
FPianoGA Final Report

Anahita Srinivasan
Massachusetts Institute of Technology

anahi183@mit.edu

Elise Wingard
Massachusetts Institute of Technology

elisew@mit.edu

Abstract—We present the design for FPianoGA, a digital piano
implemented on an FPGA with accompanying graphics that
allows users to play a series of notes, hear the audio of those
notes, and visualize them on a musical staff on a monitor. We
use the upper eight switches present on the FPGA board as
the keys of the piano. When a switch, representing a particular
note on the piano, is flipped, the appropriately pitched note is
re-constructed through the superposition of sine wave outputs,
each generated at the playing note’s harmonic frequencies.
The corresponding audio output is then transmitted to the on-
board audio jack for consumption by the user. In addition,
the corresponding note is drawn on a musical staff using the
HDMI protocol on a monitor in one of two modes: free-play
and guided-play. We describe the implementation of this design
in SystemVerilog, evaluate its performance with quantitative
measurements (latency, throughput, etc.) and qualitative mea-
surements (clarity of audio and visual accessibility of graphics),
and discuss implementation insights.

1. Introduction

We propose FPianoGA, a portable, digital piano with
both audio and visual components that plays piano key notes
through the FPGA’s built-in audio jack and displays the
notes on a musical staff transmitted through the FPGA’s
HDMI port to a monitor. We design FPianoGA to prioritize
clarity and accuracy of the piano key audio and accessibility
of the graphics for those who may be unable to read music
or have limited exposure to it.

Section 2 discusses Elise’s design of the audio compo-
nent of FPianoGA, which handles the creation and process-
ing of audio depending on key input. Section 3 discusses
Anahita’s design of the visual component of FPianoGA,
which handles drawing the played notes and musical staff
and implements both a free-play mode and a guided-play
mode for user interaction. We evaluate our design in section
4.

We implement FPianoGA on the RealDigital Urbana
FPGA board. FPianoGA uses the upper eight switches of
the sixteen present on the board, sw[15] through sw[8],
as the keys of the piano. The upper 8 switches mimic
the natural ordering of keys on a piano, with sw[15]

representing the C4 note and sw[8] the C5 note. sw[0] is
used to toggle the piano between free-play mode and guided-

play mode, and sw[1] is used to select the song users wish
to play in guided-play mode, the details of which we discuss
in section 3. We use the built-in audio jack to transmit
FPianoGA’s note sounds and the built-in HDMI port to
transmit the music staff and associated visual components
to an external monitor.

2. Audio Component (Elise)

The main goal for the audio portion of the FPGA is
to mimic the sound of a piano note being played with the
correct pitch and timbre (i.e, sound quality that specifically
mimics the sound of a piano note). To this end, the audio
portion of the FPianoGA uses the complex coefficients of
the frequency-domain representation of a C4 piano note
to reconstruct a time domain-valued sound wave that is
representative of any combination of the natural notes from
C4 to C5 being played on the digital piano. This sound wave
is then retransmitted through the FPGA board’s audio port.

The audio portion of the project satisfies our commit-
ment to generating an appropriately pitched note for any
combination of notes played through its implementation of
a sine-wave generator and a summing module that sums the
outputs of multiple sine generators. It tunes these sounds
to be more piano-like through the incorporation of multiple
harmonic sine waves for each note that are appropriately
scaled and offset. Although the sounds are admittedly not
as piano-like as initially envisioned, the design does manage
to incorporate undertones in the played sounds.

The primary problem to solve in the audio component
was how to most accurately recreate the sound of a piano
note being played using a digital system. The technical
challenges in doing so arose from attempting to recreate
a continuous-valued, analog signal despite the constraint of
working with binary numbers and calculation methods. In
particular, creating a sine wave generator to replicate the
continuous-valued sine functions and super-imposing these
sine waves proved to be a technical challenge. Because
different harmonics were scaled by values that could be up to
two orders in magnitude different, selecting the appropriate
bits of the scaled sum to look at was crucial, as was making
sure that the summed output had a large enough bit width



so as to have no clipping and maintain the clarity of the
audio.

