HoloForge: A Hand Gesture-Controlled 3D Model
Viewer

Mena Filfil

Yeabsira Hawaz

Department of Electrical Engineering and Computer Science Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA
menaf @mit.edu

Camera Control Triangle Fetch

X v
Pre-Proccessing

S o
—

»| Shading
Rasterizer

v

Framebuffer

Fig. 1. High-Level Design Diagram

Abstract—We present Holo-Forge a 3-D graphic model viewer
implemented on an FPGA, with a camera control module that
calculates the virtual camera’s position based on the center of
mass of the user’s hand. A graphics module that takes in triangles
projects them to 2D and maps the pixels via a rasterizer, and a
shader that determines the color and the intensity of the color
based on light. And a Frame buffer that allows us to interface
with the off-board DDR RAM. We’ll implement our design on
an Urbana board using a Xilinx Spartan-7 XC7S50-CSGA324
FPGA.

Index Terms—Graphics, Geometry Processing, Gesture Track-
ing, Field Programmable Gate Arrays, Texture Shading, Raster-
ization, Dynamic RAM

I. OVERVIEW

In this project we attempt to implement holoforge a 3D
model viewer that uses camera inputs to view a 3D model.
Utilizing the resources of a FPGA to efficiently achieve the
heavy computation required for such a task. The development
of Holoforge consists of four core components: Gesture Track-
ing and Camera Control, Graphics Pipeline, Texture Shadding,
and Framebuffering/Interaction with DRAM.

II. HIGH-LEVEL DESIGN

Our design consists of three main disjoint stages that rely
on each other:

o Camera Control Signals
o Graphics Pipeline (Triangle Preprocessing, Shading, and
Rasterization)

Massachusetts Institute of Technology
Cambridge, MA, USA
yhawaz@mit.edu

o Frame Buffering

The camera control signals interface with the I/O camera we
are using for this project and perform center-of-mass and area
calculations that are used to adjust the virtual camera position
(more on that in the environment section).

The graphics pipeline consists of 3 substages. In the first
one, triangle preprocessing, we take the 3 3D vertex points
we received from our triangle fetcher and project them onto
the virtual camera plane defined by the information we re-
ceived from the camera control module. In parallel with this
projection, we also fetch normal and color information about
the same triangle and perform backface culling and lighting
calculations to add the shading effect on the colors of each
triangle depending on its angle from the single light source
originating from the camera that we are working with. The
final stage in the graphics pipeline is the rasterization, where
we take 3 2D points with their depth information (distance
from the virtual camera), and iterate through a bounding
box for that triangle in tandem with interpolating the depth
information (to get an estimate of the distance from the camera
for every single point inside the triangle).

This pixel-by-pixel information from the rasterizer is then
fed into the frame buffer which is responsible for stacking the
memory write requests for efficiency and making sure we are
only writing to pixels that are closer to the camera.

III. PROJECT MILESTONES

A. Milestones

Below is an overview of the main project milestones fol-
lowed and how different parts of these components fit within
our roadmap:

o Commitment: Render a static scene loaded into BROM,
initially without user-controlled interaction(no camera
control)

o Objective: Enable custom model loading via UART and
implement virtual camera control through the cam-control
module

o Stretch Goal: Increase utilization of DRAM by moving
our depth buffer there, and add texture shading.

IV. ENVIRONMENT ASSUMPTIONS

To simplify our calculations, we decided to use fixed-point
math to represent all of our information. Before loading a
mesh on the FPGA we normalize it using a Python script to
fit in a 1x1x1 3D bounding box. This allows us to compactly
represent the mesh in a known range of numbers with a lot of
precision (()2.14 fixed-point numbers) in our case. The object
is also shifted to be centered at the origin of our 3D world with
the camera constituting a sphere around it to allow viewing
from different angles.

