FPGATrack: Spatial Drawing System

Jack Gray

Christopher Mejia

Department of Electrical Engineering and Computer Science Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

Abstract—We present FPGATrack, a hardware solution lever-
aging two FPGAs and two cameras to track objects in 3D space.
Each FPGA receives input from a camera and calculates the
position of the object in their respective 2D views, then one FPGA
will combine those two positions to construct the position of that
LED in 3D space. This position is then be rendered in a 3D scene
on a monitor through HDMI and the trajectory tracked to make
“spatial” drawings. The user is able to review drawings and rotate
the view to see the depth component. Running on an FPGA allows
for faster, parallel processing of camera inputs compared to
traditional microcontroller or CPU-based solutions. The system
benefits from the FPGAs ability to handle multiple high-speed
data streams simultaneously, enabling real-time calculations with
minimal lag.

Index Terms—Digital systems, FPGAs, Object tracking

I. PHYSICAL LAYOUT

The set up itself consists of two FPGAs seated at 90 degrees
from each other, each with an OV5640 camera, and a view of
the object in the center. They are connected together via two
wires connected to pins on their respective PMODB ports.

@ FPGA2

Fig. 1. Physical Layout

II. CENTROID TRACKING & COMMUNICATION
A. Initial Single Point Tracking

The initial tracking system utilizes modified lab hardware,
with the camera configured to capture frames at 320x180
resolution at 25FPS. The video feed is processed through some
of lab developed modules. First, the camera output signals
are inputted to our pixel_reconstruct module, followed by
conversion to the YCrCb color space using the rgb_to_ycrcb
module. Since the tracking system is specifically designed to
detect red objects, it exclusively utilizes the chroma red (Cr)
channel from the converted output. The chroma red output

Massachusetts Institute of Technology
Cambridge, MA, USA

FPGA1 FPGA2
UART Receive

Again [
Full Recave
FSM
Combining Module

[——
g

Delay

Pipeline hold

Registers comb

s

Rotation Controls

Gamera

3D Rotation
wI CORDIC

Point Memory

T

e

Address Gen

Fig. 2. Initial Full Stack

of the hcount and vcount that is currently being processed
is passed through our lab threshold module that checks if
the pixel is red. The signal out of the threshold module is
used as the valid_in signal to our COM module to include the
corresponding hcount and vcount from our pixel_reconstruct
in the running sum for the COM calculation.

{ Camera H Pixel Reconstruct

camera_pieal

rgb_ta_yerb
hoount veount

| | cr_cut

¥
[Pip_eline ’ [Threshold }
Registers
Ll -
[COM HUAHT Transmil}

Fig. 3. Initial Single Point Tracking Layout

¥

The center of mass from our lab used a divider that took an
indeterminate amount of cycles. To amend this and improve
performance, we implemented a divider that uses a non restor-
ing division algorithm to complete 32 bit division in 34 cycles.
The module processes the dividend and divisor across multiple
clock cycles following a three-state finite state machine with
states (IDLE, DIVIDING, DONE). The algorithm operates
by iteratively shifting and comparing values, subtracting the
divisor when possible, and building the quotient one bit at a
time. More details on the algorithm can be found here.

https://www.geeksforgeeks.org/non-restoring-division-unsigned-integer/

This stack works to track one red object in the FPGAs view.
The COM that is calculated by this hardware is in the range
of 320x180, as a result one coordinate is 9 bits wide and the
other is 8 bits wide. The final output of the stack is then 17
bits wide. This pipeline is replicated on both FPGAs, but one
of them transmits its results to the other via UART.

B. Multiple Point Tracking via K-Means

FPGA 1

[Camera H Pixel Reconstruct

el
c1 cz
Manhattan Manhattan rgb_to_ycrb
et

Distance Distance K !

