ProtoFacer: FPGA-Driven Interactive Protogen Head

1% Benson Zhan Li Lin
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA
bensolzl @mit.edu

Abstract—We present a design for a Protogen Head controlled
by FPGA fabric. Using an inward-facing OV5640 camera inside
the helmet, the Protogen Head reconstructs the cosplayer’s face
based on real-time video input. The FPGA processes 25 frames-
per-second video input from the camera, (limited primarily by
electromagnetic interference concerns).

Experimental testing shows that the ProtoFacer is able to
capture blinks and mimic mouth movement during speech, all
while using under 400mW of power (excluding external power
to the LED boards) and 1.5 MiB of block RAM. This makes it
ideal for use in limited memory/power environments.

Index Terms—Digital systems, Field programmable gate ar-
rays, Image processing,

I. INTRODUCTION

Protogen heads are a type of mascot head which display a
face using multiple LED boards behind a tinted visor. These
allow for a greater range of expressions for the cosplayer to
choose from since these displays can flexibly display many
different facial expressions without mechanical components.
Ideally, the displayed face should be representative of the
cosplayer’s face, allowing for common facial movements such
as blinking and smiling to be expressed. However, most
models construct faces from a fixed set of pre-determined
expressions stored on the controller’s memory.

The goal of the ProtoFacer project is to overcome this
limitation by leveraging the parallelism of the FPGA fabric
to implement a face reconstructor from real-time video input.

This presents a number of design challenges:

o The system needs to fit within the limited space of a
protogen head (which is no larger than a 6-inch box) and
leave enough space for the camera to see the cosplayer’s
face.

o The system should use a small amount of power; it would
be difficult for cosplayers to carry around large power
banks for their equipment.

o The system needs to process the video feed quickly
enough to capture facial expressions, such as blinks and
mouth movement.

This report will focus on the design and implementation of
the ProtoFacer system. An overview is shown in Figure[d The
system is comprised of the following modules (elaborations in
the respective sections):

« Head Frame (Section [[I-A)

« OV5640 Camera (Section

o Image Processing Pipeline (Section [I1I-B)
o Expression Recognizer (Section [[V-A)

o Face Image Buffers (Section [V-A)

« Face Reconstructor (Section [V-B)

e HUB75 Driver (Section [VI-B)

« Power Modulator (Section

« HUB75 LED Boards

We evaluate the performance of the ProtoFacer based on its
resource usage in Section [VII] We then end the report with
a discussion of the system’s limitations and future work in

Section [VIIL

II. PHYSICAL CONSTRUCTION

A. Head Design

Fig. 1. Exterior of the Protogen Head (with the tinted visor removed)

The Protogen head used is comprised of the following
components:

o A pair of Waveshare Electronics RGB-Matrix-P2.5-64x32
LED displays [2], each containing 32 rows of 64 LEDs
each. These are used to display the face of the protogen.

o An OV5640 camera, used to capture real-time video of
the cosplayer’s face for processing. This is mounted on
the front tip of the protogen head.

¢ A 5V white LED strip mounted just below the camera
for lighting the interior of the helmet.

Fig. 2. Internals of the Protogen Head. Blue Box: OV5640 Camera. Green
Box: LED Strip. Yellow Box: Shielded Camera Wire. Red Box: Cmod A7-35T
board. Left and Right: LED Boards

Fig. 3. Interior of the helmet with under various lighting conditions (Black
bounding boxes are for calibration) Left: LED strip off. Right: LED strip on.

o A black-tinted visor made from clear Polyethylene
Terephthalate Glycol (PETG) that was thermoformed into
the right shape, then dyed with a synthetic black colorant.

o A Digilent Cmod A7-35T Breadboardable Artix-7 FPGA
Module as the FPGA board [4]. This is mounted on the
interior of the helmet just under the camera.

o A protogen head frame adapted from the Sigma Protogen
model by Coelacant [I]]. The frame is printed in black
PETG using an Ultimaker S5 3D printer.

o Faux fur from BigZ Fabric

The LED strip inside the helmet is necessary for lighting the
interior of the helmet. It ensures consistent lighting conditions
for the camera. Testing showed that without the LED strip,
the interior of the helmet often becomes too dark to make out
any of the facial features at all (see Figure [3). This is usually

exacerbated by the tinted visor blocking out most of the light
from the exterior of the helmet.