Similarly, for the camera coordinates, we have constrained
the camera distance from the origin to always adhere to a
sphere radius r € [2, 5]. Our sin/cos lookup tables are defined
in terms of the possible COM values coming from our camera
control modules to avoid unnecessary scaling at runtime. Also,
our camera and single light source (at least for the initial
iteration) are assumed to be at the same position and have the
same normal for simplicity’s sake. Also, as a starting point,
we’re working with a frame resolution of 320x180 as a starting
point and we intend to increase this if we’re able to move the
depth buffer (discussed below from BRAM to DRAM).

Throughout most of our modules, we also pre-calculate
quantities like half of the viewport width and provide them as
equivalent numbers with enough precision to make increment-
ing values and scaling operations related to projecting our 3D
points onto the screen faster. Since these are parameters that
are defined at build-time and only relate to the known reso-
lution and viewport of our graphics pipeline, it’s unnecessary
to make these values dynamic if they only change between
different builds.

V. CAMERA CONTROL

Our camera control module takes in the Xcoa/(COM being
the center of mass), Yoo, and the area of the thresholded
pixels from the camera. We would then equate the Xcoas and
Ycon as 0 and ¢ respectfully, and the area as R. By doing
this we can now obtain the spherical coordinates of the matrix,
and the vectors of the plane from the tangential derivatives.
The position can then be found by

(r - sin(¢)cos(@)w,r - sin(p)sin(0),r - sin(p))

, and the u,v vectors that represent the plane can be found by

— sin(¢) sin(0) — cos(¢) cos(0)
u= | sin(¢)sin(d) |, v=| cos(¢)sin(d)
0 —sin(6)

We can save ourselves the computation of finding sine and
cosine each time by just using a lookup table. Since we only
really need to store sine since cos(6) = sin(90—6), so we just
need to adjust how we index into the look-up table in BRAM,
and we have a working way to find sin and cosine of angels,
and hence a working way to find out Camera_position, and
u, v vectors from camera input. We can also pass the normal,
by just giving the camera position, but not multiplying each
value by r (or i.e. the area of our camera blob).

VI. GRAPHICS PIPELINE
A. 3D to 2D Projection

Our projection consists of 3 individual vertex projections
running in parallel with short-circuiting logic between them
to allow us to reset the projection if any of them are out of
bounds. To save resources for the projection, we simplified
the projection logic to be parameterized in terms of constant
known at compile-time such as half the viewport width and
height as well as the ratio of our viewport to our resolu-
tion. This simplification reduced unnecessary multiplies and
renormalization and simplified the steps after the projection
to 2 simple additions and divides for normalizing the x and y
coordinates.

Below is the math that we do for projecting the vertices onto
our camera plane. Our camera information is determined by a
camera center C, and 3 basis vectors u, v, n that represent a 3D
coordinate system relative to the camera. For the outputs let us
define dot_x, dot_y, dot_n, and D as intermediary variables.

D=P-C
doty = D - i
dot, = D -7
dot, =D - i

Lrenorm = dOtm/dOt"
Yrenorm = dOty/dOtn

derojcord = {xrenorma Yrenorm dOtnz}

Where we perform a boundary check on x,cnorm and
Yrenorm Where we ensure they’re withing [—h/2,h/2] and
[—w/2,w/2]

B. Shading

Since our camera and light normals are the same from our
environment assumptions, our shading logic is responsible for
both calculating the light intensity for a given triangle (a value
with which we’ll scale the RGB color for that triangle to
simulate shading), as well as the directionality of the triangle
with respect to the camera which is used for backface culling.
Backface culling is essentially the process of eliminating
triangles that are facing away from them since they constitute
non-surface information (rendering does not really show the
internals of a mesh of triangles).

Let N be our camera/light normal, 77 be our triangle normal,
and I be our light intensity.

I = min(max(N - ,0),1)

. I > 0 implies a triangle facing away from our camera which
would constitute a backface cull, allowing the pipeline to skip
rasterizing and move on to the next triangle in our mesh. The
reason we clip the values between 0 and 1 is to avoid overflows
when scaling our 565 RGB color representation.

