
EAVESDROP - Enhanced Audio Voice Extraction
and Selective Detection for Remote Observation

and Processing
Samvit Das

Dept. of Electrical Engineering & Computer Science
Massachusetts Institute of Technology

Cambridge, MA
samvitd@mit.edu

Anand John
Dept. of Electrical Engineering & Computer Science

Massachusetts Institute of Technology
Cambridge, MA
anandj@mit.edu

Abstract—Clear listening in a specified direction is a highly

desirable feature of microphone systems, especially in noisy

environments such as conference rooms and lecture halls. The

tight time constraints for real-time processing of rich audio

suggest an FPGA-based implementation of a beamforming array

audio processing algorithm to spatially filter a signal. In this

work, we propose EAVESDROP, an end-to-end beamforming

audio processing pipeline that simultaneously isolates a direc-

tional audio signal and tracks the motion of an audio source. In

particular, we develop and implement a PCB microphone array

design and a filtering and tracking pipeline built on an Artix-7

FPGA development board.

Index Terms—Digital systems, Beamforming, Signal process-

ing, Field programmable gate arrays, Audio systems

I. INTRODUCTION

Beamforming and direction-of-arrival (DoA) are well-
studied problems in the field of signal processing. A variety
of algorithms exist and achieve high performance especially
in frequency-specific RF applications, but extensive work
has also been done to adapt these algorithms for generic-
frequency audio processing. These adaptations have achieved
success in speaker diarization, voice recognition in vehicles,
and long-range listening in noisy environments. In this paper,
we demonstrate that the Generalized Sidelobe Canceller model
of beamforming can be implemented in a compute-efficient
manner to spatially filter audio in the human vocal range of
frequency (100 - 4000 Hz), and provide a simple algorithm to
update the state estimate of a speaker’s position in real-time.
We implement our design on a Field Programmable Gate Ar-
ray (FPGA). An FPGA is ideal for this time sensitive problem
because it is able to process the inputs of several microphones
in parallel and optimize the limited set of operations necessary
for most beamforming algorithms.

II. PRELIMINARIES

Beamforming algorithms exploit a signal’s dependence on
the relative position of the transmitter and the receiver. For
this reason, most beamforming devices consist of an array of
N spaced receivers.

6.205 Digital Systems Laboratory, Massachusetts Institute of Technology

A. Time Delay of Arrival

The phase picked up by a signal with wave-vector ωk over
a displacement ωr is !ε = ωk · ωr. The time delay is then ϑ =
ωk
ε ·ωr = v̂

vp
·ωr, where vp is the propagation speed of the signal

and v̂ is the unit vector direction of propagation.
Therefore, for a compact microphone array in which a

source can be assumed to be at an equal orientation relative to
each microphone, the time delays of a signal at microphone i
relative to the origin are given by:

ϑi =
1

vp
(v̂ · ωri) (1)

To synchronize the signals xi[t], we must compensate for
these delays:

xi[t→ ϑi] →↑ xi[t] (2)

From this point on, we treat the xi[t] as though they are
appropriately synchronized.

B. Delay and Sum

Assuming prior knowledge of the direction of arrival v̂,
the simplest beamforming algorithm is to simply apply the
appropriate delays to each signal and output a weighted sum
of the synchronized signals. This is known as a delay and

sum (DAS) beamformer.
Let x[t] ↓ RN be the vector of all (synchronized) micro-

phone signals. The output of the DAS beamformer is:

y[t] = wT
0 x[t] (3)

Where w0 ↓ RN is a vector of weights that comprises
the filter. The underlying idea of the DAS beamformer is
that noise and signals from undesired directions will not be
appropriately synchronized and thus are likely to destructively
interfere. Therefore, the input will be spatially filtered in the
direction v̂.

C. Generalized Sidelobe Canceller
A drawback of the DAS beamformer is that it has poor

resolution. That is, signals relatively far from the desired
direction will still contribute to the beamformer. This makes
it especially vulnerable to strong incoming signals from un-
desired directions.

