
FPGAudioSphere: Spatial Audio
Implementation on an FPGA

Christopher Espitia-Alvarez
Department of Electrical Engineering

and Computer Science
Cambridge, MA, USA

cespalv@mit.edu

Sarah Lov
Department of Electrical Engineering

and Computer Science
Cambridge, MA, USA

smyl362@mit.edu

Abstract—We investigate spatial audio implementations on

FPGA hardware as a means of accelerating digital signal pro-

cessing computations that convert real-time audio inputs into the

spatial domain at a high resolution. The head creates a natural

filter when processing aural stimuli, and spatial audio mimics

this filter by manipulating the interaural intensity and time

displacements (i.e. volume and delay) onto corresponding left and

right audio channel outputs. This is accomplished by streaming

and transmitting analog audio inputs via the Inter-IC Sound (I2S)

communication protocol and convolving input audio samples

with Head Related Impulse Response (HRIR) coefficients via a

finite impulse response (FIR) filter. This FPGA project explores

digital-analog conversion circuitry, I2S protocol implementations,

and an original efficiently pipelined FIR filter design to achieve

spatial audio effects. The project also implements a graphic user

interface (GUI) that visualizes the “direction” of the audio, and

the effect of the spatial audio computation on the actual audio

waves.

I. SPATIAL AUDIO INTUITION

Central to creating the spatial audio illusion is HRTF (Head-
Related Transfer Function) values, an empirically derived
mathematical model of how sound is perceived by a person de-
pending on the position and size of their ears, head, shoulder,
and torso. We obtained coefficients from a UC Davis study
database containing the sound perception of 45 participants,
which have been converted from HRTF (frequency-domain)
values to HRIR (time-domain) values. The HRIR values will
be convolved with the real-time audio samples using a window
size of 200. The HRIR values come as a 25 x 50 x 200
dimension matrix, representing 25 azimuthal (horizontal plane)
angles, 50 elevational (vertical plane) angles, and 200 values
at each spatial coordinate. However we will be slicing along
the second dimension to only consider the 0° elevation plane,
so our resulting HRIR matrix is 25 x 200 values. These 200
values per spatial coordinate again correspond to a 200-audio
sample convolution window that lasts roughly 4.5 ms long.
This corresponds to an audio input frequency that is 44.1
kHz, which we accounted for when choosing the ADC I2S
transmitter module.

II. INPUT AUDIO PIPELINE DESIGN

The input audio pipeline is as follows: an analog audio input
is fed from a device with a headphone jack, which roughly
has a 1V peak-to-peak voltage. We then amplify this signal
using a MAX4410 to be a 3V peak-to-peak voltage. This
range includes negative voltages due to its sinusoidal wave
nature; however, the PCM1802 ADC that we feed the audio
into only accepts nonnegative values, so we shift this analog
voltage range to be positive with a DC offset of 1.5V. Using
the LM358 operational amplifier (rated to handle a 20kHz
input bandwidth), we create an adder that sums the 1.5V DC
signal with the amplified audio signals, ultimately shifting
the entire audio signal within a positive range. Upon testing
this amplified and shifted signal, we can see that the signal
maintains its resolution and timing. Lastly, the downstream
PCM1802 ADC module also acts as the I2S controller, sending
serial data to the FPGA at 44.1 kilosamples per second for
either the left or right channel and 24-bit precision. One note is
that because the FPGA has a 100MHz system clock while the
audio modules run at 44.1 MHz, we have roughly 2200 cycles
to break up the audio streaming and convolution computation
to create the effect. We call each 2200 cycle a “window”, and
at the beginning of each of these windows, a one-cycle high
“start” signal is fired.

III. GENERATING CLOCKS WITH CLOCK WIZARDS

In order to properly interface with our ADC/DAC hardware
using the I2S protocol, we must generate two clocks, one
running at 2.1168 MHz for the I2S transmit module, and one
running at 11.2896 MHz for the I2S receive module. We do
so using Vivado’s Clocking Wizard IP, transferring over the
.xci and Verilog header files into our project.

IV. I2S IMPLEMENTATION

I2S is a three-wire communication protocol typically used
for transmitting and receiving audio samples, consisting of
system clock (SCK), word select (WS), and serial data (SDA)
lines. In particular, the system clock runs at 2.1 MHz and



Fig. 1: Block diagram overview of the spatial audio pipeline,
from raw audio input to spatialized audio output.

accommodates our 44.1 kHz audio sampling frequency. Word
select indicates left versus right channel audio when pulled low
or high respectively. Serial data is fed back-to-back in 24-bit
data frames, MSB first (no start or stop signals are transmitted
on this line).

We set our transmitter as the controller and the receiver as
the peripheral and use this protocol to bookend the stream of
audio into and out of our pipeline.