C. Rasterizer

The rasterizer consists of two main components:

o Bounding Box Generator & Incrementer
« Barycentric Interpolation

The first stage is responsible for taking the 3 2D vertices and
calculating the Zyuin, Ymin, Tmaz, Ymaz DOUndaries as well as
their pixelized hcount,vcount equivalents to iterate through
all the pixels in the bounding box around the triangle.

These pixels corresponding x,y values (within the coordi-
nate system of the viewport, not the resolution) are then fed
into a barycentric interpolation module along with the 3 depth
values at the 3 2D vertex points making up the triangle.

C/v2
.
ABC
BCP

BvV1
A/vO

Fig. 2. Barycentric Interpolation

Barycentric interpolation as shown in the diagram above
involves taking a weighted average of the 3 depths based on
the weighted areas of the 3 triangles that are formed between
the point z, y inside the triangle and the vertices inside, making
up the whole triangle. The exact math for the interpolation
would look like this:

Zinterp:u‘zl+v'z2+w'23
u = Dl/D,’U = DQ/D,’LU = Dg/D

Where D is the total area of the triangle, D1, Do, D3 are
the areas of the triangles formed between x, y and each of the
original triangle’s 3 edges, and zi, 29, 23 are the depths for
each vertex in our triangle.

One nice property about this interpolation method is the fact
that the 3 coefficients, u, v, w making up the areas of the 3
triangles are always guaranteed to have the same sign when
an x,y point truly lies inside the triangle. This allows us to
easily eliminate points outside of the triangle if this invariant
is violated.

D

Fig. 3. Rasterizer Example 1

Fig. 4. Rasterizer Example 2

Figures 3 and 4 show some examples of interpolated depth
maps generated by a combination of our rasterizer and pixel
preprocessing components of the graphics pipeline during the
rasterization in simulation.

D. Whole Graphics Pipeline

Once each of these sections was tested and verified in
isolation, the next task was to combine them, this meant
creating a module that ran the shader and pre-processing
simultaneously, then communicating the output of both of
these modules via AXI Stream to the rasterizer.

VII. FRAMEBUFFER

The FrameBuffer comprises two 320 x 180-pixel color
frames each with a 16-bit color width, stored in DRAM.
Additionally, a 320 x 180 x 16-bit depth buffer is stored in
the BRAM. The system alternates between two color frames:
one frame being read out of the DRAM and being sent
out via HDMI to the screen, and the other frame currently
being written based on inputs from the Rasterizer. When the
framebuffer receives clear signals from the graphics pipeline,
they switch roles, successfully allowing for there to always be
a fully rendered frame on screen. It will also clear the new
write frame, and clear out the depth ram before allowing for
new input from the graphics pipeline.

Idle

Hold ready _in && valid_out

..4

full_dat tacking

Fig. 5. Pixel FSM

A. Depth Check/Clearing Frame

Once we receive the hcount, vcount, and depth values, the
system checks whether the depth for the hcount and vcount
is less than or equal to the depth stored in the Depth BRAM
at the corresponding address. If the incoming depth exceeds
the stored depth, a mask signal is sent to the MIG req gen,
signaling it to disregard the data associated with that hcount
and vcount—ensuring that only closer pixels are prioritized
for inclusion in the frame. However, if the incoming depth
is closer or equal to the stored depth, the mask signal is not
triggered, allowing the new data to be stacked and sent to the
frame.

All of the input values are then pipelined for 2 cycles in
order to account for the stall of the BRAM. There’s also a
stage of muxing before the values get to interface with the
MIG, these values are decided based on whether or not we’re
clearing. If it’s the first 10 cycles from when we received
the clear signal(which we keep track of with a counter based
on the ready_out signal coming from the mig). We set the
strobe_in and write enable signal of the BRAM both to low,
since the purpose of these writes is to guarantee that the
last pixel was successfully put in the DRAM FIFOs with the
correct frame associated with it.