Moreover, because there exists an inherent trade-off
between the range of analog values that can accurately be
represented through a given number of bits and state and the
space available on the FPGA, we found ourselves needing
to choose between increasing the number of bits to represent
phase or the number of sinusoidal outputs to increase accu-
racy and choosing to keep these values lower to reduce the
size of any subsequent LUTs. Similarly, while having more
harmonics could be used to re-create the analog sound of a
piano note more accurately, storing the necessary informa-
tion for the phase, magnitude, and additional phase incre-
ments for every note requires memory. This computational
efficiency and space versus reconstructed signal accuracy
trade-off required us to maintain a careful balance between
optimizing the use of available resources on the FPGA board
so there would be enough for the audio and visual portion,
all the while still routing the available resources intelligently
to the modules to be able to re-create the key notes’ sounds
the most faithfully. More information on the implications
of the technical challenges on the audio portion’s design
choices are discussed along with the description of the audio
system description.

Figure 1 provides an overview of the complete audio
processing pipeline.

2.1. Sine Phase and Magnitude Extraction

Pure sine waves alone could be used to generate sounds
of the correct pitch for given notes being played. However,
to mimic the sound characteristics of a piano note, we use
additional information derived from the complex coefficients
of a C4 piano note’s harmonics in the frequency domain.
For this project, a Python script was used to compute the
FFT of said C4 piano note and extract these coefficients.
For the project we use the first 5 harmonics of each note
to reconstruct its sound in the time domain, meaning we
generated the coefficients for the C4 note’s first 5 harmonics.

Each harmonic coefficient has a 16-bit wide real and
imaginary portion which, for convenience when being
passed as inputs into in downhill modules, were concate-
nated into a single 32 bit value. The five Python-generated
harmonic coefficients are stored in our top_level mod-
ule. Using these coefficients, for each harmonic we then
derive a phase and magnitude that is then applied to the
corresponding harmonic of whatever note(s) is being recon-
structed further down in the pipeline.

First, we compute the magnitude of each of the five com-
plex coefficients. Because the complex coefficients remain
constant in time, they are only computed upon system reset.
This design choice is intended to minimize unnecessary
power use on the FPGA by avoiding computing values
that have yet to change. We also wished to use a single
instantiation of the module magnitude_compute which
calculates the magnitude of a single coefficient at a time in
order to save in distributed RAM space.

To both of these ends, a module named
coeff_info_gen_mags was implemented. The
module takes in a vector of the 5 complex coefficients and
outputs both a 5-entry wide vector of the corresponding
magnitudes as well as a valid_out signal when
these have been computed. coeff_info_gen_mags

instantiates the magnitude_compute module in which
magnitude_compute does a split square sum of the
imaginary and real coefficients using the method provided
by the code in Lecture 11, slide 72, this semester.

Once this split square sum has been calculated, the
output is passed into a piece of IP for a square root, a
sqrt_int module built by Will Green under the MIT
license, to compute the square root of this split square sum.1

Once the square root is generated, the both the magni-
tude and a single-cycle high valid out signal are sent to the
coeff_info_gen_mags module, which upon detecting
the single-cycle high for completion either sends in the
next coefficient whose magnitude needs to be computed into
magnitude_compute, or outputs a valid out signal if all
magnitudes have been computed.

The phase of each complex coefficient was com-
puted in radians off-board and then converted to
the appropriate phase encoding for the downstream
sine_wave_sum module. This phase is then stored for
use by sine_wave_sum in the top_level.

For more information on the same implementation of
audio with the audio coefficients coming from an on-board
FFT computation rather than being hard-coded, refer to the
“Implementation Insights” section as well as the FFT audio
folder in the repository.

2.2. Time Domain Sound Signal Reconstruction

FPianoGA reconstructs sound waves in the time domain
through the superposition of sine waves. For each note
played on the digital keyboard, 5 sine waves - one for each
harmonic - are generated. We chose to implement 5 har-
monics for sound reconstruction because of the limited bit
depth of the output audio. Because the output audio is only
8 bits in depth, only two orders of magnitude of difference
in scaling could fully be supported before resolution was
since, otherwise, larger-scaled harmonic sine waves would
determine the value of the output, with smaller-scaled higher
harmonics not contributing to the upper bits of the final sum
as much.

We support up to all 8 notes being played at once,
with the appropriate-pitched sound being played for any
combination of notes. Hence, for x number of notes be-
ing played, there will be 5x sine waves ‘generated,’ each
with a distinct frequency corresponding to a given note’s
harmonic’s frequency.

