
ADULI-LED
Auto-calibrating Display using Unconstrained Layouts of Individually-addressable LEDs

Preliminary Report

Noah Wiley
Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
njwiley@mit.edu

Luc Gaitskell
Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
lucg@mit.edu

Abstract—Custom lighting fixtures and displays can be sim-

ply and cheaply constructed with modern addressable LED

strands. However, displaying images on these displays requires

painstaking manual calibration based on the geometry of the

arrangement, and could be near-impossible in unconstrained

and non-uniform layouts. We present ADULI-LED, an FPGA

based system to quickly calibrate similar displays with the

use of a camera. We present a novel calibration algorithm

aimed to effectively and quickly calibrate these displays and a

comparison with more naive approaches. We implement specially

designed hardware to execute this algorithm while simultaneously

maintaining the timing for the sequential color data on the strand.

Additionally, we provide hardware to visualize processes through

HDMI and to display images and effects on the calibrated

strands. In our evaluation, ADULI-LED can calibrate a string

of 250 LEDs in just 8 camera frames or → 0.5s.

Index Terms—Digital Systems, Field-Programmable Gate Ar-

rays, Addressable LEDs, Video Processing

I. INTRODUCTION

With the advent of cheap low power individually address-
able LEDs like the WS2812b, arbitrarily long (1000+ LEDs)
strips of addressable LEDs are widely used for a variety of
lighting tasks. These chips require only one data wire per
strip, and operate by reading the first 24-bits of color then
passing subsequent data through. Their low cost and minimal
wiring requirements make them particularly suitable for effects
lighting.

Many existing systems are designed around microcontrollers
like the ESP8266 and ESP32, supporting visually appealing
effects and common connectivity for smart home systems.
However, these systems are not well equipped for more
demanding lighting configurations and I/O, and effects are
limited to standard grid-like layouts. Additionally, the reliance
on DMA for timing introduces a memory bottleneck on the
maximum effect speed.

ADULI-LED enables appealing effects and images on ar-
bitrary layouts of LEDs, by calibrating each pixel as a 2D
coordiante on the viewing plane. While camera and LED
I/O are possible on other platforms, microcontrollers suffer
from low throughput and therefore long calibration and display

latencies. A larger computer would also need to rely on another
device, such as a microcontroller, to send the color data within
the strict timing window for the WS2812b chips. As such our
system is developed on an FPGA. This allows us to optimize
image capture and memory movements by implementing our
algorithm within the timing constraints to send data to a single
strand pixel. The FPGA affords us the unique ability to sync
our image capture and led strand display, reducing the number
of unused video frames. Additionally, relatively low LED
(→ 1000) count allows the use of BRAM onboard the FPGA.
This BRAM is extremely close to our logic, greatly reducing
time to store our calibration and eventual lookups.

A. Goals

• Provide effective calibration
• Display smooth camera output and simple effects on the

calibrated display
• Sub-linear calibration time
We met our ideal goals for the final iteration of our project.

B. Anticipated Challenges

Given the restrictions of design for our FPGA, and the
camera input data, we must:

• Detect LEDs uniquely from objects in the camera frame
• Robustly handle overlapping LEDs
• Precisely time camera frame capture
• Construct accessible lookups for determining LED colors.
• Operate within WS2812b protocol, as each LED color

must be sent sequentially and before timeout.

C. Approach

To display correctly mapped colors to the LEDs, we must
determine a relative location for each LED in the whole string.
Our implementation determines which LED corresponds to a
given camera pixel, during the calibration phase. Each LED
simultaneously flashes its corresponding binary-encoded ID,
and we detect it with the camera. This same pixel’s color
then is used to set the color of the corresponding LED during
normal display operation.



II. LOGICAL DESIGN

At a very high level, ADULI-LED takes the camera feed as
input and outputs to the led strand.

The LED strand is driven by the LED Driver Module which
requests an LED ID, listens for color data, and sends this color
data to the strand using the appropriate WS2812b protocol.
The LED driver is given colors based on the requested LED
ID by the ID Shower module in calibration mode and the LED

Color Buffer module in display mode.
Calibration mode consists of a series of steps to collect and

build up LED addresses. A single step involves displaying
bits to the led strand, capturing a camera frame, and updating
our calibration. These fine grained operations and timing are
orchestrated by the Calibration Step FSM. This contains the
calibration table BRAM and updates it appropriately at each
step.

In display mode, mapping information from the aforemen-
tioned BRAM and frame buffer data are stored in the LED

Color Buffer. This contains another BRAM and logic to
appropriately manage calibrated/not calibrated camera pixel
color data and to drive the led strand.

Finally to provide a modularized and simple user interface,
we implement a Calibration Display Manager FSM to further
orchestrate calibration steps and display modes.