K-Means Module

[)
5oy oo @ oy ocz

-~/

IE

i _Distance valid i C2_Distanca

Threshald

Comparator

5_
]
H
ket
H

-

Fig. 4. K-Means Two Point Tracking

A hardware implementation of the K-means algorithm
would replace the current center of mass calculation in the
camera pipeline. The design used BRAM to store points
identified as red through thresholding, then perform multiple
iterations of K-means clustering during the vertical blanking
period of the camera stream. All calculations will happen
between frames and output to either the local logic or UART
logic at the start of the new frame. This BRAM is 17 bits
wide and 14,400 entries deep. We assume that our objects
won’t take up more than 1/4th of the frame so the relevant
points we need to save should be lower than that ((320x180)
/ 4 = 14400).

Each time the treshold output goes high, the write address
increases by one and a write request is issued. This address is
reset to O at the end of frame. There is also a running count
of the number of pixels written to this BRAM that is used by
the K-Means Controller. The initial centroids are one close to
the top left of the screen (50, 30) and the other close to the
bottom right (270, 150).

Controller FSM

Fig. 5. K-Means Controller FSM

The K-Means controller is a 3 state FSM that will control
the addressing into the BRAM and start calculations of the K-

Means module. It will begin in WAITING where it is waiting
for the end of the camera frame (hcount = 319, vcount = 179)
to transition to CALCULATE state and begin K-Means. In
the calculate state, it will wait for the first valid pixel of the
next frame to stop calculations, move to DONE, and trigger
the UART transmission. The outputs in these stages are as
follows.
WAITING:

o All outputs 0
CALCULATING:

« read_address begins at 0 and increases by 1 every cycle
until it reaches num_points. This only rolls back to 0 after
reaching its max when the K-Means module valid_out
goes high meaning we are ready to start a new iteration.

e The K-Means valid_in will go high two cycles after an
address change is made (a read request is put through to
the BRAM) to ensure the request has been resolved.

o The K-Means start signal will go high two cycles after
the read request at addr = num_points - 1, meaning we
have gone through all the relevant points and clustered
them.

DONE:

o All outputs 0 except UART_Trigger which will go high
to start transmission of the current centroids.

The K-Means module takes in the relevant (X,y) output
by the BRAM and the current estimation of the centroids.
It computes the Manhattan distance of each point to the
centroid and control the valid_in for each COM based on
which distance is smallest. This should lead to the running
sum of each COM module containing a distinct cluster. The
start signal from the controller starts the COM calculations
which will output our centroids and a valid_out signal. The
valid_out signal is used to start a new iteration if we are still
in calculate. But the instant the controller sees the new frame
start coming in, it will trigger the UART to output whatever
our current estimates are.

These modules and the full stack was implemented. The
Kmeans module was validated in simulation (was able to
converge on two red circles in subsequent test images with dif-
ferent random initializations), but we were unable to fully get it
working on hardware before the project deadline. Regardless,
the relevant modules and the new top-level for FPGA_1 are
provided in our Github Repo in a folder called FPGA_1_KM.

C. UART Communication & Combining Centroids

On FPGA_1 the 17 bit result of the camera stack is then
sent to the awaiting FPGA via the UART_Transmit module
from the labs. To do this we created a UART_Wrapper that
takes in 17 bits and sends it in 3 bytes. Each byte’s top two
bits are used for alignment (Byte 0 has top two bits 00, Byte 1
has 01, etc) so the receiving system, whether it be a computer
for debugging or the other FPGA, can window the received
bytes appropriately.

There is also a pseudo-handshake protocol implemented
where FPGA_1 will not begin to transmit unless FPGA_2

sends it a particular byte (OxAA) to signal the start of a
transmission. This is also to help with the alignment of
bytes that are being received. So that FPGA_1 does not
start transmitting bytes when FPGA_2 is not ready and that
FPGA_2 can start windowing and arranging bytes on the clean
start of a 3-byte transmission.

FPGA_2 receives the 3-byte transmission via
vart_rx_wrapper a similar wrapper of UART_Transmit.
The wrapper waits for three bytes and ensures that the
transmission’s alignment bits are correct. If the alignment
bits are not what it expected, the module waits until it sees
another byte with top bits 00 to start building the 17 bit
centroid coordinate again.