A. I2S - Audio In
In our first instance of I2S communication, the PCM1802

ADC module is the I2S controller, setting the system clock,
and sending the word select and serial data to the I2S receiver,
which is the FPGA in our case.

B. I2S - Audio Out
At the end of our entire pipeline is another instance of

I2S, with the FPGA as the transmitter and the UDA1334A
DAC as the receiver. The 24-bit audio data is transmitted to
another MAX4410 headphone amplifier before being sent out
via 3.5mm audio jack to a pair of low-impedance headphones.

C. I2S & Hardware - Testing
In order to ensure the isolated I2S modules functioned as

a communication protocol, we wired up all of the hardware
components, including the ADC, DAC, Headphone Amplifiers,
DC offset circuitry, via breadboard along with the FPGA and
sent known data via the transmitters and receivers. Important
to note is that we wired the SCL, WS, and SDA lines of
the ADC and DAC to the PMODA and PMODB ports of the
FPGA respectively. We verified the SCL line frequencies as
well as bit-by-bit reception of data via oscilloscope readings.

Fig. 2: Hardware setup of audio pipeline, including ADCs,
DACs, FPGA, headphones, and audio source.

V. HRIR COEFFICIENTS - STORING AND PROCESSING

We will be using a 25 x 200 HRIR coefficient matrix (set
at the 0° elevational angle) to convolve our audio samples
with to achieve the spatial audio effect. In particular, this
HRIR matrix encodes 25 azimuthal angles (-80° to 80° with
a step size of 14.4°) which are convolved with a 200 audio
sample window. Because the HRIR coefficient values come
in the form of signed doubles (64-bit floating-point values),
we will shift and slice them to become 32-bit integer values
and discard the rest of the floating-point precision (to avoid
length computations) that we will multiply the audio samples
by. To do so, we first find the minimum HRIR coefficient
value to be on the order of 1E-12, and multiply all of the
coefficients by 2E+30 (i.e. left-shifting the 64-bit value by
30), and before taking the top 32 bits of these results. We
wish to deal with integer multiplications (the largest of the
coefficients pos-processing being on the order of 1E+9), so
shifting and then slicing largely preserves the precision of the
coefficients while decreasing the complexity of calculations.
Cutting the bit-width in half this way will also not result in a
substantial difference in output quality since only the relative
values of audio amplitude affect the spatial audio illusion, as
opposed to the actual magnitude of audio data.

After this coefficient processing, we convert the matrix
values back into a .mat file, then convert it to a .mem file
to be readily stored in a BRAM upon module instantiation.
All of this processing is completed using a Python script we
wrote that also preserves the signs of the coefficients.

VI. MEMORY CONSIDERATIONS AND BRAM USAGE

We instantiate two types of BRAMs for two main purposes.
The first BRAM is used to store 24-bit incoming audio inputs
in a cyclical fashion such that at each rising edge of the
44.1 MHz clock controlled by the PCM1802, the oldest audio
sample is replaced with a fresh one. We will be averaging
audio samples from the left and right channels such that they
become a mono-channel audio source stored in the BRAM



(this enables our program to function on both stereo and
mono audio sources). Again, it is the convolution with the
HRIR coefficients that gives this spatial effect. The BRAMs
are read from a signal generated from within the downstream
convolution module (FIR filter). We maintain a write and read
address pointer for the audio BRAM, with the write address
to store real-time audio samples. The read address pointer
will always be roughly 200 cycles behind the write address
pointer (205 cycles behind in our implementation for a small
buffer). This ensures that the audio samples can be properly
pipelined into the FIR filter, since that module requires 200
audio samples per window.

Additionally, we have two BRAMs that will be used to store
all of the left and right HRIR values separately, and we stack
them by azimuthal angle such that the addresses of these 200-
coefficient sets can be calculated easily by azimuth selection.
These BRAMs will only have a read port, as the values are
all loaded from the pre-processed .mem coefficient file.

VII. AZIMUTH SELECTION

To set the azimuth angle from which the audio sounds like it
is coming from, the user can choose between two options: an
azimuthal auto-sweep, whereby the azimuth changes roughly
every half second in a cyclical fashion, or a manual selection,
which can be cycled through using the five rightmost switches.
The azimuth auto-sweep works by incrementing the angle
every quarter- to half-second (translating to roughly 14000
cycles) and propagating that to offset the values read by the
HRIR coefficient BRAM. On the other hand, the switch logic
is LEDs are lit according to azimuth selection, for another
complementary visual to users.