The Generalized Sidelobe Canceller (GSC) beamformer
is an adaptive algorithm that applies a time-varying filter w[t].
The idea behind the algorithm is to minimize the signal power
P while constraining the filter coefficients to eliminate the
trivial solution w = 0. For Mc linear constraints, we can
form the constrained optimization problem:

min |wTx[t]|2 s.t. CTw = c (4)

Where C ↓ RN→Mc and c ↓ RMc define the constraints on
the filter coefficients. We may decompose w = w0 + wa[t].
Where w0 belongs to the column-space of C and wa belongs
to its left null-space, e.g., CTwa = 0. We can then vary wa

without changing the value of CTw as long as CTw0 = c.
For this reason, we call it the adaptive filter.

Let B ↓ RN→(N↑Mc) be a matrix such that CTB = 0.
Then for any vector a ↓ RN↑Mc , Ba belongs to the left null-
space of C. Substituting into Eq. (4), our optimization problem
is now:

y[t] = (w0 +Ba↓[t])Tx[t] (5)

a↓[t] = min
a[t]

|(w0 +Ba[t])Tx[t]|2 (6)

Taking the gradient of the objective:

ϖP

ϖa[t]
= 2 ·BTE

{
x[t]x[t]T

}
(w0 +Ba[t]) (7)

Setting this equal to zero, we have a closed form solution
for the optimum a[t], or the Wiener solution:

a[t]↓ = →E
{
xTBBTx

}↑1
E
{
wTx ·BTx

}
(8)

III. ALGORITHM IMPLEMENTATION

A. Beamforming
We implement the GSC beamformer algorithm with the

following choice of constraints:

CT =
[
I, . . . , I

]
(9)

c = ϱ0 (10)

Where c is a unit impulse. Note that we use an identity
operator I over 1, because we act over the L-sample wide
window of the signal. These constraints are motivated by
the assumption that we work in free-field propagation. The
constraint of C is motivated by the fact that the desired signal
is the same at every microphone since we assume that x[t] is

appropriately time delayed. Thus, C describes the . The unit
impulse corresponds to the identity filter since we do not want
to distort the signal. We can then choose the fixed beamformer
component as:

wT
0 =

1

N

[
ϱ0, . . . , ϱ0

]
(11)

In other words, a simple average over the N components
of x.

The blocking matrix B is not uniquely determined; the
choice of the following is a valid solution:

B =
1

N





→I · · · →I

(N → 1)I
. . .

...
...

. . . →I
→I · · · (N → 1)I




(12)

Note that by our choice, B ↓ RN→(N↑1) and a[t] ↓
R(N↑1). The structure of these matrices allows for memo-
ization.

Define xB,i→ [t] to be the i-th row of BTx[t] for i ↓
{1, . . . , N → 1}. Applying the matrix:

xB,i[t] =
N∑

j=i+1

xj [t]→wT
0 x[t] (13)

xB,i[t] = xi+1[t]→
1

N

N∑

j=1

xj [t] (14)

xB,i[t] = xi+1[t]→wT
0 x[t] (15)

In our implementation, we directly compute the optimal a[0]

upon activation. This requires computing the matrix inverse
E
{
xTBBTx

}↑1
. At all other times, we update our estimate

of a[t+ 1] by running a gradient descent initialized at a[t].

B. Direction of Arrival

Upon activation, we require that the steering vector is
manually specified by the user. This is done to prevent a
computationally expensive search over the entire hemisphere.
We expect that most use cases will have priors on the general
direction of the desired signal.

At all other times t > 0, for estimated direction of arrival
v̂[t], the DoA algorithm predicts the next direction as:

v̂[t+ 1] = argmax P (û) s.t. |v̂ → û| ↔ ς (16)

The idea being that the desired signal’s power will be
greatest when the directions are perfectly aligned.

After running the GSC beamformer algorithm on the current
direction estimate v̂[t], we estimate the power P (û) by first
applying the appropriate time delays and then running a
gradient descent to estimate aû[t] for each û.

Fig. 1. Resolution tests: sources with amplitude 1, frequencies 400 Hz and 600 Hz placed at azimuths →ω
2 and ω

4 respectively.
Left: Plot of beamformed output power with respect to angular position.
Right: Plot of beamformed output signal at various steering directions. Blue and orange signals correspond to steering directly at placed sources.

C. Algorithm Evaluation
We evaluate our GSC beamformer implementation via a

Python simulation. We tested against the baseline of a pure
DAS algorithm on the metrics of sensitivity to changes in
steering direction and resolution between separate sources.

