
FPGA-based Reactor Simulator
1st Li Xuan Tan

Department of Mathematics
Massachusetts Institute of Technology

Cambridge, MA, USA
lixuan@mit.edu

Abstract—This report presents a design to simulate the con-
trolled operation of a simple nuclear reactor (modeled on the MIT
research reactor) by using the point-kinetics equations, which
model the reactor core as a point in space. The user is able
to control the simulated reactor by using inputs on the FPGA
board to simulate control element movements and emergency
shutdowns.

Index Terms—discrete, simulation, field programmable gate
array.

I. THE NUCLEAR REACTOR MODEL

Nuclear reactors are driven by a chain reaction in which a
neutron splits apart uranium atoms to produce energy, fission
products and more neutrons (which then go on to split more
uranium atoms, causing a chain reaction). The multiplication
factor k is defined as the ratio between the neutron population
in two successive generations of neutrons; that is, k = 1.5
means the next generation of neutrons will have 1.5 times as
many neutrons as the current generation. This value can be
affected by the type of fuel, the amount of neutrons absorbed
by non-fuel materials in the reactor, the amount of neutrons
leaking out of the reactor and various other factors which allow
us to safely build and operate a reactor. When k = 1, the
reactor is in a steady state as the neutron population will not be
changing over time. This is known as the reactor being critical,
with k > 1 and k < 1 being referred to as supercritical and
subcritical respectively. The state of a reactor is also reflected
in its reactivity ω = k→1

k , which is positive when the reactor is
supercritical and negative when it is subcritical. This unit-less
measure of reactivity is commonly used in nuclear science to
describe the neutron behaviour in a reactor.

In the point-kinetics model, which models the entire reactor
core as a single point with an associated neutron flux, the
following differential equation can be derived to describe the
neutron population over time n(t):

εn(t)

εt
=

ω→ ϑ

!
n(t) +

6∑

i=1

ϖiCi(t) (1)

The point-kinetics model is generally sufficient for small,
simple reactor geometries such as that of the MIT nuclear
reactor. We will now define the terms used in this equation.

A. Neutron Precursors and the Delayed Neutron Fraction

The value ! is a constant, the average lifetime of a neutron
before it is absorbed or escapes the reactor. This is usually

taken to be 10→4 seconds according to experimental measure-
ments. With such a short neutron generation lifetime, even a
value of k such as 1.001 will result in a huge multiplication
factor of 1.00110000 ↑ 22000 in a single second if all the
neutrons were produced instantly from fission (that is, they are
prompt neutrons). This would make a reactor uncontrollable,
and in fact is the driving principle behind nuclear weapons.

Controlling a reactor is only physically possible because of
the presence of delayed neutrons, which are neutrons that do
not get directly emitted from fission, but instead are released
from the decay of certain fission products on a timescale of
seconds to minutes after the original fission. Thus, a reactor
may have a k of 1.001, but only 0.999 are prompt neutrons,
with the remaining 0.002 released on a delayed timescale. In
this case, the reactor is termed prompt subcritical, but over
time it is supercritical after accounting for delayed neutrons,
and this allows reactor power to increase on a longer timescale
on which humans can react and control the reactor. These
fission products that produce delayed neutrons are termed
neutron precursors, and typically are grouped into six different
groups depending on their half-lives. Ci(t) denotes the amount
of precursor i at time t, ϖi is the decay constant for precursor i,
and ϑi is the fraction of total fission neutrons that are emitted
from the precursor i. The delayed neutron fraction ϑ is the
sum of ϑi over all six groups of precursors, which is 0.0065
for reactors fueled with uranium-235.

The other part of the point-kinetics equations are the differ-
ential equations determining the amount of neutron precursors
present in the reactor:

εCi(t)

ε(t)
= →ϖiCi(t) +

ϑi

!
n(t), i = 1, 2, · · · , 6 (2)

We can use these equations to approximate the change in
neutron flux n(t) and precursor population Ci(t) in a single
discretized timestep, allowing us to approximately model the
behaviour of the reactor over time.