B. FPGA Board Selection

This Cmod A7-35T was chosen as it has 52 digital in-
put/output (I/O) pins for both the LED boards and the cameras
[4]. The HUB75 LED boards and the OV5640 camera require
14 data wires each. To fit both the LED boards and the
OV5640 camera as well as additional controller peripherals
such as buttons and switches, we would need at least 30 I/O
pins.

The small frame of the Cmod A7-35T also makes it viable
for use inside the helmet itself, where space is severely limited.
This allows most of the helmet to be self-contained, save for
the power supply to the LED boards, LED strip and the FPGA
itself.

Notably, the Cmod A7-35T only has a single micro-USB
port. It has no external power supply port and no peripheral
ports. Thus, the only way to power the FPGA is to use the
same micro-USB used to load the FPGA bitstream. This also
creates a significant debugging challenge: streaming video
from the FPGA is impossible since all data needs to be sent
over UART from the FPGA to the Micro-USB port.

To circumvent this, most of the code was tested on a Real
Digital Urbana Board based on AMD’s Spartan 7 [5]]. The
HDMI port of the Urbana was used to stream video from the
camera to an external monitor for debugging purposes. That
board was too big to fit inside the helmet and did not have
enough I/O pins for both the camera and the LED boards.

The entire data flow was split into two stages. The first
stage was the OV5640 camera to Face Constructor pipeline;
the second was the Face Constructor to LED board pipeline.
See Figure [for details. Each stage was tested separately on
the Urbana board.

After both stages were completed and tested, the stages
were integrated on the A7-35T. Notably, the A7-35T runs on
a 12MHz internal clock [4] as compared to the 100MHz clock
of the Urbana. A clocking wizard IP was used to generate a
100MHz clock on the A7-35T.

III. CAMERA INPUT
A. OV5640 Camera Settings

The OV5640 camera is initialized with the following set-
tings:

o Resolution: 320 pixels high by 180 pixels wide

o Frame rate: 25 frames per second

o Format: 8-bit greyscale

The main reason for the low resolution, frame rate and
format is to lower the clock speed of the camera by as much
as possible. Since the camera sends 1 pixel (8 bits) per clock
cycle, the clock speed of this camera is at least the product of
the resolution and the frame rate.

The wire that transmits the camera feed to the FPGA is
subject to significant electromagnetic interference from the
surrounding electronics and the environment. This is due to the
high frequency of the camera feed. To reduce electromagnetic

Expression Recognizer le f_pixel [8 bits] | camera_d [8 bits]
pixel_valid [1 bit] cam_hsync [1 bi]
Eye Finder pixel_address [16 bits] addr_a [16 bits] . cam_vsync [1 bit]
3x3 Gaussian Blur ¢ cam_pelk 1 bif]
DLE | »| INITSEARCH }_,‘ SEARCHING H COMPLETE ‘ _valid [1 big
LEFT LEFT SEARCH LEFT pixel_value [8 bits]
| 5
INIT SEARCH SEARCHING COMPLETE Frame i v i Bl I Pixel i2c_sda[ibi) | OV5640
RIGHT RIGHT SEARCH RIGHT Storage / P e Reconstructor Camera
S I - Lo i2c_scl[1bif |
outh Finder
v camera_pixel [8 bits
COMPLETE SEARCHING INIT SEARCH
SEARCH MOUTH MOUTH MOUTH camera_hcount [8 bits]
Line Buffers L camera_vcount [9 bits]
cam_xclk [1 bit]
COMBLETH ¢ camera_valid [1 bif
face_data_valid eye_left_openness eye_right_openness | mouth_openness Face Image Buffers
[1 bit] [5 bits] [5 bits] [5 bits]
Static Upper
v v v FIB
Face Constructor
Eye Constructor upper_pixel valid [1bit] . row_0_data_valid [1 bit] power_counter [4 bits] REDO [1 bit]
upper_pixel_address [12 bits], Dyanmic ¢ Pixel_0_address [12 bils] | row_counter [7 bits] REDL[1bif |
upper_pixel_value [12 bits] Upper FIB pirel_0_value [12 bits] pixel_counter [7 bits] GREENO (1 bif
» IDLE GREENL[1bit] |
BLUEO[Lbif |
BLUEL [1 bit]
. HUB75
Static Upper Power HUB75 LED
FIB Modulator Driver EaEes
DRAWING
ADDR [4 bits]
Mouth Constructor lower_pixel_valid [1 bif] 4 row_1_data_valid [1 bi] CLK >
lower_pixel_address [12 bits Dynamic pixel_1_address [12 bits] pixel_0_rgb [3 bits] OUTPUT EN
lower_pixel_value [12 bits Lower FIB pixel_1_ value [12 bils] pixel_1_rgb [3 bits] LATCH