VIII. FIR FILTER

The proper and timely convolution of HRIR coeffi-
cients with the audio samples is essential in creating
the spatial audio effect. We divided this process into
six stages: INITIAL, LOAD, MULTIPLY, and three tree
accumulation stages (TREE ACCUMA, TREE ACCUMB,
TREE ACCUMC) within an overall FIR filter module. We
instantiate two FIR filters to simultaneously compute left and
right audio outputs that are pipelined downstream to audio out.

A. INITIAL Stage

This inaugural state simply detects when the start signal
is high, which indicates that a new window of convolution
should begin. If the start signal is true, it will directly move
to the LOAD state on the next style. The INITIAL stage is
also where the FIR filter remains for the rest of a window
after computing a valid output.

Fig. 3: Diagram showing main FIR computation stages
(designed to be cyclical for efficiency and minimized register

memory usage), data flow within the intermediate tree
accumulation structures, and associated data widths.

B. LOAD and MULTIPLY Stages

In the LOAD stage, we issue BRAM read requests (via a
“load ready” output signal) to begin obtaining both the audio
samples and HRIR coefficients. After inducing a two-cycle
delay to the FIR Filter to account for the BRAM latency, eight
24-bit audio samples and 32-bit HRIR coefficients are loaded
into respective registers across eight clock cycles. also pull the
“load ready” signal low two cycles before the streaming ends
(i.e. on the 6th set of streamed values). We chose to load eight
values each at a time to minimize the number of registers used
to store these values in preparation for the MULTIPLY stage,
thus requiring a more cyclical nature of our FSM. Once the
values have been loaded, the filter moves to the MULTIPLY
stage. In the MULTIPLY stage, the eight audio samples and
HRIR coefficients are multiplied in parallel and stored in 56-
bit registers. Following this, the FIR Filter moves onto the
TREE ACCUMA stage.

C. TREE ACCUMX Stages

The tree accumulation stages are established to do
parallel pairwise additions, with TREE ACCUMA and
TREE ACCUMB starting with 8 leaves each (56-bits and 60-
bits respectively), and TREE ACCUMC starting with 4 64-bit
leaves. At each layer of the tree, there are two times fewer
leaves, which are stored in registers as intermediary sums that



trickle down to a singular final sum. In doing so, the sum bits
only grow (maximally) by one bit at a time, and given there
are only two or three layers in the tree, saves on register space
usage overall. An additional bit is added to the output register
to preserve its signed bit.

After the tree summation in the TREE ACCUMA stage is
completed, the FSM redirects back to the LOAD → MUL-
TIPLY → TREE ACCUMA cycle seven more times until
there are enough intermediary sum values (that are once again,
saved in registers) that can be fed into the leaves of the
TREE ACCUMB tree. Once TREE ACCUMB completes its
tree summation, the entire cycle starting from LOAD begins
again until there are enough inputs for summation to begin the
TREE ACCUMC stage. This last summation stage happens
only once, and the 67-bit output from that tree is the final FIR
filter output sent downstream for further data manipulation
before being outputted as audio.

Again, a central design choice we made in this FSM flow
is the division of data loading and processing into smaller
subcycles to minimize register data usage.

IX. GRAPHICAL USER INTERFACE (GUI)
Lastly, we wish for the user to have a complementary visual

experience so that the user can view the audio waves coming
from the original signal compared to the streamed-in left and
right channel audio waves. Additionally, we will graphically
display the azimuthal angle chosen by the user, which updates
as the user presses the left and right buttons on the FPGA to
change the angle. The video graphics must take in original
data point as well as the output of the FIR filter for both left
and right. The video graphics takes in these new values on
the last cycle of a 2200 cycle window. In order to map the
24 bit values into a visual offset, the top 8 bits are chosen as
the offset in pixels. Therefore, each audio signal has a peak
to peak max amplitude of 256 pixels. Additionally, this 8 bit
value is stacked for original, left, and right data into one 24
bit value. Offset values are stored and read of out a BRAM,
which will now be elaborated on further.

The system clock and audio filter logic occurs on the 100
MHz “sys clk”. The video logic occurs on the “clk pixel”
which is a slower clock signal at 75.25 MHz. In order to cross
the clock domain, audio samples go through the BRAM, ergo
they are written on “sys clk” and read out on “clk pixel”.
When computing the output of a frame, the BRAM that is
being read from must not be written to. This is done by having
two BRAMs, one is frozen and is being read on the “clk pixel”
domain, while the other is fed up the currrent streaming
data on the 100 MHz domain. On the “nf hdmi” signal, the
BRAM switchs. This control logic is dictated by the slower
“clk pixel” side and directly controls the write enable ports
on the 100 MHz side. In order to cross the time domain from
slower to faster clock, a pulse synchronizer macro is employed
on the “nf hdmi” signal so that the 100 MHz clock domain can
update which port it is writing to. The Video Signal Generator

runs 1280x720 HDMI at 60 frames per second. Therefore, the
max number of audio sample offsets that need to be stored
in the BRAM is how many samples the 44.1 kHz sampling
outputs within 1/60th of a second. This number turns out to
be 735. So, both BRAMS have a depth 735 with a width of
24 bits.