The sine_generator and sine_wave_sum mod-
ules generate a sine wave for each harmonic and are scaled,
offset, and summed in these modules, respectively. The

1. Project F Library: Square Root (Integer). Will Green, 2021. MIT.
https://github.com/projf/projf-explore/blob/main/lib/maths/sqrt int.sv



Figure 1. Audio component block diagram. We use five harmonics to reconstruct the time-domain audio signal.

phase offset and scaling factor are determined by the com-
plex coefficients and calculated as discussed in Section 2.1.

2.2.1. Sine Wave Generator. The sine_generator

module outputs fluctuating amplitudes in a periodic manner
to mimic the functions of a continuous sine function. It
outputs an amplitude based on the phase (angle in a unit
circle), a stateful attribute, that it is on. This phase is 32-
bits wide. The top 6 bits of the phase are used to select
the output amplitude out of 64 options, and the bottom 24
bits are used to keep track of fractional phase increments
to provide more resolution in the frequencies that can be
represented by the sine generator.

The sine_generator is being run at an 8 KHz rate,
meaning a phase increment is triggered every 12500 clock
cycles at which point the phase will be incremented by
a dictated amount phase_increment. We choose this
rate because the audio output is generated by the PWM

module, which samples the sine wave sums at an 8 KHz rate.
Using the same rate eliminates unnecessary computations
that would need to be done if the sine generator was being
run at a faster rate and prevents information loss.

The same instantiation of the sine_generator mod-
ule is used to determine the output of the different notes’
sine waves between audio output samplings. Since all sine
waves are incremented once per 12500 clock cycles, we
account for their different frequencies by choosing a unique
phase increment for each of them that reflects how much
the phase would have to progress between samples based
on their frequency.

This phase increment is passed into the
sine_generator module as an input rather than
being stored as a parameter of the function. The previous
phase is then incremented by the phase_increment,
and the output amplitude of the sine wave corresponding
to the new phase is output to the encapsulating module,
sine_wave_sum.

2.2.2. Sine Wave Sum. The sine_wave_sum module is
used as a “manager module” that takes in as input the keys

being played, phase offset, and scaling factors for the sine
waves and outputs audio signal to be sampled by the PWM.
It is implemented using a finite state machine that operates
at an 8 KHz rate, or cycles through all of its states once
every 12500 clock cycles.

This FSM leverages the fact that there are over 10000
clock cycles between audio sample outputs and only per-
forms one operation (whether it be a single addition or mul-
tiplication) per clock cycle, minimizing the risk of timing
violations from many mathematical operations in a single
cycle through lots of pipelining.

The states of the FSM are IDLE, UPDATING, SCAL-
ING, ADDING, and OUTPUTTING. In each of the states,
the FSM steps through a lookup table that is 8 deep (for the
number of notes) and 5 wide (for the number of harmonics),
one value per clock cycle at a time, and performs the
appropriate operation. In the UPDATING state, the phase of
the sine waves for the notes being played are updated in their
respective LUT for access in the next iteration of the FSM,
and the output of each sine wave is updated as well. Once
all 8 · 5 entries have been stepped through, the FSM moves
onto the SCALING state, where every output from the sine
waves is scaled by the appropriate coefficient (depending
on the harmonic the sine wave output corresponded to) one
at a time, one clock cycle at a time. The FSM then moves
onto the ADDING state where these scaled sine outputs
are added one clock cycle at a time to out_sum_total.
Finally, the FSM moves to the OUTPUTTING state where
it outputs the appropriate amplitude and holds the output
steady until it is sampled by the PWM module and output
to the FPGA’s audio port.

This implementation of the sine_wave_sum module
allows for multiple sine waves to be run simultaneously on
the same instantiation of the sine_generator. Note that
currently these LUTs are fairly small and implemented using
an array, but if we had used more harmonics, it would be
beneficial to use a BRAM instead.