A cohesive block diagram is shown in Figure 5 and more
detailed module descriptions are included below:

A. WS2812B Driver (Luc and Noah)

We have constructed a parametric WS2812B compliant
driver in SystemVerilog. Although the LEDs are individually
addressible, they must be written to sequentially, followed by
a reset code to return to the first LED. The signal structure
and data cascade is shown in Figure 1. As a result, our driver
must maintain the state regarding which LED will have its
color set next, to communicate this to the modules providing
the requested color.

Fig. 1. WS2812B data codes and cascade structure. [1]

B. Calibration (Luc and Noah)

An optimal technique provides a robust and sub-linear time
calibration sequence.

Our implementation runs O(log n) cycles to flash out each
bit in each LEDs’ ID, all at once. For this, Noah built an LED

ID Shower module to take advantage of the inherent O(log n)
encoding provided by the binary ID numbers. It interfaces with
the LED driver and displays the ID bit colors appropriately.
For each ID requested by the LED driver, the module drives
a pixel red for 0 and blue for 1 based on the MSB address bit

number. Red and blue were picked as their wavelengths are
the most dissimilar aiding in better detection especially when
using chroma red and chroma blue thresholds. This module
outputs a signal displayed frame valid to indicate all pixels in
the strand are displaying the correct colors and allows us to
proceed with the camera capture.

The ID values accumulated at each pixel are shifted left,
and then the LSB set to according to the pixel thresholding,
reconstructing the LED ID in binary at each pixel. We there-
fore are able to detect which LED is in at a given pixel. The
calibration is coordinated by the Calibration Display Manager,
for iteration i from 0 ↑ log2(NUM_LEDS), is as follows:

1) Use LED ID Shower to display bit log2(NUM_LEDS)↓
i↓ 1, as we build IDs from MSB first.

2) Collect and store calibration sample for that bit
3) Increment to next selected bit, and exit back to display

mode once finished.
The individual calibration sampling is handled by the Cali-

bration Step FSM, as shown in Figure 3, operates as follows:
1) Wait for signal to start calibration, usually triggered by

LED driver finishing displaying the relevant bits.
2) Wait for camera to have captured new frame.
3) Threshold each pixel and accumulate new bit corre-

sponding to that pixel into the pixel ↑ LED ID BRAM.
Each LED is to display the corresponding bit by using pure

red for for a 0 and blue for a 1. We then can use chroma red
and chroma blue thresholding to detect these two colors in the
image.

In order to modularize this operation, Luc built a Shift

Accumulate BRAM, which can be easily validated in test
benching outside of the LED calibration. This module allows
the caller to provide a ”summand” for a given address, for
which the module:

1) Fetches the value at that address
2) Shifts the read result and appends the ”summand” as the

new LSB.
3) Writes the result back to that address.
We added further functionality for flagging pixels as invalid,

in the case both or neither a 0 and/or 1 signal threshold is
detected. Pipelining allows the module to support one request
per-cycle, despite the two cycle delay on the initial read. The
only limitation is that successive accumulation requests to the
same address will cause data races, however, this does not
occur in the video pipeline.



Fig. 2. Demonstration of setup and photo of HDMI display-out, using short OV5640 exposure time. Color data is preserved and not clipped.

Fig. 3. ID Accumulation in Calibration Step FSM

This approach is significantly faster, allowing for a desirable
logarithmic calibration time. However, it can fail for com-
pletely overlapping LEDs, as the captured IDs become bit-wise
ORs and cannot be deciphered. In practice, LEDs that are not
correctly detectable during calibration are most often obscured
from view, and therefore should not be driven. Slight offsets
between partially overlapping LEDs cause the opposing edges
of their color regions to be detected properly, separately.

C. Displaying Camera Feed (Noah)

In order to display smooth videos on the calibrated display,
we must output colors according the sequential LED ID
numbers requested by the LED driver. Since our LED driver
operates at very different timing than our camera, we need
a buffer. Noah implemented this as the LED Color Buffer

module which maps (LED ID ↑ color). This is implemented
with a dual port BRAM.

This module takes in 24 bit color data from the frame
buffer and a corresponding LED ID from the Shift Accumulate
BRAM. If the LED ID is a valid LED ID number and not
disabled (Represented as an ID of all 1s), the module saves
the color data to address row addressed by LED ID.

Fig. 4. LED Color buffer

The output side utilizes the other port to respond to requests
from the LED driver, looking up data from the BRAM, scaling
appropriately, and generating a properly synced color valid
signal.

Finally, random or left over data in the color buffer BRAM
can cause distracting colors to be displayed on un-calibrated
pixels. To fix this, an overwrite state was added to the FSM,
with a wipe input, to write zero to all of the addresses of the
BRAM before a new calibration is used.