B. Interactions with MIG and DDR3 RAM

Due to a non-negligible portion of our data coming out of
our rasterize being out of order, reusing the DRAM interface
from lab06 wasn’t feasible. So we opted to implement a
different IP to interact with the MIG. The AMBA AXI
Protocol gives us a wrapper around the memory interface
with 5 ports(but only 4 that we care about) a Read Address
Channel, a Read Data Channel, a Write Address Channel, and
a Write Data Channel. The IP will handle the arbitration for
us and has a strobe signal for writing data, which is very
useful for our out-of-order data processing. In order to stack
out-of-order data, we have a module called "Pixel_stacker”
that takes in 16-bit color values along with their addresses.
It handles misalignment (meaning two consecutive values
aren’t in the same 128-bit stack) by just sending out the data
we currently have stacked, and setting the strobe signal of
the renaming data associated with that chunk with 0. This
allows us to still stack to 128 bits when we can, but not
allow the misaligned addressing to cause inconsistencies in the
DRAM. We also have a wrapper file around the MIG(that we
named DDR_Whisperer), that successfully handles the address
generations based on the AXI signals coming out of the
MIG(including the frame), and handles all the AXI protocol
and clock crossing using the AXI Fifo IP. The state machine
for the pixel stacker can be seen in Figure 5, this design was
simplified heavily from the previous version we proposed in
our preliminary report, mainly to simplify debugging while
integrating.

C. Implementation

VIII. RESULTS

We were able to successfully rasterize and render a cube
using the DDR framebuffer to store and align the pixels and
write and read from two different frames successfully. This
graphics pipeline did not end up using the shader module since
we had trouble synchronizing the backface culling with the
rest of our pipeline (our AXI connections would result in a
deadlock that’s really hard to debug in that case). The DRAM
was rendered at the same resolution except it was placed in
the top corner of the screen since we were focusing mostly
on getting correct rendering behavior before zooming it in to
fill the whole screen.

M3

Fig. 6. Test Cube Rendered
from BRAM

Fig. 7.
from DRAM

Test Cube Rendered

IX. RESOURCE UTILIZATION

We tried to minimize redundant logic in our design, espe-
cially for cycle-intensive operations like division. For example,
our rasterizer does a single division by pre-calculating the
value of 1/D to avoid the need for multiple dividers and all
of the extra logic and resources that come with it.

To that end, we’ve synthesized some of the main modules
in our graphics pipeline with the following resource utilization
on the board:

o Triangle Preprocessing (30 DSPs)

o Rasterizer (25 DSPs)

o Shader (5 DSPs)

o Camera Control (estimated 15 DSPs since it’s not yet
implemented)

With the current design, we currently have 10% of the
BRAM with memory capacity for about 1000 triangles.
Breakdown of BRAM memory usage:

o Mesh with 2,000 triangles about 0.42Mb

o Color Palette about 4Kb

o Depth buffer (320 x 180) (16-bits for depth) 0.88Mb

e Remaining 2.7Mb - (above) = 1.3Mb free for use with
FIFOs and buffering

X. TIMING CONSTRAINTS

During the initial implementation of the graphics pipeline,
we ensured correct pipelining for data-intensive sections like
the rasterizer and the shader. With this, we implemented a
pipelined rasterizer with a throughput of a single pixel per
clock. The overall critical path delay of our whole graphics
pipeline was about 7.503ns and with this, we ensured that we
met timing on the main 100mhz clock driving our pipeline
with some additional slack. We tried to integrate the pipelining
into our design from the beginning and there are minor
opportunities that we found for additional pipelining to drive
the delay down and allow for potential higher frequency
driving the rasterizer, but we did not have time to implement
these changes, and test them thoroughly. To ensure that our
pipelined rasterizer is also able to abide by AXI we created a
modified freezable pipeline module that let us hold all values
static to allow for correct AXI protocol without sacrificing
throughput or dropping data packets.