Fig. 4. Block Diagram of the ProtoFacer System

interference with the camera signals, the wire between the
camera and the FPGA board is shielded using foil tape. Even
with such precautions, it is difficult for the camera to send a
stable signal over the wire. Thus, the clock speed is set as low
as reasonably possible.

Initial testing with the camera feed showed that a greyscale
image with 320x180 resolution was sufficient to capture im-
portant facial features. Reducing the frame rate would make
it difficult to capture rapid facial movements such as blinks,
while reducing the resolution would blur the image too much
to distinguish facial features.

B. Image Storage

A pixel reconstructor samples the data from the camera on
the rising edge of the camera’s clock signal over the camera
clock wire. This produces an 8-bit greyscale image.

To cross the clock domain boundary from the camera to
the FPGA and to remove aliasing artifacts, the frame is first
passed through a 3x3 Gaussian blur filter implemented with
4 horizontal line buffers. The raw frame is then stored in a
8 x 180 x 320 = 460800-bit BRAM.

IV. IMAGE PROCESSING

Since the camera position is fixed relative to the protogen
frame and the cosplayer’s head is also generally fixed in
orientation within the frame, the locations of the eyes and
mouth are generally fixed in the visual field of the camera.

Thus, we only need to search a relatively small area of the
frame to obtain the eye and mouth data. At the moment, these
areas are hardcoded into the FPGA fabric at compilation time.

A possible area of exploration is to do another pass over
the image to find the possible eye locations instead of using
the hardcoded values. However, the fixed arrangement of the
camera and cosplayer head within the helmet makes this
unlikely to be a significant improvement in this context.

A. Expression Recognizer

The Expression Recognizer comprises a Finite State Ma-
chine (FSM) with the following states

e Idle: The Expression Recognizer is waiting for a new
frame to be processed.

o Eye Scanning: We scan the left and right eye locations.
We can then compute an estimate of how open the eyes
are, then move to Mouth Scanning.

e Mouth Scanning: We scan the mouth location and
compute an estimate of how open it is. We then move
to Complete.

o Complete: The Expression Recognizer indicates that it
has finished computing. This stays on for one cycle and
the Face Reconstructor is expected to pull the data from
the Expression Recognizer on this cycle. After one cycle,
the Expression Recognizer moves back into the Idle state.

Internally, the Expression Recognizer is a wrapper around
the Eye Size Detector and the Mouth Size Detector that routes
the correct inputs and outputs to the BRAM storing the image

i

Fig. 5. Partial image of the camera output with eye bounding-boxes overlayed.
Notice the bright spot in the middle of the eye as a result of the eye reflecting
light from the LED strip within the helmet.

frame. Since it only routes data back and forth between the
BRAM and the Size Detectors, each of the Size Detectors
are responsible for handling the 2-cycle delay on the BRAM
through pipelining.

This FSM produces the following output to the Face Re-
constructor:

e face_data_valid [1 bit]: This is set to 1 if the
Expression Recognizer is in the Complete state. This tells
the Face Reconstructor that it should pull data from the
Expression Recognizer.

e eye_left_openness [16 bits]: A measure of how
open the left eye is.

e eye_right_openness [16 bits]: A measure of how
open the right eye is.

e mouth_openness [16 bits]: A measure of how open
the mouth is.

B. Eye Size Detection

To compute the size of the eye, we will be using the pupil
as a proxy for the eye size. A colored pupil is generally darker
than the rest of the face. Additionally, a closed eye forms a
small line of dark pixels where the upper and lower eyelids
meet.

The eye finder is given a subrectangle of the frame that
contains the eye. The eye finder then performs two scans over
the eye location. These scans are done column by column.

