LiTerm: An Independent File Editor, Assembler,
and Processor

Tsegazeab Beteselassie
Department of EECS

Ziyad Hassan
Department of EECS

Simon Opsahl
Department of EECS

Massachusetts Institute of Technology Massachusetts Institute of Technology — Massachusetts Institute of Technology

Cambridge, MA
tsegaz @mit.edu

Abstract—We present a design for a terminal-based text editor
fully supported in hardware on a Xilinx FPGA. We utilize a
independent RISC-V processor that runs assembler code located
in instruction memory. Separate from the processor exists a
terminal-based text editor that accepts PS/2 keyboard input and
allows for dynamic program file editing. We propose a system
that performs the reduction of assembly code to binaries entirely
on the FPGA. In order to validate our results, we use a data
memory-mapped buffer to display the process of bubble sort on
a set of elements.

Index Terms—digital design, field programmable gate array,
assembly, processor, terminal, RISC-V, PS/2

I. PHYSICAL SYSTEM

Our design consists of three physical components:

o Monitor: We connect to a 720p monitor by HDMI. The
monitor visualizes the text editor and MMO plotting.

o Keyboard: We use a PS2 keyboard connected to the
FPGA by cable and a MDFLY breakout board [1]. The
keyboard is used for generating assembly code.

o FPGA: We use a Real Digital Urbana FPGA development
board provided by the course staff of 6.205: Digital
Systems Laboratory. Most of the text editor, assembler,
processor, and visualization components are hosted here.

FPGA

CLK DATA

720p I
— PSi2
OO0 0D0O0000)
_1[]1[1[1[1(1[1[1[1[1[1[1[1[)
- S
[—

Fig. 1. Overall Physical System

A. Monitor

The 720p monitor communicates with the terminal via the
TMDS protocol learned in lab. The relevant signals for the

Cambridge, MA
zhassan3 @mit.edu

Cambridge, MA
sopsahl @mit.edu

monitor are generated with the signal generation module,
which get passed into the terminal controller to coordinate
sprite drawing. The monitor displays our terminal at 60FPS.

B. Keyboard

The main pieces of external hardware for LiTerm are the
PS2 keyboard and the 720p HDMI monitor. For device-to-
host communication, the PS2 keyboard sends data as follows:
1 start bit, 8 data bits (LSB first), 1 parity bit, and 1 stop bit
as shown by figure 2. What’s also different about this protocol
is that the bits get sent on the falling edge of the PS2 clock.
Additionally, the PS2 clock is slower than our FPGA’s clock;
the PS2 clock—depending on brand—runs between 10-16kHZ
while the FPGA is 100Mhz. Although we used the HDMI
Clock (74.25Mhz), this is still way faster than the keyboard
clock. In order to cross this clock domain, we used 2 buffers
and sampled the state of the PS2 clock two states back. Thus,
we are able to detect a falling edge whenever the first buffer
was high and the second was low. This way we were able to
use state machine to accumulate the data until we got to the
stop bit. At that point we just raised a signal to indicate that
data is ready to be sent. We get rid of extraneous keyboard
signals(such as scrolling buttons) then that data is sent to the
terminal controller.

CLOCK
DATA

START
DATAD
DATA1
DATA2
DATA3
DATA4
DATAS
DATAGB
DATA7
PARITY
STOP

Fig. 2. PS2 Protocol

1) Keyboard FSM: The Keyboard FSM starts with IDLE
until we the data drops low, which indicates a start bit. This
allows it to go the Processing stage which we accumulate data
until we get to the Done stage which is triggered by a data
high after 10 bits.

2) Keyboard Protocol Adjustment: The Keyboard had a
protocol of sending in the [Letter][Special Break Charac-
ter][Letter]. This gave us a bit of trouble since we had

originally only expected one letter at a time. Additionally it
could do [Letter][Letter]....[Break character][Letter] depending
on how long you held it. Since we didn’t have a mapping to
the break character it would appear as a space, which was
a subtle bug we had. Additionally, the keyboard mechanically
was a bit old so sometimes it would hold a button even though
we clicked on it once(even with a debouncer module) Due
to this mechanical issue we ended up waiting for the [Break
character] then took the [Letter] after it allowing us to only
type one by one, which allowed us to type faster and not have
to deal with physical mistakes as much.