For the video graphics, we split the graphics into three
regions: original input wave, left and right output wave, and
GUI for spatial representation of which direction audio is
coming from. For the visual of audio direction, we fan out
squares representing audio sources by their respective angle
relative to a center square that represents the user. Azimuths
values are coming from the 100 Mhz clock domain, so they
must go through a BRAM where they are read out in the clk
pixel domain.

Finally, the graphics driver successfully visualizes the audio
signals and the direction of the audio source. The video is sent
to a screen via HDMI.

Fig. 4: Input signals into video controller and video
controller diagram.

Fig. 5: Completed graphic user interface (GUI) is shown. On
the left side, there are two waves. The cyan-colored wave on
top is the buffered audio sample from an audio source. The
two-colored bottom wave is a superposition of the resulting
left (yellow) output audio and right (purple) output audio

coming from the FIR filter. On the right, there is a diagram
of the azimuth that the user has chosen; the gray square that

is highlighted blue indicates the “direction” the audio is
perceived to be coming from.



X. TESTING AND RESULTS

To ensure that the individual components and modules work
as intended, we performed incremental tests on the ADC/DAC
hardware and I2S modules, FIR filter, and HRIR coefficient
processing. We tested the audio pipeline incrementally, first
ensuring that audio properly moves as input to output through
the I2S transmitter and receiver modules. We ensured that the
DC offset was maintained via oscilloscope testing and that
there were no unwanted side effects. Next, we added the audio
BRAM to that pipeline and tested that setup. Separate from
this, we tested the FIR filter by comparing its output of con-
volving sets of known signed and unsigned numbers for which
ground truth resulting values were computed. This required
extensive test benching, parsing packed registers with binary,
and revising logic to be more efficient via parallelization if
possible. We then fed in the HRIR coefficients into the FIR
filter, and once confirmed that the convolved output aligned,
wired all of the components together.

A brief discussion on the efficiency our design. It takes 445
cycles for the FIR computation to complete, and two values
are computed in parallel. That is a theoretical throughput of
4,500,000 samples per second. However, we only can compute
as fast as we receive data so it is limited to 88,000 samples
per second. In terms of resource utilization, we used 96 DSP
Blocks, 38 RAMB36s, and 2 RAMB18s. For both BRAM
and DSP, our resource utilization was 24%. This could be
improved, since instead of having two parallel FIR filters,
we could just have one that computes left then right. This
would half the DSP usage. However, our current usage is still
well below the max and such optimization is not necessary as
we are bounded by audio sample rate regardless. In terms of
BRAM, usage is currently well optimized

In terms of our goal and timing requirements, our design
fully meets and exceed our requirements. We finish computing
audio outputs early within the 2200 cycle window. Also, in
terms of the video graphics pipeline, our design successfully
never loses a sample when outputting HDMI at 1280 x 720
pixels. Finally, we reached our ideal goal of properly and
quickly computing spatial audio and displaying our audio
samples to a screen.

XI. FUTURE WORK

Upon building our completed project, we noticed we had
a worst negative slack (WNS) of around 2.44, meaning we
had potential computations left unused. Some future work we
would like to explore is interpolation, whereby azimuth angles
that were not specifically assigned sets of coefficients could
be statistically generated. Additionally, we would like to have
the full azimuthal range from 0 to 359 degrees, which would
offer a complete angular range to experience.

XII. MEMBER CONTRIBUTIONS AND
ACKNOWLEDGMENTS

Chris worked on setting up the hardware, I2S receiver
and transmitter modules and generating the GUI and HDMI
display. Sarah worked on pre-processing the HRIR coefficients

into .mem files suitable for our project use and implementing
and test benching the FIR filter.

Both members were present throughout the debugging pro-
cess, collective integration of modules, and designing and
revising the entire pipeline from audio-in to audio-out.

We would like to thank Professor Steinmeyer and TAs
Kailas, Kiran, and Jan for giving us advice and helping us
debug our project.

REFERENCES

[1] V. R. Algazi, R. O. Duda and D. M. Thompson, “The CIPIC HRTF
Database,” U.C. Davis, October 2001.

[2] “Building a high speed Finite Impulse Response (FIR) Digital Filter,”
ZipCPU, Gisselquist Technology, LLC, September 2017:

[3] C. Cheng and W. Wakefield, “Introduction to Head-Related Transfer
Functions (HRTF’s): Representations of HRTF’s in Time, Frequency,
and Space,” pp. 1-28.

[4]