The first scan determines the minimum brightness values in
the subrectangle. This gives us the darkest pixel in the search
region.

The second scan determines how many pixels have a
brightness value close to the darkest pixel. To reduce the
effect of noise, we take a maximum of 3 consecutive pixels in
the column scan. For pixels represented in (row,column) with
(0,0) in the top-left corner, we take the maximum brightness
of the pixels at (r,¢), (r + 1,¢), (r + 2,¢). If the maximum
brightness of all 3 pixels is within 16 of the minimum
brightness, we can conclude that the pixel should be in a dark
region.

Fig. 6. Openness values when the eyes are open (top) and closed (bottom).
The seven-segment display on the left of each image shows the computed
openness values for the left and right eye.

This sliding window technique has the added benefit of
emphasizing larger regions of dark pixels as compared to
scattered regions of dark pixels. The pupil is generally a
contiguous dark region of the eye, so this technique is effective
in distinguishing the large dark pupil from the thin, dark,
closed eyelid.

If we see a large number of pixels that are close in
brightness to the darkest pixel, we can infer that the eye is
probably open. Otherwise, we infer that the eye is probably
closed. The exact value of the threshold depends on the size
of the eye and the resolution of the camera and needs to
be determined with further testing or with machine learning
algorithms.

For eye size detection, only the pupil size is currently being
used. There might be a way to determine gaze direction by
using data about the sclera and the reflection of the LED strip
within the helmet by the eye. The LED strip is always at
the front of the eye and thus reflects from a consistent point
on the frame. We may be able to determine gaze direction by
comparing the centre of mass of the dark pixels with the bright
reflection of the LED strip. However, this might be difficult
at the current resolution as that bright spot is only 4-5 pixels
wide, making it difficult to separate from noise.

C. Mouth Size Detection

We found that we could reuse the sliding window technique
from the eye finder in the mouth finder. When the mouth is
opened, the oral cavity is shielded from outside light and thus
appears relatively dark compared to the rest of the face. This
is true even in the presence of the LED strip within the helmet.
Since the camera is offset from the LED strip, the upper mouth
casts a shadow on the interior of the mouth which can be
detected by the camera.

Fig. 7. Examples of static images displayed on the LED Boards. Clockwise
from top left: static noise, Hello World, a low-resolution screenshot of a
6.2050 lecture, rainbow gradient

It is possible to use a similar technique to Nguyen et al. in
[3]] where a path is traced between the left and right endpoints
of the lips to determine the size of the mouth. We decided not
to use that method as it was more complicated and unnecessary
when the position of the mouth is relatively fixed.

V. FACE CONSTRUCTION

Once we have information about the mouth and eyes, we
can construct the face needed. The LED boards take RGB
inputs on two rows at a time; providing an address of row i
to the LED boards will let us write into both row ¢ and row
1+ 16. The downstream LED Board Controller needs to read
pixel data from a pair of rows at a time Thus, we store the data
in two BRAM blocks to separate the upper 16 rows from the
lower 16 rows. More details about the protocol can be found

in section [VI-A.

A. Face Image Buffer (FIB)

The Face Image Buffer (FIB) is a pair of 24576-bit blocks
of memory that stores the brightness data (4 bits red, 4 bits
green, 4 bits blue) of each pixel (16 rows x 128 pixels per
row). The FIB is written by the Face Constructor and read by
the LED Board Controller.

We can load static FIBs for faces that are generated
externally. A Python script is used to convert 32 x 128
bitmap (.bmp) images into memory files (.mem) that the FIBs
initialize at compile time.

One FIB is reserved for dynamic face generation by the
Face Reconstructor. The others can be used for hand-drawn /
externally generated faces, at the cost of additional memory
use (Figure [7).

B. Face Constructor

The Face Constructor is an FSM with two states:

o Idle: We are not currently drawing a face and are waiting
for input from the Expression Recognizer. Once the Ex-
pression Recognizer provides us with the face_data_valid
signal, we can move to the Drawing state.

o Drawing: We iterate over all 32 rows of 128 pixels and
use the openness values obtained from the Expression
Recognizer to determine the color of each pixel. These
values are then written into the FIB.

We note that the Face Constructor should complete more
quickly than the Expression Recognizer. Still, we should store
data generated by the Face Constructor even if we are in the
drawing state.

