
Final Report: Depths of SADness
Veloria Pannell

Department of EECS

Massachusetts Institute of Technology

Cambridge, MA, US
velrox77@mit.edu

Remi Kuba
Department of EECS

Massachusetts Institute of Technology

Cambridge, MA, US
rkuba@mit.edu

Abstract—Many 3D rendering and mapping tools utilize depth
maps to capture the general topology of objects in images. In
software, creating a depth map from two 640 x 360 images
takes 3-4 seconds to produce. Our project sought to implement
stereo vision and the sum of absolute differences (SAD) algorithm
technique to render live depth calculations for incoming video.
The two-camera system required two FPGA boards, with one
of the boards streaming its frame data to the other. The main
board interacted with memory to store and access the raw video
frames, which were then used to calculate the optimal offset
for each pixel using the SAD algorithm. This optimal offset was
used to calculate a relative depth map that was fed into the video
pipeline and HDMI output.

Index Terms—sum of absolute differences, stereo vision, rela-
tive depth

I. INTRODUCTION

Stereo vision is a process that can capture 3-dimensional
information from digital images, calculating distance by com-
paring the output images of two cameras a set distance
from each other. While this can be done using software, an
FPGA board specifically programmed to handle the data and
calculations in a streamlined manner can accomplish the task
faster.

Fig. 1. ”Left” and ”Right” images (above) and their depth map outputs
(below)

II. FPGA COMMUNICATION (REMI)

A. Pixel and Frame Deconstruction and Reconstruction

Due to limited PMOD ports, our project required a
primary and secondary FPGA, which communicated using
SPI protocol (II-B). The pixel size and frame dimensions
were limited by the interaction between boards, and based on
calculations and tests in software [1], it was determined that
640 → 360 video frames with 8-bit luminance pixel data was
sufficient and necessary to create live depth mapping.

B. SPI Protocol

It was originally calculated that to achieve a video rate of
25 fps, the bits would have to be sent at a rate of 46.08
Mbps ((640·360) pixels/frame·8 bits/pixel·25 frames/second).
However, after initial testing, we discovered that, due to the
nonuniform pattern of incoming camera pixels, a buffer was
also necessary to prevent new camera data from overwriting
the data being sent between boards. After reconstruction, the
camera frames were sent into BRAM. A specialized counter
was then implemented to guarantee requests for a new pixel to
send would not overwrite the current pixel being processed.

The SPI controller was set to 16.6 MHz and parallelized
the 8-bit pixels onto four wires. There was an additional wire
that would go high on the last pixel of a frame for storage
purposes later in the pipeline.

While the final product used 320→180 video, the SPI mod-
ules successfully sent and received 640→ 360 and 1280→ 720
video between the secondary and primary FPGAs. The larger
frames required the BRAM buffer between camera and SPI
controller to be switched out for a DRAM buffer. At 16.6
MHz, the SPI controller was able to send the desired video
over the FPGAs for the 320→ 180 and 640→ 360 videos (25
frames/second · (640 · 360) pixels/frame · 8 bits/pixels · 0.25
cycles/bit = 11.52 MHz < 16.6 MHz). But for the 1280→720
video, the SPI clock limited the the frame rate to around 9
frames per second (16.6→ 106 cycles/second · 4 bits/cycle · 18
pixel/bit · 1

1280·720 frames/pixels ↑ 9 frames/second), so there
was more visible tearing and artifacts on the HDMI output.

Fig. 2. PMOD SPI connections as specified by the modified XDC constraints
file

Fig. 3. FPGA setup and PMOD wiring between boards

III. MEMORY (VELORIA)
A. On-Chip Memory Breakdown

We planned to use DRAM for a majority of the memory of
our project, which guaranteed enough storage to save multiple
higher resolution camera and depth video frames. In terms
of BRAM, it would have originally only been utilized by the
primary FPGA in the depth calculation and FIFOs. The left
and right camera’s line buffer modules maintain four BRAMs
each (4), similar to the convolution lab. There would have
also been be six FIFOs into and out of the traffic generator

(5), which would require an additional six BRAMs.
However, we ended up using BRAM to store the video

frames because of issues with interfacing with DRAM and
utilized around two-thirds of the board’s BRAM blocks (see
section VI). For the primary FPGA, there were three frame
buffers—one for the SPI camera, one for the onboard camera,
and a final buffer for the SAD output. The total memory
required for these frame buffers was 1382.4 kbits (320→ 180
pixels/frame · 8 bits/pixel · 3 frames), which was less than
half of the available BRAM resources on the board.

Fig. 4. Communication between the 2 camera inputs and the SAD Calculator

B. DRAM and Traffic Generator

For the bulk memory storage of camera and screen data, we
are using the ISSI IS43TR16640CL-125JBL Off-Chip DRAM,
a one Gigabit DDR chip, or double data rate chip. In order to
interface with the chip, we are using Xilinx’s MIG (Memory
Interface Generator) IP, which has 16 parallel line connecting
it to the DRAM. With the default MIG configuration, the
UI clock interfacing with DRAM is run at 81.25 MHz, 4
times slower than the DRAM clock. Taking the DDR into
consideration, we can send data 8 times along the 16 wires,
or 128 bits of data, in one cycle.