B. Neutron Poisons

Some fission products (most prominently xenon-135) are
extremely strong neutron absorbers and will take away neu-
trons necessary for the nuclear reaction to proceed; these are
known as neutron poisons. As neutron poisons are built up in
the reactor core, their poisoning effect is measured by a cor-
responding decrease in the reactivity ω. The xenon population
can be tracked similarly to that of neutron precursors; it is



produced at a rate proportional to the neutron flux (and hence
number of reactions) in the core, and is removed not by decay
but by ”burnup” from absorbing a neutron. In practice, xenon
buildup means that operators periodically have to use control
elements to add reactivity to compensate for the xenon and
keep the reactor at a steady power level.

C. Control Element Reactivity Worth
Control elements usually take the form of rods or blades

infused with neutron-absorbing elements like cadmium or
boron. By lowering them into the reactor core, they will absorb
many of the neutrons (similar to xenon) and starve the reaction
of necessary neutrons. Also similar to xenon, the effect of
control rod movements are measured by a corresponding
change in the reactivity ω, and these measurements (known as
”control blade reactivity worths”) are recalibrated periodically.
Using FPGA button and switch inputs to manipulate control
rods to add or remove reactivity, the user can put the reactor
into a supercritical or subcritical state to change power levels.
All reactors also have an emergency shutdown mechanism
known as a scram, which often involves rapidly dropping all
the control elements into the core, inserting a large negative
reactivity and stopping the reaction.

II. SYSTEM DESIGN

The proposed block diagram of the reactor simulator is
included below.

A. Time Control
The sim_time_control module controls the ratio of

simulation time to real time by varying the length of a
simulated timestep based on FPGA switch input from the user.
At a system clock of 100 MHz, a timestep length of 10→8

seconds corresponds to real time simulation, but varying the
timestep length εt allows us to either speed up or slow down
the simulation since the system clock is constant. Varying εt
also affects the accuracy of the neutron flux calculated from
(1), allowing for either a faster but less accurate simulation or
a slower, accurate simulation.

We can also choose to make timesteps longer than a single
cycle (to enable pipelining of complex calculations), in which
case the time control model will maintain a counter that rolls

over at the desired timestep length in cycles, and triggers
a single-cycle high new_timestep output to be used to
control other modules. Timestep length in this case would then
be the system clock period multiplied by the cycle count.

B. Point Kinetics Solver

The point_kinetics_model module is responsible for
storing the current value of the neutron flux and updating it at
each timestep. The inputs it takes are net reactor reactivity
ω (the sum of control rod reactivity and neutron poison
reactivity), the timestep size εt and the neutron precursor
populations Ci(t). The values of ! and ϖi are constants stored
in the FPGA. Using these inputs and (1), the module computes
εn(t) and uses that to update the stored value of the neutron
flux n(t).

Since this module involves as many as 9 multiplications
(including a multiply by εt to compute εn(t)), it may be
necessary to pipeline the computation into stages with one
multiplication each. This can be done using an FSM and
the new_timestep output from the time control module,
which would use a counter to initiate a new timestep every
10 cycles or so, instead of having a new timestep every cycle.
The new_timestep output then triggers the solver to start
a computation with the currently-stored value of n(t) and
perform one of the multiplication steps each cycle.

C. Neutron Precursors

The precursors_tracker module stores and updates
the population of each of the six neutron precursor groups,
and passes it to point_kinetics_model for use. It takes
the neutron flux n(t) and the timestep size εt as inputs to
update the populations Ci(t) based on (2). A similar model
is used for tracking the xenon population, and the negative
reactivity worth of xenon can be assumed to scale linearly
based on the amount of xenon. Since this module also requires
several multiplications, it can be pipelined similarly to the
point-kinetics solver.