Having the Face Constructor as a separate module com-
pletely parametrizes the face. This means that we can easily
test the Face Constructor by fixing the inputs and observing
the generated faces.

Within the Face Constructor are the Eye Constructor and
Mouth Constructor. These run in parallel: the Eye Constructor
draws in the pixels within the upper 16 rows of the LED
boards, while the Mouth Constructor draws in the pixels within
the lower 16 rows of the LED boards.

C. Eye Construction

The eye constructor takes in the eye openness values from
the Expression Recognizer and uses this information to con-
struct the eye. Let o, be the eye openness value, while [and
r are the left and right endpoints of the eye to be displayed.

This construction is done by bounding all pixels (x, y) of the
eyes between two parabolas, where x is the column and y is
the row. Note that all coordinates are bounded by 0 < z < 64
and 0 <y < 16 on a single board, and that the top left corner
is (0,0). The upper parabola has the equation

(=0 —z)+8(r—1)

0c
<15 —
y=15 4(r —1) ’

x el

The lower parabola has the equation

oc(x—=1=1)(r—ax—1)
y=15- 18(r — 1)

,r€l+1,r—1]

Computing a division is impractical on FPGA hardware, so we
instead use the following equations for the upper and lower
parabolas respectively:

Ar —1)(15 —y) < oc(x — 1) (r —2) +8(r —1)
18(r—=0(15—y) > o0(x—-1-1)(r—z—1)

Due to the large number of arithmetics operations needed, this
computation is pipelined over 4 clock cycles in order to meet
timing constraints.

As o increases, both the upper and lower parabolas rise.
Since the upper parabola rises faster than the lower parabola,
the eye appears to grow as o, increases.

Fig. 8. (Top left, Top right, Bottom left, Bottom right) Openness of the eye

at openness values of 0, 5, 10, and 15. White areas represent the part of the
eye that is displayed.

Fig. 9. Display of the eyes at openness values of 0, 8, and 16.

D. Mouth Construction

Instead of using parabolas, the mouth constructor computes
the upper and lower boundaries of the mouth using four pairs
of line segments. The distance between these line segments
can be increased based on the openness of the mouth. Figure
shows how the area between the line segments creates the
face.

Let o0,, be the mouth openness value. The upper boundary
equations are:

x <442y {10 <z < 20}
dy+x > 52 {20 <z < 32}
x<3y+17 {32 <z < 44}
dy+ax > 84 {44 <z < 64}

The lower boundary equations are:

20y + 100, + 40 < 10z + oz {10 < 2 < 20}
8y + 2z < 104 + 4o, {20 < z < 32}
200z + 4opmx + 1720, < 600y + 3400 {32 < = < 44}

50(4y +) <4000 + 0,,, (72 4+) {44 < z < 64}

The lower boundary equations are significantly more com-
plicated than the upper boundary equations. This is because
the upper boundary remains constant regardless of the open-
ness value, while the lower boundary moves down with
increasing openness. The constants are carefully computed

¢

Fig. 11. Change in the displayed mouth based on the mouth of the cosplayer.
Left: Closed Mouth. Right: Open Mouth.

such that the computed line segments intersect precisely at
x = 20, 32,44, 64.

These calculations are also pipelined over 4 clock cycles
to meet timing constraints. This also synchronizes the mouth
constructor with the eye constructor.

VI. DiSPLAY CONTROLLER

To control the LED boards from FPGA fabric, we wrote a
module to communicate the correct pixel values to the LED
boards.

A. HUB75 Protocol

HUB75 LED Boards are split in half horizontally in terms
of addressing. For example, if the board has 32 rows, then
providing an address of 10012 = 9 will address both row 9
and row 9 + 16 = 25.

Internally, the boards store 3 bits of data per pixel for a
single row, one for each of the RGB channels to determine
whether that colored LED should be on. For the 32x64 LED
boards used here, they store 3 x 32 = 96 bits. The address
wires act as a mux to determine which row should be lit based
on the stored LED pattern.

HUB75 communicates over 16 wires in a 2x8 header. The
HUB?75 pinning can be found in the Waveshare Wiki [2]. The
16 wires consist of

o 6 RGB data wires. 3 wires control the RGB values of the

upper 16 rows, while the other 3 wires control the RGB
values of the lower 16 rows.

e 5 address wires. These exist for compatibility with

HUB75 LED boards with 64 rows. The highest bit of
the address is unused here.