3. Visual Component (Anahita)

The visual component of FPianoGA is transmitted via
HDMI to a monitor. It consists of a five-line staff, the treble
clef sign to contextualize note placement, a metronome
indicator, a cursor, and several notes that appear and are
oriented on the staff depending on which mode the user is
playing in. There are two possible modes for the user to
interact with FPianoGA: free-play mode, in which the user
can play whatever notes they choose and see them visualized
on the staff; and guided-play mode, in which the user can
select a pre-loaded song from a library and play along to
the notes on the staff.

The visual component is driven by a 74.25 MHz clock,
which is requisite for the HDMI protocol. Each pixel on
the display is drawn in a raster pattern, with a new pixel
being drawn every clock cycle. Figure 2 contains a complete
diagram of the visual module.

The primary problem to solve with the visual component
was how to produce one pixel every clock cycle at the
74.25 MHz rate, given the complexity of the overlap and
color calculations for each pixel on screen. To this end, we
needed to carefully partition our system to allow for multiple
clock cycles of computation for each hcount and vcount,
while also pipelining each hcount and vcount through
the system to match which pixel was entering the TMDS
encoder.

3.1. HDMI Signaling Infrastructure

We use the previously-created video signal generator,
TMDS encoder, and TMDS serializer modules for the vi-
sual component of FPianoGA. The video signal generator
outputs several signals for 1280 by 720 pixel video; of these
signals, the visual component chiefly uses the hcount,
vcount, and new_frame signals to decide which pixel
should be drawn. The hor_sync, vert_sync, and
active_draw signals, pipelined appropriately, are in turn
passed to the TMDS encoder, which sends its outputs to the
TMDS serializer.

3.2. Background Components

The underlying background is the same for both modes.
We implement a five-line staff module, drawn simply
with a combinational module that returns black if the raster
index is the same as one of the vertical pixel indices that
comprises the staff, and white otherwise.

We also implement a treble_clef module that stores
a black-and-white image of a treble clef sign in the FPGA’s
BRAM. The treble clef is 200 pixels wide by 360 pixels tall.
We create one BRAM module that, for each pixel, stores
a 0 for white and a 1 for black. We then use that bit to
combinationally determine if the outputted color should be
the 24-bit hex code for white or black.

The metronome indicator is a 50 pixel by 50 pixel
square in the upper left of the monitor that switches
color from black to white once every 0.5 seconds. The

metronome module monitors the new_frame output
from the video signal generator module; the system operates
at 60 frames per second, so the metronome indicator waits
for 30 new_frame triggers to occur before switching color.

We also implement a cursor blinking at the same rate as
the metronome that travels horizontally across the monitor
as notes are played. We discuss later in this section the
implementation of a counter variable in both modes that
keeps track of which note is being played. Based on the
value of counter, the cursor’s x_in value is changed to
move it to the appropriate horizontal location on the staff to
signal the next note to be played.

Finally, we include user instructions displayed in the top
right corner of the screen in the form of a instructions
module. The instruction text is written in black-and-white
in a 300 pixel by 110 pixel image. The instructions

module, like the treble_clef module, uses a BRAM to
store a 0 for white and a 1 for black for each image pixel,
then determines using that bit which 24-bit hex color should
be outputted.

3.3. Free-Play Mode

The free-play mode of FPianoGA allows users to play
a variable-length sequence of notes, with each note being
played for a different duration, and see the notes visualized
on the staff. For optimal user accessibility visually, we
accommodate eight notes on the staff before it is cleared
automatically for the next batch of notes to be played.

The dynamic components of free-play mode are the
note_sprite modules, which take in the hcount and
vcount that the raster pattern is currently at and return
the note’s color if the hcount and vcount are within the
note’s current bounds. We instantiate eight of these modules,
one for each note that can fit on the staff. Upon system reset,
the color_in of each module is set to white to make the
note_sprite appear “invisible” in the background, and
the vertical location of each note_sprite, denoted by
y_in, is set to the top of the screen, away from the staff
lines.

The free_play module handles the location and col-
oring changes of the note_sprite modules as keys are
played. It uses the key_press_counter module, which
returns a counter that keeps track of which of the eight
notes on the staff is next to be moved, a key_played

indicator, and a note_duration indicator.
Each clock cycle, the free_play module checks

the value of counter. It moves the appropriate
note_sprite based on the value of counter to the
appropriate location on the staff by changing its y_in

value based on the value of key_played. Because FPi-
anoGA is designed to be accessible for music begin-
ners who may not yet know how to read a staff or
understand what different note durations look like on
formal sheet music, we choose to convey that infor-
mation through color. To make the note “appear,” the
note_sprite’s color_in value is changed to that
note’s unique color. Based on the note_duration output



Figure 2. Visual component block diagram. The red, green, and blue signals leaving the visual component are passed through a TMDS encoder and
serializer, as well as an OBUFDS, to create the final HDMI signal.