Figure 1 displays both the improved sensitivity and resolu-
tion of the GSC algorithm. The difference between a steering
in the direction of a source and a steering in any other direction
is much more pronounced. The direct output signals also show
much improved suppression of the source signals when the
steering is not aligned.

We note that the GSC algorithm tends to suppress the source
signals even when the steering is aligned to a lesser degree.
This effect is more pronounced as the frequency increases.

IV. HARDWARE & ARCHITECTURE DESIGN

The overall device hardware is shown in figure 2 (a) and
the architecture is described in the block diagram in figure 2
(b). We will now explain the componenents in more detail.

A. Hardware Overview
The device is centered around the NEXYS A7 FPGA

Development board with an Artix A100T FPGA. The board
interfaces with a custom built microphone array to gather input
as well as via UART to a computer and via I2S to an audio
DAC to output it’s processed audio.

B. Microphone Array
The microphone array consists of 16 microphones arranged

in a circular pattern of diameter 20 cm. Each microphone

outputs data over its own separate wire in pulse density
modulation (PDM) format at a user-specified clock rate of
3 MHz. The clocks are shared between all the microphones
such that all the microphones sample at the exact same instant
(almost, half of the microphones sample on the rising edge and
the other half on the falling edge of the clock so that they can
share a data line). These sampling outputs are connected to
the FPGA via the PMOD ports.

C. Microphone Input
The PDM input needs to be low-pass filtered and decimated

to determine the actual sound measured by the microphone.
Since the microphone can only measure sound accurately up
to 10 kHz and this is the upper limit on human speech, the
incoming audio will be low-passed down to 10 kHz. More
precisely the overall filter will have a pass band till 6 kHz and
a stop band starting at 10 kHz.

This is done in the following manner. A cascaded integrator-
comb (CIC) filter is used to do the initial low pass filtering
and bring the microphone data from 1 bit at 3 MHz to 18-bit
at 192 kHz. Then 3 stages of half-band FIR filters decimate it
down to 18-bit at 48 kHz. It is then low-pass filtered through
a conventional FIR low-pass filter to return the final 16-bit 48
kHz audio that will used in the rest of the processing. There
are also additional amplifier stages integrated inbetween the
filters controlled by switches on the FPGA to compensate for
the low input volume. Since the microphone bases its output
signal on its acoustic overload point of 120 dB, and the normal
audio the microphone measures is in the 60 - 80 dB range,
significant amplification is required to make the signal heard.

Fig. 2. Final device design. (a) Constructed microphone array with audio jack and UART output. (b) Overarching block diagram

We choose this architecture because processing the raw
1-bit audio is challenging due to the high 3 MHz sample
rate. Although the CIC filter has poor stop band attenuation
and pass band characteristics, its computational efficiency,
especially as compared to more conventional FIR filters, makes
it a good choice for this step. In addition, because the output
of the filter retains a high frequency (192 kHz), almost all
aliased noise falls into the higher frequency band which will
then be removed by the better filters later in the pipeline.

The rationale for the choice of the half-wave filter is similar.
It has improved performance compared to the CIC filter while
being less efficient. However, it is still more efficient compared
to a conventional FIR filter and only aliases sound into a
frequency band that is removed by the next filter in the
pipeline.

The last stage is the conventional FIR filter. This finishes
the processing with the result being a clean filtered signal
but with a much higher computational efficiency as compared
to directly applying a conventional FIR filter to the input. In
fact simulations showed that this pipeline resulted in better
stop band attenuation and pass band characteristics than simply
applying one FIR decimating filter to the input.

D. True Time Delay

Prior to the PDM microphone output being processed by
the filtering and decimation step, it is passed through a large
BRAM buffer. The index of the element that is outputted
from the buffer to the next module is determined based on
the direction the device is seeking to beamform in. That is
we true time delay the inputs while it’s still in the PDM
stage. This gives us the advantage of having a very fine
resolution on the delays applied to each signal since the PDM
is a much higher frequency signal, 3.072 MHz, compared to
the audio after the filtering step which is at a much lower
48 kHz. To see the effect this decision had on precision,
consider how far sound travels in the distance between two
samples. In the case of the 3.072 MHz frequency, it travels
343 m/s ·1s/3.072↗106 = 0.11mm. In the case of the 48 kHz
frequency, a similar calculation shows that it travels 7.1 mm.
This can be much larger than the distance between some of

the microphones for some steering directions and defeats the
purpose of the high precision used in the construction of the
array.