Signals WEVES
Time
addr[3:0] =5 4
clk_100mhz =1
clk_hub=1
latch=0
output_en=0
red[1:0] =00
green[1:0] =00
blue[1:0] =00

77600 ns 77700 ns

77800 ns

77900 ns 78100 ns

Fig. 12. Example waveform of the HUB75 output run with a 100MHz internal clock and sending data over a 10MHz clock.

e 1 clock wire.

o 1 output enable wire. This is an active low wire, so the
LED boards are only lit when this wire is low.

o 1 latch wire.

e 2 ground wires.

The LED boards have a separate 5V power supply attach-
ment point to power the LEDs.

To send data, a clock signal is sent along the clock wire.
On the rising edge of the clock, the data wires are sampled
and stored in the LED boards, with the pixel being sampled
incrementing with each rising edge. When the latch wire is
pulled high, the data stored since the previous latch are now
set as the new pixel settings.

The address wires act as a mux for the current pixels and
not for the data currently being sent over the wire, if any.
This leads to the unintuitive behaviour that the address wires
control the current row being lit (and thus the previous row
that was sent) and not the current row being sent over the
wire. For example, if the pixel data for row 9 and 25 are sent
over the wire and the latch is pulled high and then low, the
address wires need to be set to 9 even if row 10 and 26 are
being sent immediately afterwards.

B. HUB75 Driver Design

The HUB7S5 driver controls the transmission of the pixel
data to the HUB75 LED boards. Internally, the driver is a
Finite State Machine that maintains 4 counters

e power_counter [4 bits]: Counter for the power modu-
lator to determine when a pixel should be on to modulate
brightness

e row_counter [4 bits]: The current row number

e pixel_counter [7 bits]: The current pixel number

e cycle_counter [4 bits]: Counter to determine the
signal sent over the clock wire that increments on every
FPGA clock cycle. For example, if we a send clock signal
over the wire at one-tenth the rate of the FPGA clock,
this counter would count from 0 to 9.

For each pixel, the driver will request the pixel on/off
value on each of the 3 colors from the Power Modulator
(explained in the next subsection). In particular, the HUB75
Driver will send the power_counter, row_counter and
pixel_counter to the Power Modulator and receive the 6
pixel values that it needs to send over the wires after 2 FPGA

clock cycles. We pull the data wires to the new pixel values
2 cycles after the falling edge of the data clock (see [I2).

C. Power Modulator (PM)

The Power Modulator (PM) reads from the FIB and deter-
mines the duty cycle of the colors on each pixel. To maintain
a high enough refresh rate on the LED boards, the modulation
width is limited to 16 different values. Given the current
power_counter, the PM determines whether the pixel should
remain on or off.

Querying the FIB takes 2 clock cycles, so the PM is
pipelined to ensure that the correct pixel data is captured and
sent back to the driver.

VII. EVALUATION

The resource allocation for the current build is as follows:

o Each upper and lower FIB requires one 36-kilobit BRAM
each, while each frame buffer requires 18 36-kilobit
BRAMs. A minimal build would use only 20 36-kilobit
BRAMs in total (under 1 megabit!). A debug build with
an extra frame buffer for UART transmission would use
38 36-kilobit BRAMs.

e We use 34 out of the 90 available DSPs on the Cmod
A7-35T.

o Lookup Table (LUT) utilization is at approximately 4.6$
of available LUTs.

We have a significant amount of room available for ad-
ditional logic, but not for additional memory as the Cmod
A7-35T board only has 50 36-kilobit BRAMs slots.

In terms of timing, the main bottleneck is the incoming
camera data. The Expression Recognizer only performs two
passes over the data, while the Face Constructor builds a
very small image on the fly. Both are also pipelined, so they
complete their computations long before a new frame is able
to be captured and sent by the camera.

Overall, the system achieved all of its major goals.

o It fits entirely within the helmet, save for the power
supply to the LED boards and the FPGA.

o Vivado’s build log puts the power utilization of the FPGA
under 400mW.

e It can detect blinks and mouth movement in real-time,
and reproduce them in the face reconstructor.