D. User Control

The control_rods module stores the position of several
control rods, which can be updated by the user by using FPGA
switches and buttons to select, raise or lower a particular
rod. We can model the control rods as being cut into 2n

segments for some n, and the position will be stored as an
n-bit integer representing the number of segments that are
currently inserted. At each new timestep when a particular
rod is selected and moved, its position will be changed by
some (potentially adjustable) speed increment that determines
how fast the rod moves. Reactivity worth of a partially-
inserted rod can also be assumed to scale linearly based
on the fraction of the rod that is inserted into the core,
and the net reactivity of the control rods is then passed to
point_kinetics_model to compute the neutron flux. In
addition, a scram can be implemented by using a FSM to place
the system into a ”scrammed” state, in which the control rods
will drop rapidly into the core and not be able to be removed.



At the MIT reactor, a scram is required to take under 1 second
by regulation, and is typically below 700 milliseconds, so a
suitable ”scram speed” (in segments per timestep) of the rods
can be calculated from the desired drop time, the number of
control rod segments and timestep length.

This module was implemented as a parametrizable module
to allow for control rods to have different reactivity worths,
ranges of motion and movement speed. The scram was simply
implemented as a ”set all rods to full insertion” loop. To
simulate the response time from an actual reactor (and also to
make it easier to handle the movement speed time-stepping),
the control_rod module is passed an input new_second
produced by the sim_time_control module. This triggers
the control rods to move approximately once per second, and
in discrete increments instead of continuous.

III. RESULTS

To avoid having to deal with floating-point multiplication,
the code used a lot of bitshifts/adds to approximate the
product. This turned out to be somewhat inaccurate especially
for the smaller fractions like ϖi, and resulted in the simulation
not exactly mirroring expected behaviour - I had to tweak the
reactivity calculations a little to have it match my experience
better. Although quantitatively the results aren’t great, the
simulation does display the expected qualitative properties,
which makes me think that the inaccuracy is likely to just
be down to bad approximations. For example (as noted in
my demo video), the simulation replicates the ”prompt drop”
that occurs upon a sudden insertion or removal of reactivity,
like a scram. This is a scenario in which the power spikes or
dips sharply, then the graph shows an ”elbow” as the reactor
returns to the exponential growth or decay that’s closer to
expectation. The prompt drop is predicted by reactor theory
and can be derived from the point kinetics equations, but this
scenario doesn’t explicitly appear in my code so it does seem
that the simulation is working as it should, since it was able
to reproduce this.

In terms of performance, I ran into some issues meeting
timing even with the slightly more lenient 74.25 MHz HDMI
clock that I had originally planned to use. I put pipelines
in a number of places that didn’t seem to help much, and
in the end it seems that the problem was at least partially
caused by having too many large additions in one state-
ment? After splitting those up by making an FSM for the
point_kinetics_solver module, the code was able to
meet timing so it seems like that’s it, which is interesting
because I had been significantly more worried about my
multiplies. Otherwise, the computation is fairly simple and
not very resource-intensive - only 4 DSP blocks were used
even though I made some slightly suboptimal choices (the
main reason I avoided using them much was because there
were a lot of floating-point multiplies that I just approximated
with bitshifts). Considering there’s so much idle time in
between timesteps (thousands of cycles apart, whereas even
the most complicated pipelined computation in my design was
5 cycles), there’s a lot of room to increase the accuracy of the

simulation by shortening the timesteps, but that runs into the
problem that we need to multiply by ever smaller fractional
values to get the change in neutron flux. Approximating those
small fractional values can get inaccurate or need to use up
more bitshifts/adds, which might be pushing timing limits?
Definitely room for a few orders of magnitude improvement
though.

IV. CODE


	The Nuclear Reactor Model
	Neutron Precursors and the Delayed Neutron Fraction
	Neutron Poisons
	Control Element Reactivity Worth

	System Design
	Time Control
	Point Kinetics Solver
	Neutron Precursors
	User Control

	Results
	Code