The combine_centroids module merges 2D coordinate data
from two sources: local calculations (x, y) and UART in-
put (y, z). Using a two-state FSM (WAIT_FOR_INPUTS,
AVERAGING), it synchronizes and processes incoming data.
In WAIT_FOR_INPUTS, the module independently latches
coordinates when local_valid_in or uart_valid_in signals are
received, allowing new data to overwrite previously latched
values. Once both sources have provided valid data, the
module transitions to AVERAGING state, where it computes
the mean of the two y-coordinates using the non restoring
divider module. When division completes, the module outputs
the combined 3D position (local x, averaged y, uart z) with
a valid signal, then returns to WAIT_FOR_INPUTS state,
resetting ready flags for the next coordinate set.

D. Interpolation

With just the centroids displayed the output can look quite
disconnected when the tracked object is moved across the
frame. To amend this problem we decided on interpolation
between the centroids. This module takes in the coordinate
outputs from the combine_centroids module and its ready
signal. Its outputs are coordinates in between the previous
centroid and the newest centroid that are to be displayed.

In the case of the first centroid, the module only keeps track
of it to keep it as a reference centroid for the next centroid out-
put. No interpolation happens when receiving the first centroid.
After this point is received each centroid received afterwards
will be the target destination for our output coordinates in the
module. This is accomplished by incrementing each output
by one in the direction of the target destination. Once the
output coordinate is equal to the destination coordinate the
interpolation is done. The destination coordinate will then
become the previous coordinate and the process can repeat
from there.

This is not a good interpolation technique if we are trying
to interpolate between points that are very far apart because
the line may not have the slope that would be expected. We
do not come across this problem in our scenario because the
centroid output rate is fast enough that the points are never
very far apart. This can give the viewer the illusion that there
isn’t even any interpolation between the centroids.

The centroid inputs into this module should be coming
in at around 25 per second. This is slow enough that our

interpolation will be done before another centroid is found.
We do not need to worry about the case when we receive a
new input before finishing.

III. TRAJECTORY MEMORY & DISPLAY PIPELINE

There are two modes DRAWING and REVIEWING which
are controlled by sw[0] on the FPGA. In DRAWING mode,
as the object moves its trajectory gets drawn on the dis-
play and in REVIEWING the trajectory can be rotated. The
combine_centroid module outputs three 8 bit wide signals
centroid_x, centroid_y, and centroid_z and a valid_out signal.
In DRAWING mode, the concatenation of these signals are
stored in our dual port point_memory BRAM. This BRAM is
26 bits wide (9 bits for x + 8 bits for y + 9 bits for z) and
2250 entries deep. Our camera outputs a frame every %th of a
second, using this as an approximation of how fast a centroid
will get output out of combine_centroids and with an aim to
store about 90 seconds of a trajectory, we chose to store 2250
points in our BRAM.

The addressing logic (could have been separated into its
own module) in top_level handles the drawing and reading
addresses for storing and retrieving points. This logic manages
two independent address counters for the two ports of the
BRAM. Port A sequentially stores incoming centroids and
interpolated points, incrementing the write address and the
total point count when the interpolation module is active. After
reaching 2250 points, the write address wraps back to zero,
and begins overwriting old data.

The read addressing is a bit more complicated. When the
first point is written (number of points increases to 1) the
module initiates the first read request by raising an issued_read
signal that passes through a 4 stage pipeline before use.
This ensure that the write request was propagated and that
the read request was resolved before triggering the rotation
and projection module. Subsequent read requests are put
through and the read address is increased when the rotation
and projection module signals that it is done. This prevents
throwing away data by only increasing the address whenever
the consumer is ready for new data. The read address resets
to 0 when it either reaches the end of the BRAM, the display
mode is switched, or the angle is changed in review mode.