VIII. LIMITATIONS AND FUTURE WORK

The current ProtoFacer system functions with low power
requirements and little memory usage. It also fits entirely
within the helmet, save for three power cables for the FPGA,
LED boards and LED strip.

However, the current system has significant room for im-
provement.

The eye and mouth size estimation could be made more
consistent. Rapid head movement can cause the bounding
boxes to become inaccurate, and this system does not
easily generalize to different head shapes and sizes.
Any damage that permanently moves the camera will
also cause inaccurate estimation. While it might not be
feasible to fit a full machine learning algorithm on the
FPGA fabric at this scale, better algorithms could be used
that perform more processing over the search regions.
The internal wiring of the system can be made more
robust. The camera wires are only shielded using foil
tape and testing showed that this was insufficient to pre-
vent catastrophic electromagnetic interference at the full
camera resolution of 1280x720 pixels. Using a twisted
pairs cable and better shielding could help improve the
reliability of the system and allow for us to use a higher
resolution image and RGB instead of greyscale.

Three wires are necessary to power the system; one for
the FPGA, one for the LED boards and one for the
camera. It would be much more convenient to power the
system from a single power source. This would require
changing the FPGA to support an external power supply,
and rewiring the power cables that support the LEDs.

IX. ACKNOWLEDGMENT

We would like to thank the MIT 6.2050/6.111 class staff
for their guidance and help in the development of this project.

Joe Steinmeyer for his invaluable advice and feedback
throughout the semester as the team’s project mentor.
Kiran Vuksanaj for her work on the OV5640 camera
driver and providing the necessary ROM files to modify
the camera settings.

Outside of the class, we would like to thank

Speck Snazzagen* for his suggestion to build off Coela-
cant’s protogen designs.

Coelacant* for the free-to-use design of the Sigma Pro-
togen head frame.

Unsigned Long* for their assistance with sewing the fur
and general design of the head.

Nocoffei* for his guidance with sewing the fur to the
head and the design of the ears.

Bleppy* for his advice on the design of the visor.
Tempestas Rex* for always being there for me even when
I stayed up past 4 am hunting hardware bugs.

Kenny Zhang and Fayleon Lin for their feedback and
suggestions on this report.

MIT Project Manus for the open maker space resources
such as the Ultimaker 3D printer used to print the

head frame, sewing machines as well as miscellaneous
electronics used in the project. In particular, we want to
thank staff member Lee Zamir for his insight into making
projects and assistance in procuring the parts needed for
the protogen head.

MIT Architecture Shop for allowing us to use their
thermoformer to mould the visor.

MIT Technicolor Furs for providing the fur used in the
project.

*online pseudonyms, not their real names.

[1]
[2]

[3]

[4]

[5]

REFERENCES

Coelacant, “SigmaProtogen” (2024),
https://github.com/Coelacant/SigmaProtogen
Waveshare. (n.d.). RGB-matrix-P2.5-64X32. RGB-Matrix-P2.5-64x32
- Waveshare Wiki. https://www.waveshare.com/wiki/RGB-Matrix-P2.5-
64x32

D. Nguyen, D. Halupka, P. Aarabi and A. Sheikholeslami, “Real-
time face detection and lip feature extraction using field-programmable
gate arrays,” in IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 36, no. 4, pp. 902-912, Aug. 2006, doi:
10.1109/TSMCB.2005.862728.

Digilent. (n.d.). CMOD A7 Reference Manual.
Cmod A7 Reference ~ Manual - Digilent ~ Reference.
https://digilent.com/reference/programmable-logic/cmod-a7/reference-
manual

RealDigital. (n.d.). Urbana Board Reference Manual.
https://www.realdigital.org/doc/496fed57c6b275735fe24c85de5718c2

GitHub repository,

	Introduction
	Physical Construction
	Head Design
	FPGA Board Selection

	Camera Input
	OV5640 Camera Settings
	Image Storage

	Image Processing
	Expression Recognizer
	Eye Size Detection
	Mouth Size Detection

	Face Construction
	Face Image Buffer (FIB)
	Face Constructor
	Eye Construction
	Mouth Construction

	Display Controller
	HUB75 Protocol
	HUB75 Driver Design
	Power Modulator (PM)

	Evaluation
	Limitations and Future Work
	Acknowledgment
	References