E. GSC Beamformer

This module implements the GSC beamforming algorithm
explained in great detail in section III. Our implementation
decouples the gradient descent iteration of the beamforming
filter from the collection of data such that it is always updating
even while waiting for a new audio sample. The pipeline can
be described in three steps: computing the audio covariance
matrix E{x[t]x[t]T } (in expectation) of the audio data, calcu-
lating the gradient and objective with respect to the adaptive
element a, and applying the descent step to the current filter
value. In parallel, the current estimate of the beamforming
filter is applied to incoming data. Under this configuration,
there is no need to pipeline the GSC algorithm and the data-
flow and unnecessarily slow the optimization process.

To easily store and update the expectation value of the
covariance matrix, we store each new vector of audio samples
in N FIFO queues with lengths L = 1024. This corresponds
to a ’window’ of 20 ms which is adequate for frequencies >
100 Hz. On a time-step t, we compute the covariance matrix
of data entering the queue x[t]x[t]T , and leaving the queue
x[t→L]x[t→L]T . Their difference is then added to a running
estimate. The FIFOs are stored in BRAM for their size that
is too large for registers but manageable. Each queue uses 1
RAMB18 unit.

Because of the structure of the blocking matrix in Equation
12, its product with a vector is a simple operation – one
only needs to compute the average value of the vector and
subtract from each entry. To apply the non-trivial matrix
vector products of the covariance matrix, we implement a
parallelized vector dot product module. This module is used to
compute the gradient and power values. Note that the power
value is not necessary for the optimization algorithm but is
helpful to see during debugging. To reduce resource utilization,
we serialized part of the dot product calculation, trading off
the fully parallelized latency for a more easily built design.

Ultimately, our calculation pipeline used 138 DSP48E1 blocks
with N = 8 active microphones.

F. Communications Module & Output

To determine which way to point the beamformer, the
communications module listens for input from the computer
which communicates with it over UART. This is then set over
to the Delay Calculator block which computes the proper true
time delay for the input.

After going through all the filtering and beamforming steps,
the audio is outputted through 2 channels. One is through
UART upon which the audio is saved to the computer. The
other is through I2S to a digital analog converter (DAC) which
connects to a realtime headphone output. The audio outputted
over UART is 14-bit 48 kHz audio at a baud rate of 1,000,000.
The reason for 14 bits instead of 16 is that the first two bits
are used to indicate which byte is the more significant one
which is used to decrease errors in transmission.

V. DESIGN RESULTS & EVALUATION

We tested both the DAS and GSC beamforming algorithms
on our design. With N = 16 DAS beamformer performed
about as expected, with a 3 dB difference between a signal
received from the steering direction as compared to from 90↔

away. This corresponds to about half of the response magni-
tude. Comparing to Figure 1, this matches our expectations
for the non-adaptive true time delay beamformer.

With N = 8, the GSC beamformer unexpectedly returned
nearly zero audible output. It is unclear whether this result
is due to algorithmic oversights or issues in the hardware
pipeline. Upon further review, it appears that the GSC al-
gorithm is known to suffer from target signal cancelation,
especially when adapting concurrently with data, due to the in-
evitable correlation of the target signal with interfering signals
(by reverberations, steering error, etc.). [1]. This potentially
explains the discrepancy between the realized output and
simulation results, where, for example, the ideal source model
is incapable of modeling the correlations between target and
interference signals by reverberation. The idealized sinusoidal
outputs also may be more easily decorrelated than generic
voice audio.

Optimizations for the GSC algorithm include a time-variant
step-size descent, otherwise known as the implicitly controlled
least mean squares algorithm. Further work on this project
would explore this idea. However, the resource constraints
of the FPGA may make more complex algorithms (involving
division) infeasible.

A. Hardware Design Evaluation

Our initial design with N = 16 microphones suffered from
extreme over-utilization issues. Specifically, Vivado reported
a requirement of double the available 63,400 ’LUT as Logic’
blocks. In addition, 236 of the 240 available DSP48E1 blocks
were utilized. We implemented several optimizations to cut
down on usage. There were also several timing violations.

Firstly, we pipelined and serialized the dot product compu-
tation module. This increased the number of clock cycles per
dot product output from 1 to N , but significantly reduced the
number of LUT and DSP blocks needed for combinational
multiplications and additions. This included both limiting
one multiplication per clock cycle and replacing all indexing
operations with a simpler bit-shift on each cycle.