The system requires 720,000 write requests to store the two
images (2 frames · (640 · 360) pixels/frame · 8 bits/pixel ·
25 frames/second / (128 bits/request)), or 360,000 requests
per FIFO. The depth map calculations must be done on 25
frames per second, so it will require 720,000 read requests
and 360,000 write requests to access the camera data then store
the depth results back into DRAM (see previous calculation).
Finally, to output the video at 60 fps, the last FIFO must make
864,000 read requests per second ((640 · 360) pixels/frame ·
8 bits/pixel · 60 frames/second / (128 bits/request)). The total
requests are far below the MIG’s maximum of one request on
every cycle of its 81.25 MHz clock, so our memory should be
fine.

We updated the traffic generator logic from a previous lab
to take in the requests from six, rather than two, FIFOs. It
would have sent different data to the read and write inputs of
the MIG based on the state, i.e. reading or writing from one
of the cameras or getting data to or from the SAD module.

Fig. 5. Traffic Generator Block Diagram with 6 FIFOs & State Cycle

These FIFOs are fed into through stacker and unstacker
modules to accumulate the data into larger ’chunks’. Through
our debugging, we actually caught an error in the originally
given stacker.sv file, correcting it to improve synchronization
with a reset that correctly reflected the number of stored
chunks and the tlast signal.

C. Components for Memory Access

The traffic generator instantiates three event counter mod-
ules in order to separately track the three sets of data stored in
different locations / at different addresses in memory (Camera
1 input, Camera 2 input, and SAD Depth output). In each
state, the data is passed through AXI-Stream FIFOs, which
helps handle crossing the three main clock domains, and the
state is looped-through round robin style to alternate reading
and writing from data evenly.

Fig. 6. Clock speeds / domains across the system

In order to input or retrieve data from Distributed RAM, the
traffic cycles through a series of states that switches between
reading and writing 3 sections of memory, each representative
of a pair of inputs and output accessing the same memory
locations. For one frame of 640x360 pixels, 1,843,200 bits
are sent per frame, requiring 14,400 read requests of 128-bit
messages (230,400 pixels · 8 bits/pixel ÷ 128 bits/message).

D. Implementation

In the top level, there is an instance of the Xilinx MIG IP
to communicate with the DDR off-chip DRAM, the inputs
and outputs of which are managed by the traffic generator,
utilizing AXI Communication protocol with ready/valid signal
handshakes to interact with the MIG and FIFOs. The state
variable within the traffic generator selects between read
and write FIFOs, and the input/output wires link to the 6
FIFOs. Unless a FIFO fills up, one frame (14400 · 128-bit
messages) are sent every cycle. These input FIFOs are loaded
by stackers that help assemble the packets of data received
while a different bus is reading or writing data to the DRAM.
Likewise, the outputs are put through unstacker modules to
feed into subsequent stages when requested. However, our
final implementation forgoes the DRAM and traffic generator
because of outputting issues. As stated previously, instead,
the camera frames are stored in separate BRAM buffers, the
SAD module reads from both buffers and stores its output into
another BRAM buffer, and the video path reads from the SAD
buffer before outputting the HDMI video data (10).

IV. DEPTH MAP CONSTRUCTION (REMI)

A. SAD Algorithm

If set up properly, the two cameras will have matching y
positions. To determine a point in the image’s true position
p = (x, y, z), the point’s depth, z, must be calculated (7).
Variables f and b are constant while xl is chosen and xr

must be determined. To calculate the corresponding pixel
(xr, y) from the right image, the block matching sum of
absolute differences (SAD) algorithm will be used (1). The
SAD algorithm calculates the absolute difference between the
left pixel and the right pixel shifted by a varying horizontal
offset, sums the absolute differences for a window centered
around (x, y) of size k → k, then selects the horizontal offset
that produces the smallest SAD(x, y) for a given (x, y) (2).

There are two general formulas for calculating the depths.
The true depth, z = f(b

best offset
) (3), requires dividing by

the determined offset. However, our project will utilize the
disparity—the inverse of depth—to calculate the relative depth
(4). The relative depth multiplies the max pixel size (8 bits
means a max pixel size of 255) by the proportion of the best
offset to the max offset, which we have chosen to be 10.

SAD(x, y, offset) =

→ k
2 ↑∑

i=↓→ k
2 ↑

→ k
2 ↑∑

j=↓→ k
2 ↑

|Il[x+ i, y + j]↓ Ir[x+ i↓ offset, y + j]|

(1)

best offset(x, y) = argmin
n↔[0,max offset]

(SAD(x, y, n)) (2)

depth(x, y) = f ↔ b

best offset
(3)

relative depth(x, y) = 255 ↔ best offset

max offset
(4)

Fig. 7. f is the cameras’ focal length, b is the baseline distance between the
cameras, and z is our unknown depth. [2]

B. Implementation

The depth calculation was implemented with a multi-cycle,
convolution-inspired module.