We currently drive the system of 3 separate clocks, a
100mhz clock to drive the Graphics Pipeline, a 200 mhz clock
to drive the camera(and to serve as reference for the DDR
RAM), and a 74.5mhz clk to drive the HDMI signals out. We
also have a 325mhz clk being produced by the DDR RAM,
which is also the clock at which it produces data. This means
we need clk_crossing between the DDR and the rest of the
system.

XI. RETROSPECTION

A. Design Flaws

A lot of design flaws weren’t revealed in design but rather
during implementation which really slowed down the progress
of the project. A good example is the clearing state and

FSM, the entire functionality of this wasn’t considered until
we were already halfway through integrating the Graphics
Pipeline with the FSM, this also really halted debugging since
a lot of time debugging would turn into us questioning our
design rather than debugging for functionality while already
having a design in mind. Another one that came up was we
didn’t realize that our pipelining logic had to abide by AXI,
so halfway through development we had to implement the
freezable pipeline mentioned, which once again doubled the
difficulty of debugging given bugs since it was a lot harder to
track points of trouble.

B. Integration

The integration was a huge part of the reason we didn’t
make as much progress on the project as expected. Despite
simulating every module we could use CocoTb and Iverilog,
and stress testing our systems very hard with those tests. The
integration between various internal aspects of the framebuffer
to make the whole framebuffer, and the integration between
the framebuffer and the graphics pipeline caused us to spend
way more time debugging than planned. These bugs were also
just so hard to track since we aren’t really able to simulate any
aspect of the project that interfaces with the DRAM. A big
lesson learned here is we need to synthesize things in Verilog
much earlier in the process. Thankfully we didn’t violate
timing or use too many resources on the board, the main issue
was just not being able to debug the on-board bugs we couldn’t
find in simulation in time. Another aspect of integration that
would’ve helped complete more of the project sooner was
just synthesizing on the board during the earlier states. We
had a few bugs revolving around misconceptions/typos around
which clocks drove which aspects of the project, which took
a considerable chunk of time and would’ve greatly helped in
debugging integration if done sooner.

C. Framebuffer

This gets its own section since in retrospect the framebuffer
should’ve been the first thing implemented. We went into this
project planning to do all the simulatable aspects(most of our
math and the graphics pipeline) first then working on the
framebuffer after those aspects were done and fully tested.
However we really should have worked on the framebuffer
earlier, that way we could have centered our project around
that. Instead, we had a fully working(at least in simulation)
graphics pipeline that we just tried to attach to the end of the
framebuffer, which didn’t quite end up working. Also, a lot of
the design flaws with the framebuffer like the state machine
for the out-of-order data stacker and clearing state, would’ve
been much easier to debug if we had solidified the design in
the earlier stages of the project. Utilizing a different IP, and
taking out a lot of the support offered from deviating from
lab 6, made the framebuffer incredibly time-consuming and
challenging to debug.

However all and all this project was an incredibly educa-
tional experience, and a great mix of fun and challenging.
And if we were to have any advice for future teams looking

to do something similar it would be to start synthesizing on
the board.

ACKNOWLEDGMENT

We’d like to thank the entire teaching team for all the help,
guidance, debugging, and fun times in the lab. We’d also
especially like to thank Kailas, Jan,and Kiran(but especially
Kailas) for all the advice,debugging,and support throughout
this project, and Joe Steinmeyer for all the great lectures.

REFERENCES

	Overview
	High-Level Design
	Project Milestones
	Milestones

	Environment Assumptions
	Camera Control
	Graphics Pipeline
	3D to 2D Projection
	Shading
	Rasterizer
	Whole Graphics Pipeline

	Framebuffer
	Depth Check/Clearing Frame
	Interactions with MIG and DDR3 RAM
	Implementation

	Results
	Resource Utilization
	Timing Constraints
	Retrospection
	Design Flaws
	Integration
	Framebuffer