Figure 3. Example of notes being played in free-play mode. Note that the
third and fourth notes, both A4, are different colors because the fourth note
was played for a longer duration.

from the key_press_counter module, the color_in
value slowly darkens as a visual indicator of the duration
for which the note was played, based off the metronome.
Figure 4 displays how the C5 note changes color on the
staff depending on the value of note_duration. We use
two combinational helper modules, a color_selector

and location_selector, to determine where each
note_sprite should be placed and what color it should
take.

Once the staff fills up with eight notes, counter resets
value, clearing the staff up and allowing the note_sprite
modules to take new values as the user continues playing.

Figure 4. Color gradation of C5 note depending on duration played.

3.4. Guided-Play Mode

The guided-play mode of FPianoGA allows users to
follow along with a song whose notes are displayed on the
monitor’s staff. Again, as in free-play mode, we accommo-
date eight notes of the song on the staff at a time before the
staff clears and displays the next eight notes.

Each song available in the library is stored in a BRAM
of width 32 and depth 4. Each note is represented with four
bits, so each BRAM row, which we denote as song_row,
contains eight notes’ (or one full staff line’s) information.

Like the key_press_counter that the
free_play module uses, guided_play implements a
guided_play_counter. It maintains its own counter
variable that loops from 0 to 8 and keeps track of which key
is currently being played by the user. When the counter
is at 0, the read address to all of the song BRAMs,
song_address, increments by 1, fetching a new set



Figure 5. Example of a scale being played in guided-play mode. The second
note is red because the user played the incorrect note. All other notes were
played correctly and thus are green.

of eight notes from each BRAM. Based on the value of
sw[1], the switch used to select which song the user
wants to follow along with, we select one of the BRAM
rows, assign it to song_row, and index the eight notes’
values out of song_row. Using those values, we move the
eight note_sprites’ locations to the appropriate place
on the staff by changing their y in values. We implement
two songs to select from in guided-play mode: the first,
which appears when sw[1] is set to 0, is the C-major
scale as well as a few scale patters; and the second, which
appears when sw[1] is set to 1, is a (rough) one-octave
approximation of “Never Gonna Give You Up” by Rick
Astley.

When the user plays a note, the guided_play module
checks the switch that was played against the correct note in-
dexed out of song_row. Based on the value of counter,
which indicates which note in the row is currently next to be
played, the appropriate bits of song_row are selected for
the comparison. If the correct note was played, the module
sets the color_in value of the note_sprite to green;
otherwise, it sets the value to red.

Guided-play mode also includes a set of eight additional
note_sprite modules situated at the bottom of the mon-
itor that serve as “guide notes.” These notes are colored
using song_row as they would be in free-play mode to
guide the user visually as to what note the note_sprite
drawn on the staff represents. They remain static in position
throughout. When a new song_row is read, the guide
notes’ colors change as well.

3.5. Integration

The free_play module outputs eight 10-bit note_y
values and eight 24-bit note_color values every clock
cycle, one for each note_sprite module. Similarly, the
guided_play module outputs eight 10-bit note_y val-
ues and eight 24-bit note_color values, as well as eight
24-bit note_guide_color values for the guide notes
along the bottom. Based on the value of sw[0], either the
free_play output or guided_play output for note_y

and note_color is fed into the y_in and color_in

ports for the eight note_sprite modules. If sw[0] is
in free-play mode, the eight guide note_sprite modules
are set to white and are “invisible”; otherwise, they assume
guided-play’s note_guide_color values.

Once the pixel values for a given hcount and vcount
are calculated for each of the background components,
the eight note_sprite modules, and the eight guide
note_sprite modules, the system takes another clock
cycle to determine which of these pixel values should be
drawn, i.e. which component should be “overlaid” on top
of the screen. This combinational logic determines the final
8-bit red, blue, and green values that get passed into
the TMDS encoder.