II. TERMINAL CONTROLLER

The terminal controller takes in keypress data and maps
spritesheet locations generated by the translator module into
ASCII characters. These ASCII characters are what the ter-
minal controller sends to the sprites module to get saved to
the memory BRAM, while the spritesheet locations that get
sent are used to display the characters onto the 720p HDMI
monitor. In addition to this, based on what key is pressed,
the terminal controller updates the location of the key cursor.
For example, backspace moves the x-value back by one, while
enter changes the y-value by one. In addition, the values sent
to the character sprites module to be written into the display
memory also get sent to the text editor memory. The text editor
memory is what the assembler reads from.

translate_keypress

sprite_location

data
keyboard | clock ps2_keyboard._interface

frame_buffer

video_sig_gen

[characxev,spmes} { text_editor } [visualizer }

Fig. 3. Terminal and Display Block Diagram

The status of the processor will be displayed on the FPGA
using LED lights. Blue is the idle state, where the terminal
is still being written to. When the user is ready to compile,
the LED will turn either red or green depending on whether
their code was successfully compiled. If it was successful,
they can also then the MMO can be displayed and the speed
of execution will be slowed to show how the states of the
register change. For a program such as bubblesort, at each step
of execution, the heights of the different registers will change,
showing how the registers go from unsorted to sorted.

A. Text Editor

Both the character sprites and the current state of the
terminal are stored using BRAM modules. The character
sprites are turned into a spritesheet and palletized, with the
relevant portion of the spritesheet being cut out and displayed

for each part of the terminal. The terminal display itself is
split up into a 76x42 grid, with each grid square containing an
8 bit ASCII value corresponding to the character it contains.
The grid values are stored in a BRAM and updated with
every keypress. To enable scrolling, the terminal grid actually
extends past the screen, and the number of times the scroll
button gets pressed adds an offset to the BRAM address
input, which moves all the values down by one each time.

As the hcount and vcount progress through the screen,
the BRAM address to read from gets changed, and the
sprite to display gets set based on what grid square it’s in.
This has a six-stage pipeline due to using multiple BRAMs
consecutively. The text editor generally only supports only
letters, numbers, slashes and apostrophes.

III. PROCESSOR

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 [152 rs1 funct3 rd opcode R-type
imm[11:0] rsl funct3 rd opcode I-type
imm[11:5] \ 152 rsl funct3 imm[4:0] opcode S-type
imm[12]10:5] \ 152 sl funct3 | imm[4:1]11] opcode B-type
imm[31:12] rd opcode U-type
imm[20[10:1[11]19:12] rd opcode J-type

Fig. 4. 32 bit instruction template

For our processor we used an 8 stage pipeline Risc-V
processor. The ISA that we use for this will be a Risc-v Base
Integer 321 instruction set without ebreak and ecall, since we
won’t be using an OS. This ISA will be shared with the as-
sembler so that when the assembler receives instructions, it’1l
translate it to 32 bit instructions that the processor understands.
This was a 8 stage processor because we had to deal with
requesting data from the BRAM which took two cycles so we
had to delay fetch 2 extra cycles and consequentially since we
had to request data for memory instructions during the mem
stages, we had to wait extra cycles for that.

A. Pipeline Stages

Fetch 1 is just request stage where we kept track of which
PC the bram is fetching, and whether it was a valid request.
Fetch 2 is a pipelined copy of Fetch 1 one cycle later. Finally,
Fetch 3 is also the same except the data is now available
from the bram two cycle later, so the information(pc, valid,
instruction) is passed to decode. Decode: the Decode stage
is where the instruction is translated it into relevant program
information(funct7, funct3, opcode, imm, register reads, etc.)
Decode is also where registers are read and if there’s any haz-
ards indicated by a flag down the line, the processor stalls here.
Execute: During this stage the processor determines any jumps
and branching, additionally it performs ALU instructions. If
there are any jumps or branches execute sends out a signal
to annul the instructions after it. Memory:This is where we
request memory from the bram for any memory instructions,
we wait two cycles and we get to writeback, if there are none
we don’t request anything. Writeback: Once we have our

memory data we are able to store it in a register or write
back to memory. Here there’s a potential hazard, so if there’s
an instruction that uses a memory location that is the same
as the one being edited here(specifically Store instruction), it
stalls the instruction up the pipeline.

B. Instruction writing

Since we won’t be instantiating our processor with the pro-
gram information we needed a way to write to the instruction
memory. So what we did was give the processor an Instruc-
tion Write Enable, Instruction Write Data, Instruction
Write Address ports, which allowed outside modules to write
to our instruction BRAM. We also prevented our processor
from running until we got a signal that the outside module(the
assembler) was done writing to the processor.

C. MMO Data Writes

Since we had to also visualize our memory we decided
to have the visualizer have it’s own BRAM instantiated to
the same dataMem.mem file as the processor, and we added
3 Output ports to the processor. Processor Write Enable,
Processor Write Data, Processor Write Address. We con-
nected these ports to our store signals, so whenever we stored
something back in our data memory, we also sent it out to be
written to the screen.