We used several to compute average values of filters and
in turn find their matrix products with the blocking matrix B.
We replaced these with pipelined tree adders, which resulted
in further lowered utilization of LUTs as Logic and DSPs, as
well as a positive WNS and WHS.

We further pipelined/serialized the calculation expectation
value of the covariance matrix on each new data read. Because
of the decoupling of the data pipeline and the adaptive
filter pipeline, this choice came at effectively no cost to the
algorithm.

With the optimizations, the design met utilization and timing
requirements for N = 16 microphones. However, the compiler
was unable to successfully place all shapes onto the FPGA –
we suspect that this is because of many large unpacked array
registers that are difficult to route together. For example, the
covariance matrix and other auxiliary values were stored in
N↗N↗16 registers. Though LUT as Memory utilization was
not exceeded, the requirements for placement/routing would be
difficult to satisfy.

In the interest of time, we opted to reduce the number of
microphones to N = 8 in order to comfortably satisfy all
requirements and successfully build the design. We propose
solutions to the mentioned placement issues that would be
implemented in further work: rather than using registers for
the covariance matrices, store them in BRAM Memory. This
can either be stored as a singular N2 entry deep BRAM,
or N distinct N entry deep BRAMs. This will incur a cost
proportional to the depth upon every update of the covariance
matrix. However, because the time between data reads is
infrequent compared to the 100 MHz clock, this comes at
little cost.

The matrix-vector product module will need to be restruc-
tured to take serial inputs of the rows of the matrix. In this way,
the entries are loaded from BRAM and then multiplied with
some vector, row-by-row. This also incurs a cost proportional
to the depth. Because BRAM is more easily routed than large
registers, we expect that this would solve most placement
issues.

VI. AUTHOR CONTRIBUTION

A. Individual Contributions

Samvit researched and benchmarked beamforming algo-
rithms in Python and implemented the core algorithm modules
for the DAS and GSC algorithms, including the true time
delay module, gradient calculation module, and gradient de-
scent module. Most of his work was done test-benching the
beamforming algorithm modules and ensuring they matched
simulation results. In addition, he also verified the efficacy of

the microphone array design parameters (radius, sample rate,
etc.) in simulation.

Anand designed and fabricated most of the microphone
array, including the PCB design, microphone choices, and
array layout. He developed the filtering pipeline including the
CIC and low-pass FIR filters. He also wrote the UART and
I2S communication modules in order to interface with the
computer and a headphone jack.

VII. ACKNOWLEDGEMENTS

We would like to thank Justin Htay for guidance in un-
derstanding signal processing algorithms and Ben Wang for
advice in completing a microphone array beamforming project.
We would also like to thank the 6.205 staff, specifically Jan
Park for unmatched responsiveness and encouragement with
design advice, and Joe Steinmeyer for providing hardware
resources and guidance throughout the project.

VIII. PROJECT CODE

REFERENCES

[1] J. Bourgeois and W. Minker, Time-Domain Beamforming and Blind
Source Separation. Springer Science & Business Media, 2009.

[2] H. L. Van Trees, Optimum array processing. New York Wiley, 2002.
[3] S. Jin, D. Kim, Hy. Kim, C. Lee, J. Choi and J. Jeon, ”Real-time sound

source localization system based on FPGA,” 2008 6th IEEE International
Conference on Industrial Informatics, Daejeon, 2008, pp. 673-677, doi:
10.1109/INDIN.2008.4618186.

[4] T. Verbeure, “Design of a Multi-Stage PDM to PCM
Decimation Pipeline,” Electronics etc. . . , Dec. 20, 2020.
https://tomverbeure.github.io/2020/12/20/Design-of-a-Multi-Stage-
PDM-to-PCM-Decimation-Pipeline.html (accessed Nov. 27, 2024).

[5] R. Lyons, “A Beginner’s Guide To Cascaded
Integrator-Comb (CIC) Filters”, DSP Related.com,
https://www.dsprelated.com/showarticle/1337.php (accessed Nov.
27, 2024).

[6] B. Wang, “Phased Array Microphone,” Ben Wang’s Blog, Feb. 26,
2023. https://benwang.dev/2023/02/26/Phased-Array-Microphone.html
(accessed Nov. 27, 2024).