4. Evaluation

4.1. Latency, Throughput, and Timing

The audio and visual pipelines run in parallel, with the
audio pipeline clocked at 100 MHz and the visual pipeline
clocked at 74.25 MHz. Thus a clock period for the audio
calculations is 10.00 nanoseconds and a clock period for
the visual calculations is 13.468 nanoseconds. There is no
clock domain crossing in our system. We use different clock
periods because the visual component requires a 74.25 MHz
clock to comply with the HDMI protocol, while a 100 MHz
clock makes audio sampling calculations easier.

Our system has a worst negative slack of 0.383 nanosec-
onds; the path with this slack occurs in the audio pipeline in
the sine_wave_sum module while creating the weighted
sine lookup table. This process takes 9.454 nanoseconds (in
the 10.00 nanosecond clock period), of which logic takes
4.963 nanoseconds (52.496% of the time) and routing takes
4.491 nanoseconds (47.504% of the time). We meet timing
requirements in both pipelines.

Within the audio component of FPianoGA, all calcu-
lations are performed in the 12500 clock cycles between
audio sample outputs, which is more than enough time for
the pipeline to produce the next audio_out sample.

When a note is played, the sine_wave_sum mod-
ule spends 40 cycles in the UPDATING state, one
cycle to update each LUT based on the output of
sine_wave_generator, which takes only one cycle to
return a sine value given a phase offset and increment.
Similarly, it then spends 40 cycles in the SCALING state
to scale each entry appropriately, and 40 cycles in the
ADDING state to add each scaled entry to the total sum.
Finally, the module spends one cycle in the OUTPUTTING
state to return the final sum. So the latency of this module in
outputting a note’s final audio is 121 clock cycles, or 1.21
microseconds.

However, the latency of the pipeline as a whole is
12500 clock cycles, or 12.5 microseconds, because the audio
sampling rate of 8 KHz serves as a bottleneck. Even if
the sine wave calculations could be completed earlier, we
cannot start a new round of calculations until the audio



signal is output through the FPGA’s audio port. For that
reason, we can use the same numbers to calculate the
throughput of the audio pipeline as 8 KHz, or 8000 audio
samples per second. For the audio portion of the design, this
throughput is ideal. Too high or low of a throughput would
generate audio samples at a frequency too high or low to
be perceived by the human ear. This throughput also allows
for more pipelining in computation-heavy modules such as
sine-wave-sum, effectively minimizing the amount of logic
per clock cycle and helping the audio portion meet timing.

The visual component of FPianoGA is separate from the
audio pipeline and is thus not constrained by the audio sam-
ple rate. Each hcount and vcount value is outputted after
one clock cycle. The free_play and guided_play

modules update their note_y and note_color values
in the next clock cycle, and the note_sprite modules
update their locations and colors based on the current mode
and the hcount and vcount from the previous clock cycle
as well. However, given that the image components take 2
clock cycles to output pixel values because they must read
from the BRAM, the note_sprite modules hold for an
extra clock cycle so all pixel values are synced. These pixel
values, along with the pixel values of the background com-
ponents, are inputs to a piece of sequential logic that takes
another clock cycle to determine the final red, green, and
blue pixel values to be sent to the TMDS encoder. So the
latency of the visual pipeline, from video signal generator
to entering the TMDS encoder, is five clock cycles, or 67.34
nanoseconds.

Every clock cycle, a new hcount and vcount are
generated by the video signal generator to be given a pixel
value, so the throughput of the visual pipeline is 1 pixel per
13.468 nanoseconds.

4.2. Memory Requirements

The primary use of memory for the audio component
of the project is to store the complex coefficients, the sine-
wave lookup table (LUT), and the phase-increment LUT.
Each of these is stored not in BRAM but as an array on
the FPGA. There are five complex coefficients, each 32-
bits wide, necessitating 160 bits of storage. The sine-wave
LUT has 64 entries, each 8 bits wide, necessitating 512 bits
of storage. Finally, the phase-increment LUT contains 40
entries (5 entries for each of the 8 notes, one entry for the
fundamental frequency and four for the harmonics) each 32
bits wide, necessitating 1280 bits of storage.

Thus the total memory of the audio component is 160+
512 + 1280 bits, or 1.952 kilobits.