Sending the full 24-bit color to a pixel takes 30µs, and
therefore gives us up to 3000 cycles per LED ID request from
the LED Strand driver. This uniquely allows us to use a BRAM
frame buffer and eliminates the need for queues.

D. Camera Configurator (Luc)

We found that the brightness of the LEDs caused the camera
sensor’s pixels to saturate, which reduces the ability to get
accurate color information during calibration. By manually
modifying the camera exposure time, the LED detection can
be greatly improved.

Tuning this also helps easily filter out unnecessary back-
ground information, while maintaining the LED color data.
The HDMI output of the camera pointed at LEDs is shown in



Figure 2. Note that this is operating without thresholding, and
is the direct readout of the camera.

In order to configure the camera during operation, we built a
configuration module to overwrite the camera register BRAM
with values based on user-selected switches when requested.
On reset of the camera, the camera registers are then sent over
I2C, with the updated configuration.

Using the OV5640 datasheet [2], we determined the corre-
sponding Auto-Exposure Control (AEC) and Auto-Gain Con-

trol (AGC) registers. We added the following to the end of the
provided mode_180_320_25fps.mem configuration from
Kiran:

• 0x350[0-2]: Exposure setting
• 0x350[A,B]: Real gain setting
• 0x3503: Control AEC and AGC manual or automatic

When triggered, the configurator overwites these additions to
the initial camera BRAM as requested.

E. Displaying Test Pattern (Luc and Noah)

Due to noise in the camera, we opted to also provide test
patterns for performance evaluation. For modularity, we opted
to add a multiplexer to choose the pixel source on the camera
side of the framebuffer BRAM. This allows pattern generators,
such as a vertically scanning white line, to inject its own data
into the camera framebuffer, which ultimately is driven out to
the LED strings. This is controlled by user-operable switches.

We also include patterns that avoid the camera and cali-
bration pipeline. Our sequential LED pattern, drives each at a
time, in order, and clearly illustrates the inherent ordering of
the LEDs in our unconstrained strands.

F. Clock Crossing (Luc and Noah)

In order to properly cross clock domains between the Cal-

ibration Display Manager and the Calibration Step FSM, we
had to set Vivado to increase the tolerance for timing violations
between the 100MHz and pixel clocks. Unfortunately, this
was unavoidable as the Calibration Display Manager must
also communicate with the ID shower, which operates off the
100MHz clock.

To acommodate, we only send single-bit triggers, for mul-
tiple cycles, which then trigger actions that run for multiple
cycles before using the value again. This avoids metastability
from being interpreted as multiple triggers. To avoid arbitrary
counters, we have single-bit acknowledgments, allowing the
triggering module to hold it high until the triggered module
indicates its state has changed to in-progress.

This acknowledgment takes the form of two wires signaling:
(1) idle and (2) in-progress.

The triggering module sends the trigger until signal (2) is
high, and waits until signal (1) is high again. This prevents the
multiple 0 ↔ 1 transitions on a single wire due to metastability
from causing transitions that inadvertently skip states.

III. PHYSICAL DESIGN

Our work utilizes the RealDigital Urbana board, with a
AMD Spartan-7 FPGA. We additionally utilize:

• WS2812b LED strands: sequentially addressed LEDs
used to display content.

• OV5640 Camera Module: used both for calibration and
input data for displaying on the LED display.

• HW-221 level shifter: drives the 5V logic from the 3.3v
logic of the Urbana board.

Although our current implementation drives the LEDs as a
single strand, this can be trivially replicated to drive multiple
strands at once. Shorter strands allow for higher refresh rates,
if desired.

IV. EVALUATION

Due to the nature of the project, our evaluation is mostly
qualitative, judging the look of the patterns, with respect to
the HDMI output of the camera feed. During operation, we
noticed that content with high contrast was significantly easier
to recognize. It also helped reduce the noise at each pixel in
the frame. As a result, we often opted to keep the camera in
fast-exposure mode, and use bright targets, such as an tablet
screen.

In order for more quantitative analysis, we were able to use
the display pattern in section II-E for more predictable basline
for performance analysis. For a dense arrangement of LEDs,
we noticed around 5 of the 250 LEDs were mis-identified.

A 98% accuracy seems adequate for our fast one-shot cal-
ibration implementation. The naive approach is to illuminate
each LED individually, and use a technique such as COM
to determine its position in the frame. This is susceptible to
other light sources, while the requirement for consistent and
exclusive blue / red illumination in ADULI-LED virtually
eliminates these problems. Additionally, the individual cali-
bration requires a single frame per-LED, which would take at
least 10 seconds for the string we demonstrated. Such linear
scaling would become intractable for larger strings, while the
log scaling in ADULI-LED would still take around a second
for 10-million LEDs.