The output of the rotation and projection module is then
written to a 320x180 frame buffer BRAM that is 57600 entries
deep and one bit wide. The HDMI signal generation modules
from the labs are then used to read from this BRAM and create
the appropriate HDMI signals. This frame buffer is cleared on
reset and whenever the angle input is changed. This is done by
just cycling through every address in the BRAM and writing
Os to it.

IV. ROTATION CONTROLS

A. Sine and Cosine Calculation

The angles for the display’s vertical-axes rotation are con-
trolled using the FPGA’s btn[1] to increment and btn[2] to
decrement. The angle is a 32 bit number using the binary angle
measurement system. In this system, the angle in degrees is

represented by b x 2997 where b is the value of our binary

angle. We are selecting the current axis of rotation using sw[1]
and sw[2] on the FPGA. The speed of our angle selection will
complete a full rotation in around 16 seconds. This can be
changed via a controlled parameter. We also plan to make
some set angle configurations that can reset the frame to
different perspectives.

These angles are then used in the CORDIC module. The
CORDIC algorithm works as a binary search algorithm that
finds an angle with approximately the same slope as the
desired angle. This can be accomplished by keeping a table
containing arctan(;,-) for ¢ from O to 30. Using these values
a binary search can be conducted to find the approximate
angle. An X value and Y value are initialized before the
algorithm starts. Y is set to 0 and X is set to 2!% to represent
a starting angle of 0. After the algorithm finishes, the output
will need to be shifted by 15 bits to correct for this starting
value. The binary search is conducted using only bit shifts
and additions. Once the search concludes the cosine and sine
values will have converged to a value that is approximately
1.6468 times the correct values. This can be corrected using
a combination of bit shifts and additions in order to scale the
value down. More information on the CORDIC algorithm can
be found herel

With the module up and running, we can currently get
cosine and sine values within 0.01 of the actual value of
cosine and sine. This could be improved by using more bit
shifts to scale the value down from 1.6468. Combining our
angle incrementing system and our CORDIC module, we can
obtain our rotation matrices for the projection of our system.

As of now, the module only takes in an angle and a set
value of X and Y. We would like to alter the algorithm to
take in custom X and Y values that will allow us to bypass
a later multiplication. The plan is to use our coordinate as an
input and allow its values to be rotated using CORDIC. We
will need to scale the input by 2'° like before, but we will
shift the value back down for our output that bypasses the
multiplication step.

B. Rotation & Projection Module

The rotation is achieve by taking the cosine and sine output
from our CORDIC module and combining it with the xyz
coordinates we have combined from our two FPGAs. First, the
coordinates are shifted to the perspective that the center of the
3D space will be the origin. As is the system sees the corner
of the 3D space as the origin. We can make this correction
by subtracting 160 from our width values and 90 from our
height value. The module also implements the rotation matrix
multiplication to rotate the values buy the set angle. This can
be thought of as multiplying by

cos(f) 0 sin(d)
Ry=| 0 1 0
—sin(f) 0 cos(6)

This matrix controls the vertical axis of rotation. After
performing the matrix multiplication the module shifts the
output by 15 bits. This corrects the scale of our cosine and sine

output from the CORDIC module. After the rotation has been
calculated, values are shifted back to the original perspective
with the origin in the corner of the 3D frame. This is done by
adding 160 and 90 to the width and height values respectively.

If we are able to improve the CORDIC algorithm, we will
be able to bypass this entire module and use just the CORDIC
module to control our axes of rotation.

Initially, we thought we needed to divide by the depth
component of our cooridantes to project onto the screen but
this caused many issues and fine-tuning of constant multiples.
In reality, we didn’t need to do this as we’re looking at
a 320x180x320 space from a 320x180 viewport. So, the
projection is just taking the x, y values.

V. EVALUATION

Qualitatively, the latency of our system is very low. When
drawing, we are able to see the points fairly quickly and there
is minimal lag between a movement and the corresponding
drawing. Our camera produces new frames every 1/25 of a
second and our logic is much faster than that.