The visual component of the project uses two BRAM
modules for the images on-screen, and two BRAM modules
to store the correct notes for the guided-play songs, one
module for each song. The treble-clef image is 200 pixels
by 360 pixels and needs only 1 bit of color resolution,
so its BRAM is 72000 entries wide with a bit-depth of
1. Similarly, the 300-pixel-by-110-pixel instructions image
uses a BRAM that is 33000 entries wide with a bit-depth
of 1. Each song available in guided-play mode uses 4

rows of BRAM storage, with each row storing 32 bits of
information.

Thus the total BRAM usage of the visual component is
72000 + 33000 + 128 + 128 bits, or 105.256 kilobits.

4.3. Use Cases

Our design supports numerous use cases. Users can play
FPianoGA in two modes, free-play and guided play, and
can even hear multiple notes being played at once. We have
clear visual indicators of tempo via the blinking metronome
and cursor as well as the darkening of notes based on the
duration they have been played for. These use cases support
our design goal of accessibility with clear instructions, an
easy-to-approach interface, and a clear indication of how to
connect the sheet music with the audio. Aurally, we met
our minimal goal of having working audio for eight keys
that was clear and in-tune. Visually, we achieved not just
our minimal goals but also the ideal goal of supporting two
32-note songs in guided-play mode.

Aurally, the first extension to consider would be adding
more harmonics to more closely mimic a piano sound. In a
similar vein, we could add more instrument noises simply
by changing the coefficients, phases, and magnitudes of each
note’s harmonics, perhaps by switching to different lookup
tables using the remaining switches on the FPGA.

Visually, the easiest extension to support would be the
addition of more guided-play songs of larger length. This
could be accomplished simply by allocating more BRAM
and increasing the bit width of the song_row variable to
accommodate more BRAM rows.

5. Implementation Insights

Aurally, the main task that could have been improved on
was beginning to code the project earlier. A lot of time was
initially spent planning out each stage of the pipeline on pa-
per, specifying how each module would connect, and trying
to compare different possible designs which while helpful at
times often needed to be revised anyways during the actual
implementation of the code. Had implementation of some of
the larger modules begun a week or two earlier, we would
have noticed where the planning from earlier fell apart and
seen where the limitations of theory were a lot sooner: this
would have allowed us time to resolve unexpected problems.
For example, the audio quality was initially poor due to clip-
ping issues when summing the sine waves, and the design
of the LUT for the sine wave which ultimately needed to
be re-designed. Had this been sorted out earlier, it perhaps
would have allowed more time to deal with deeper, more
complex issues, such as those with the FFT portion of the
pipeline that eventually had to get cut out. While we were
able to build that portion and get it working, we did not have
time to integrate it into our project with full confidence and
have left it as stand-alone code in the FFT_AUDIO folder.
Additionally, Pipeline_With_Audio.jpg, which pro-
vides an overview of the pipeline with the FFT included, is
uploaded in the folder as well. Dealing with more essential



modules earlier on, such as the sine_wave_sum module,
rather than modules that could more easily be substituted,
such as the now-removed arc-tangent module, would have
allowed other, more crucial additions to the project to be
explored, such as implementing note decay features or other
instrumental sounds.

Visually, we had almost the opposite problem: we began
implementation almost immediately, causing lots of iterative
redesigning as new issues came up. For example, when we
decided to add a metronome and cursor that blinked in
time, the additional logic needed to modulate their pixel
colors every second caused us to break timing, which we
hadn’t accounted for; we needed to introduce another one-
clock-cycle stage in the visual pipeline solely for layering
components on-screen. Similarly, when we decided to add
colored guide notes along the bottom of the screen in
guided-play mode, we had to redesign the free_play

module as well to set those note colors to white because
they weren’t needed.

6. Contributions

Elise designed and implemented the audio portion of the
project, and Anahita designed and implemented the visual
portion of the project. We worked together on the report,
each writing the sections and creating figures pertaining
to our portion of the project, with Anahita performing the
majority of the evaluation calculations.

We used Will Green’s integer square root module from
the open-source Project F repository available on GitHub.

References

1) Project F Library: Square Root (Integer). Will
Green, 2021. MIT. https://github.com/projf/projf-
explore/blob/main/lib/maths/sqrt int.sv