A. Module Performance

Due to clocking the modules off strictly timed clocks, such
as the pixel clock, all of our modules are designed to process
one item per clock cycle.

However, certain actions, such as the shift accumulation
in section II-B, require multiple cycles to operate and are
pipelined accordingly. We maintain a properly pipelined video
datapath, adjusting synchronizing flip-flops to account for the
additional delay due to the calibration module. There are now
10 cycles between the video signal generator and the HDMI
output. The WS2812b are relatively slow, compared to clock of
the FPGA and, as mentioned in section II-C, we have around
3000 cycles before we must have the next LED color ready.

Due to the relatively relaxed latency tolerance as humans,
we do not notice the tens of nanoseconds of delay in either
the HDMI or LED control.



B. Resource Consumption

Our design heavily utilizes BRAMs, to store:
1) 320↗ 180↗ 16b frame buffer
2) 320↗ 180↗ log2(NUM_LEDS)b pixel to LED map
3) NUM_LEDS↗ 16b LED to color buffer
According to Vivado, we used sixty percent of the available

BRAM. Our approach to clock crossing is document in section
II-F.

V. DISCUSSION AND FURTHER WORK

A. Improving Accuracy

By combining the naive approach and our robust ID log(n)
approach, we may be able to increase accuracy for improp-
erly calibrated LEDs. If an LED was not found during the
calibration process, then the naive approach could be a more
definitive test, calibrating this LED individually using COM.

B. Improving Pixel Display Colors

Since the LEDs on the strands are so large, even with a
low resolution camera, many camera pixels map to the same
LED pixel. In our current implementation and given the raster
pattern of our camera and frame buffer, LED i receives the
color in bottom right most camera pixel that was mapped to
LED i. While we still achieved cohesive video throughput with
this, it may be interesting to explore an averaging approach for
the color of an led. If able to bound the maximum number of
camera pixels that map to the same LED, a similar approach
to the Accumulate Shift BRAM may be used to average color
values assigned to each LED.

C. Reusing Frame Buffer / Using DRAM

While our design and usage of BRAM comfortably builds
given the resources our AMD Spartan-7 FPGA, the usage
of DRAM may enable some new features. The number of
LEDs is usually on the order of thousands of pixels, and
does not drive the main memory usage. Our frame buffer and
shift accumulate BRAM are similar in size and very large,
driving our memory usage. We may be able to achieve a higher
camera/hdmi resolution by using a larger shared frame buffer
for both calibration and display, by running the calibration
logic directly on the camera input. In addition to adding
complexity, this removes our video feed during calibration
which is useful for debugging and is interesting to watch
during calibration. To remedy this, DRAM may be used to
support higher camera/hdmi resolutions. A higher resolution
may allow for better color averaging as described above and
possibly better performance with tightly packed led strand
configurations.

D. Reducing Number of Clock Domains

Our implementation uses 3 different clocks (camera clock,
hdmi pixel clock, and 100MHz general clock). While we
excitedly explored this as an exercise working with various
clock domain crossings and to offer flexibility for different
led driver modules, we recognize that our current system
may have been implemented with just the camera clock

and hdmi clock. Multiple clock domain crossings required
careful experimentation with when we sent signals between
the calibration manager and the calibration step FSM and the
number of bits we sent. A less flexible but more optimized
system may allow for even tighter timing resulting in a faster
calibration.

VI. ACKNOWLEDGMENTS

We would like to thank Joe Steinmeyer, the 6.205 TAs,
and other course staff for all their assistance, support, and for
making 6.205 a very interesting and enjoyable class!

REFERENCES

[1] https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf
[2] https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/OV5640 datasheet.pdf

APPENDIX

A. Source code

B. Overall block diagram

The overall block diagram can be seen in Figure 5



Fig. 5. System Block Diagram detailing modules used for calibration, LED strand driving, and HDMI output


	Introduction
	Goals
	Anticipated Challenges
	Approach

	Logical Design
	WS2812B Driver (Luc and Noah)
	Calibration (Luc and Noah)
	Displaying Camera Feed (Noah)
	Camera Configurator (Luc)
	Displaying Test Pattern (Luc and Noah)
	Clock Crossing (Luc and Noah)

	Physical Design
	Evaluation
	Module Performance
	Resource Consumption

	Discussion and Further Work
	Improving Accuracy
	Improving Pixel Display Colors
	Reusing Frame Buffer / Using DRAM
	Reducing Number of Clock Domains

	Acknowledgments
	References
	Appendix
	Source code
	Overall block diagram