Proc_Write Enable

Instruction_Write Enable
> - >

Instruction Write_ Addr Processor Proc Write Data

| A

>

19|quiassy
Aeydsig OWW

Instruction Write Data
Proc Write Addr

7| Enable

r

Assembler done

Fig. 5. Processor interaction with other modules

i

grnununnsununns

suBRRRBEsssRRRLS
E3.3.3.3.5.5.3
sRRRRERaNEERNNLG
gunnsuunusnannnnnnn
BRBEBRBTeRRRwNS

2
Fpgunnnanan

©
3
3
3
3
3
3
3
=
=
=
3
3
3
3
3
3
[
3
3
3
3
=
=
3
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

suunsssssssnee
#uERRBBBBRTBRBECBBB R RS

Fig. 6. (Unsorted) Data Memory Mapped Visualization

D. Visualization

In order to visualize the results of the program being run,
we take the first 42 values in data memory and create a bar
graph out of them. This uses the same display system as the
terminal, so each memory location is represented on the y-
axis as a 16 by 16 grid location. The heights of that row,

going along the x-axis, represents its current value. We use
a hashtag as the unit of measurement for the bar graph: for
example, three hashtags for memory location one represents
the value 3. We wanted the processor to run slow enough so
that we saw the visualization. So we did some calculations
and we got that in order to see it using our eyes slowly we
would need about 1,000, 000 cycles of the HDMI Clock. We
successfully down cycled the processor by setting an artificial
clock that went high whenever was < 500,000 / Half Clock
Cycle and low otherwise. We used this artificial clock as the
processor’s clock. An example visualization of this is shown
in Figure 6 and 7.

Fig. 7. (Sorted) Data Memory Mapped Visualization

IV. ASSEMBLER

The assembler’s goal is to integrate the code written into the
text editor into the processor. When we trigger the assembler
with sw[1], the assembler maps the code to a set of instruc-
tions, converting the values into binaries that are written to
Instruction Memory (IMem). Our control flow depends on a
variable titled assembler_state. Each state coresponded
to a specific mode of operation:

e IDLE : Keyboard input updates the text buffer.

e PC_MAPPING : The assembler is iterating through the
text buffer and storing the PCs of each instantiated label.

e INSTRUCTION_MAPPING : The assembler is iterating
through the text buffer and writing translated instructions
into IMem.

e ERROR : An error was encountered in assembling the
code. Changes must be made before code can be reassem-
bled.

e SUCCESS : The code is successfully assembled and
written into IMem. The processor is now executing.

The control flow is either triggered by sw[1], which

signals a transition from IDLE to PC_MAPPING. Once
we fully iterate through the text, we transition to
INSTRUCTION_MAPPING, and then again to SUCCESS. If
an error is encountered at any point to the assembly, then we
transition to ERROR.

When we assemble the code in the text editor, we rely on

several design choices:

o All registers must be in the format r__.

.start.
/ Initialize base address and array size
addi rel1, ree, xi
addi ri1e, ree, xo
addi ri11, ree, xe2b

/ x1 = 1 for decrementing
/ x10 = base_addr = 0
/ x11 = n = 10 (array size)

/ Initialize outer loop index i

addi r12, reo, xe / x12
.outer.

sub r31, rii, rel
r3i,

/ x31 =
bge ri2, .end. / if i >=n

Fig. 8. Example of Correct Syntax

o All immediate values must be hexadecimal and preceded
by x.

o All text after / in a line will be ignored.

o Labels must be in the format . LABEL. and the length
of the label must not exceed than 6 characters.

These design choices ensure that the assembly step proceeds
consistently and limit the amount of syntax difference that
needs to be supported. If all these design choices are followed,
and the instruction syntax obeys what is to be expected, then
the assembler should work. If they are not obeyed, then we will
transition to ERROR and remain there until the syntax error
is fixed in the code. Potential improvements could incorporate
specified error handling and increase the syntax support for
things like decimal immediate values.

A. Components of the Assembler

The assembler accepts the following inputs:

e incoming_character[7:0] : The ASCII values of
the incoming character stored in the text editor buffer.

e new_character : Pulses high when a new character
is ready to be processed.

e new_line : Pulses high when a new line is to be sent.

e assembler_state : Described above.