The tests and modules used a 3 → 3 kernel for the cal-
culations, so the data input were two line buffers of three
pixels each. The line buffers corresponded to the left and right
camera frames, respectively. The left camera data input was
then stored in a 3→ 3 cache while the right camera data input
was stored in a 3→ 13 cache. Depending on the current offset
of the SAD calculation, different 3→ 3 blocks from the right
cache were compared with the left 3→ 3 block.

Fig. 8. Simulated depth map output using Tsukuba images

The original intent was to calculate each SAD block in one
cycle on the 74.25 MHz pixel clock, but the indexing into

the larger 3 → 13 cache caused timing issues. So instead, we
clocked the SAD calculations at a generated 50 MHz clock,
and each calculation was pipelined. The final implementation
iterated from 0 to the max offset of 10, with each SAD
block calculation taking two cycles. On the 22nd cycle, the
relative depth was calculated and outputted. Figure 8 shows
the simulated output from the depth map modules after in-
putting the two stereo images. Due to the significant decrease
in throughput by increasing the cycles per calculation and
decreasing the clock frequency, the resulting video did include
unwanted artifacts from previous frames that were yet to be
updated.

V. VIDEO PIPELINE

A. Outputs

The resulting depth map from a frame was stored in a
BRAM buffer and accessed to enter the video pipeline. We
wrote a simplified pipeline to account for the smaller frame
and pixel size. The output was a 320→180 video stream using
HDMI. We included logic in the buffer write ports to stop the
storage of the camera data stream. By doing this, the FPGA
would essentially capture a still depth map picture. There was
also logic included to switch from the depth map video to the
simultaneous stream from both cameras.

VI. DESIGN EVALUATION AND PROJECT INSIGHTS

The final implementation met timing requirements and did
not run into resource utilization issues. The primary FPGA
utilized 64% of the BRAM blocks. The secondary FPGA
utilized 49.33% of the BRAM blocks, which could have been
reduced had we not included a video path on the board for
debugging purposes.

There were unexpected issues with the updated traffic
generator that led us to use BRAM to store the frames, and
the size limitation of BRAM meant that we had to reduce the
stored video to 320→ 180 rather than the intended 640→ 360
dimension. Additionally, the lower throughput from the SAD
calculations to meet timing affected the clarity of the video
output, but the effects were not too noticeable.

The depth map output was also extremely sensitive to
lighting. Running the SAD calculations in lab with the bright
overhead lights resulted in a very noisy output. Softer and
dimmer lights seemed to reduced noise within sections of
the video that were of the same depth. Figure 9 shows the
difference between a single bedside lamp being turned on and
off. You can see that the wall in the top left corner was far
more uniform, which was expected, when the lamp was off.
There are many different approaches to calculating depth, and
it is likely that a more complex algorithm like semi-global
matching would have been more immune to lighting changes.

We managed to meet our commitment goals by 1) suc-
cessfully communicating between the FPGAs and outputting
simultaneous video and 2) building a functioning depth map on
static frames. We partially met our regular goals by outputting
video depth map for a 3x3 kernel with a max offset of 10
(although it was on 320→180 video instead of 640→360). We

also partially met a stretch goal by increasing the resolution of
the frames sent over from SPI from 640→ 360 to 1280→ 720.

Fig. 9. Depth otuput of a dorm room with a lamp on (top). Depth output of
same dorm with with lamp off (bottom)

VII. SOURCE CODE

ACKNOWLEDGMENT

Thank you to our TA, Kiran Vuksanaj, for the endless help
and guidance throughout the project (and for putting up with
the constant requests for various ROM files). Additional thanks
to the rest of the 6.2050 staff that helped us during office hours
and helped develop the lab code, which we utilized.

REFERENCES

[1] D. Christian (2021) Simple SSD Stereo [Source Code].
https://github.com/davechristian/Simple-SSD-Stereo/tree/main

[2] J. Lambert, “Stereo and Disparity,” johnwlambert.github.io.
https://johnwlambert.github.io/stereo/

VIII. BLOCK DIAGRAM

Fig. 10. Block diagram using BRAM for memory storage (top, current implementation) and block diagram using DRAM for memory storage (bottom, original
implementation)

	Introduction
	FPGA Communication (Remi)
	Pixel and Frame Deconstruction and Reconstruction
	SPI Protocol

	Memory (Veloria)
	On-Chip Memory Breakdown
	DRAM and Traffic Generator
	Components for Memory Access
	Implementation

	Depth Map Construction (Remi)
	SAD Algorithm
	Implementation

	Video Pipeline
	Outputs

	Design Evaluation and Project Insights
	Source Code
	References
	Block Diagram