On our peripheral FPGA we used only one RAMBI18 and
2 DSP blocks. Our processing and drawing FPGA used 5
RAMB36, one RAMBI18, and 6 DSPs. This could be opti-
mized by having one unified buffer for the point memory and
the frame buffer. Instead of writing into a frame buffer, we
could rotate all the points in place (in the same BRAM) and
key in with an hcount and vcount when getting hdmi signal.
This is just a rough idea, and needs more thought into the
scheme for keying into point data. As it stands there isn’t
much optimization to be done, the BRAM limits are directly
tied to just how much data you want to store.

Clocked at 200MHz, we must make sure we meet all timing
constraints at double the clock speed than we used in lab. Our
system was able to do this with a WNS of 0.629 on FPGA_1
and 0.295 on FPGA_2.

Our final design is able to use both cameras to track an
object and draw the trajectory on the screen. We are also
able to rotate around the vertical axis and see the depth data
we collect, giving us a better view of the 3D trajectory. We
were able to meet the requirements for our commitment level
project. We made progress on some of the ideal goals like our
K-Means, but were unable to debug the hardware in time. With
minimal changes we could definitely include rotation controls
about all 3-Axis, and perhaps drawing in different colors.

A video of a recorded trajectory being rotated (before
interpolation was implemented) can be found here.

VI. INSIGHTS

Working through this project we were able to come up with
a few insights:

¢ UART modules seem like sure you can just change the
modules to send X bits instead of a byte, but this will
leave you unable to debug on your computer. Instead, just
send things in byte sized chunks so you can actually test
things. Also, windowing and aligning multiple transmis-
sion is really important. You need some synchronization

https://github.com/francisrstokes/githublog/blob/main/2024/5/10/cordic.md
https://drive.google.com/file/d/15A4CXIvDhsy7gQ1qLTA-WGHq5XYod98P/view?usp=sharing

mechanism, your sending could be going fine but you
may just be receiving/windowing wrong and you spend
time looking for the issue in the wrong place :D.

« We were worried about the centroid parts coming in from
the local and the vart not being synchronized and pairing
together XYs and YZs from wrong times, but it turned
out to not be that big of an issue. We think making the
peripheral FPGAs hardware fairly light made this not that
big of an issue.

e The CORDIC algorithm turned out to be incredibly
efficient and saved us from using a lot more resources
in order to store cosine and sine values. It is a very well
pipelined and pretty accurate algorithm that allowed us
to trust its outputs were fast and correct.

« Figuring out a way to visualize hardware outputs before
your visual pipeline is done is really helpful. We just did
UART to our laptops and displayed points in a pygame
window to validate stuff on hardware after simulation.

VII. CONTRIBUTIONS

Jack worked on the angle pipeline and interpolation between
points. Chris worked on the point collection, transfer between
FPGAs, display, and the KMeans pipeline even though it
didn’t end up working on hardware :(. Both authors wrote
the evaluation, rotation/projection section, and the conclusion.
In the report, Jack wrote about the interpolation and the
sine/cos calculation via CORDIC. Chris wrote about the cam-
era pipelines, communications, and display pipelines. Code
can be found here.

VIII. ACKNOWLEDGMENTS

We would like to acknowledge Lucas DeBonet. While he
was not able to complete the project with us, he helped us
brainstorm and come up with the idea of our project. We would
also like to thank our mentor Kiran Vuksanaj for providing
insight and helping with the design and implementation of
our system. And one last thank you to Joe for teaching one
of the best classes at MIT.

https://github.com/chrMej/6.205_Final_Project.git

	Physical Layout
	Centroid Tracking & Communication
	Initial Single Point Tracking
	Multiple Point Tracking via K-Means
	UART Communication & Combining Centroids
	Interpolation

	Trajectory Memory & Display Pipeline
	Rotation Controls
	Sine and Cosine Calculation
	Rotation & Projection Module

	Evaluation
	Insights
	Contributions
	Acknowledgments