These signals are then fed into one of four key submodules
corresponding to each of the patterns that need be recognized:
instructions (READ_INST), registers (READ_REG), immedi-
ate values (READ_IMM), and labels (READ_LABEL). The
label submodule is also active when we record the PCs of the
labels in the first iteration. Each submodule is activate based
on the state of the decoding process. If for example, we were
reading a I-Type instruction, we would have the following
pattern:

READ_INST — READ_REG — READ_REG — READ_IMM

B. Submodule Architecture

Each of the four submodules is ordered in roughly the
same manner. They are only on when their valid_in signal
is high. Then, they use a rolling buffer to accumulate the
characters until termination or a recognizable pattern in the

case of labels and instructions. Then, each module returns data
consistent with their purpose:

e READ_INST : opcode, funct7, funct3

e« READ_REG : reg (the index of the register)

¢ READ_TIMM : imm

e READ_LABEL : offset

Each of these items is placed into the instruction struct,
and as soon as the last piece of data for a specific instruction
is extracted, the instruction is assembled using all of its
components and sent as an output to the module along with a
single-cycle-high new_instruction.

O)

char [7:0] Accumulate
new_char
valid_in
done, error Comparison
dat Calculation
ala Lookup

-

Fig. 9. High-level Submodule Architecture

C. Resource Utilization

The assembler module used a miniscule fraction of the
resources available on the FPGA. There was no need
for BRAMs, and everything was computed using reg-
isters. We made use of 619 LUTs, with the major-
ity in use by the instruction_interpreter and
label_controller, likely for their extensive utilization
of registers. I made an effort to minimize the register usage,
however, using methods like ASCII compression to store label
buffers and high modularity to avoid redundancy.

One domain that could be improved upon is that of clocking.
In order to manage state transitions after instruction decoding,
I had to downcycle the sending of characters by a factor of
2. As a result, I could speed up the process by a factor of 2
through speculative state transitions. This effect is minimal,
however, as the assembler works in a real time system, and
20,000 cycles at a 100 MHz clock is really no different than
10,000 from the application and user side.

V. REFLECTION

Ultimately, this project was a great way for us to learn a lot
more about why people making ISAs like RISC-V make the

design decisions they do. We also learned and incorporated a
new set of protocols: namely PS/2 for the keyboard interface.
We adapted lab code for the terminal display, and we designed
and built a framework for testing the processor and assembler.
A few key insights we identified:

o Simulation in cocotb was essential to the success of our
project. Being able to gather as much data as possible
about why something is going wrong is the first step in
solving any major roadblock. I think testing was the only
way we were able to finish this project not necessarily
that we were good at testing from the get go. We had
to learn as we went and eventually got so stuck at times
that we got better at it.

o Understanding what your module should do and how it
behaves is essential to all testing because at times we
were testing behaviors according to how we perceived
the system should work, so it worked in simulation
because we wrote the test wrong. So any future advice to
ourselves or to others is to understand the protocols and
the behaviors of the system.

+ Be one with the waves. Should you use a simulator such
as cocotb, sometimes it has it’s own bugs and glitches,
which we ran into at times. But being able to look at the
behavior through the waves and double check whether
it’s a simulation error or user error was very important

o As long as the build size did not grow too large, utilizing
registers was key in interpretability and portability of the
code. Making use of SystemVerilog feature like packages
helped greatly in this regard.

As per the last point, we made very little use of the resources
available to us on the FPGA. Unless we expand the number of
concurrent processes that are available—essentially by building
an OS-there is no clear way to make use of more resources.
We were not timing-constrained either, as the final WNS was
2.092.

Regardless, in our project we set out to create a system
that worked—not as a result of the features available to us on
the FPGA-but in spite of them. With our final build, that is
what we got. We were able to edit a text file in assembler,
assemble any legal set of instructions in our ISA, and visualize
the results of a processor executing the assembled code. As a
result, we achieved the goal that we set out to achieve for this
project.

If we were to expand on our project, we may create support
for multiple files and construct the beginnings of a rudimentary
file system. We may also increase the syntax support for
the assembler so that coding on our setup would feel no
different than one’s IDE of choice. We might also want
to add command line navigation of our program and begin
incorporating everything into an OS.

REFERENCES

[1] Amazon.com: 6P 6-Pin PS/2 PC Connector Signals
Breakout Board Screw Terminals PUR Keyboard: Electronics.
(n.d.). https://www.amazon.com/dp/B0814K7D7L ?ref=ppx
yo2ov dt b fed asin title

[2] PS2 Keyboard Protocol https://www.burtonsys.com/ps2
chapweske.htm

[3] PS2 Keyboard Decode Values https://www.eecg.utoronto.
ca/~jayar/ece241 08F/AudioVideoCores/ps2/ps2.html#
1d439258

CONTRIBUTIONS

Ziyad Hassan - Responsible for the processor and keyboard
Simon Opsahl - Responsible for the assembler

Tsegazeab Beteselassie - Responsible for the terminal con-
troller and keyboard

CODEBASE

