to prevent
commands from being sent too quickly.
A python script we used to print out the corrupt board
representations is shown in Fig 2.

X. FUTURE WORK

Due to time constraints, there were some features we chose
not to implement, or chose not to include in the final build.

One such feature was full support for parsing go commands
in uci. In reality, a go command can be formatted as ”go
winc 100 wtime 200 btime 300 binc 400.” Although we had
a full hardware implementation of uci capable of parsing this
command, due to the PLL issue, we ran out of time to test
the command in hardware (although it worked in sim). We’d
like to push the full parser for go commands into our code
post-submission.

Additionally, we would like to increase our clock speed
from 50MHz to 100MHz. This isn’t too difficult of a task,
since all we need to do is add more pipeline stages to move
evaluator.

One stretch goal that was too ambitious for our project was
the addition of a transposition table. In future work, we would
like to implement a transposition table in DRAM. Although
the latency for DRAM is quite high, it could decrease our
search time dramatically by reducing redundant work.

XI. CONTRIBUTION

A. Dylan Isaac
In terms of SystemVerilog code, mainly focused on pro-

gramming UCI Handler and Move Executor. Spent remaining
time using UCI to test bench the system’s remaining modules
in Python.

B. Arjun Barett
Created initial software model of River in C. Used software

model to inform the design of each module. In SystemVerilog,
programmed Move Generator, Move Evaluator, and Engine
Coordinator.

Fig. 2. Corrupted Board representation likely from PLL
instability


	Motivation
	System Overview
	Software model (Arjun)
	Move executor (Dylan)
	Move generator (Arjun)
	Move evaluator (Arjun)
	Engine coordinator (Arjun)
	Interfacing with UCI (Dylan)
	Physical Communication
	Architecture

	Evaluation
	Future Work
	Contribution
	Dylan Isaac
	Arjun Barett


