
FPGA 3Display
Nathaniel Felleke

Massachusetts Institute of Technology
Electrical Engineering & Computer Science

Cambridge, MA, USA
nfelleke@mit.edu

Liam Kronman
Massachusetts Institute of Technology

Computer Science & Engineering
Cambridge, MA, USA

lkronman@mit.edu

JT Markowitz
Massachusetts Institute of Technology

Computer Science & Engineering
Cambridge, MA, USA

jtma@mit.edu

Abstract—This paper introduces FPGA 3Display, a volumetric
display system that uses a rotating HUB75-based 64x64 RGB
LED matrix, driven by a CMOD-A7 FPGA to create dynamic
3D visualizations leveraging persistence of vision. Key innovations
include a custom rotational frame buffer for real-time voxelized
object rendering, integration of pre-computed Cartesian-to-
cylindrical transformations, and robust synchronization using an
infrared break-beam sensor for angular precision. The display is
powered through a custom slip ring assembly, with visualizations
spanning from geometric shapes (spheres, cubes) to complex 3D
models (e.g., Stanford Bunny, TIE Fighter). We also demonstrate
animations, such as a bouncing ball simulation, and user-defined
.OBJ file support. Our modular SystemVerilog framework, along-
side Cocotb simulation scripts, ensures both high performance
and extendibility. Evaluation reveals efficient resource utilization
and seamless operation at high rotational speeds, paving the
way for future enhancements such as interactive 3D gaming and
higher-resolution displays.

Index Terms—FPGA, volumetric display, HUB75, persistence
of vision, SystemVerilog, LED matrix, 3D visualization, voxeliza-
tion, rotational synchronization, real-time rendering, interactive
systems.

I. INTRODUCTION

Why use a boring 2D display when you can use an FPGA
3Display?

This project is an exploration of driving RGB LED displays
at high refresh rates with HUB75, a protocol (alternative to
HDMI/VGA) that uses multiplexing to achieve fast display
refresh. To demonstrate the power of this display, we have
decided to build a spinning rig on which such a display
will rotate, producing a full 3D image with a ”persistence of
vision” effect. The image will be composed of angular cross-
sections updated at a rate defined by an infrared break beam
sensor’s determination of the rotational period. The resulting
visual is considered a volumetric display, as it can be perceived
as three-dimensional from any viewing angle.

We draw significant inspiration from James Brown’s re-
cently popular volumetric display projects (his 3D DOOM
project and behind-the-scenes Mastodon posts). Before em-
barking on our project, we consulted Brown. He answered
several of our questions in a Mastodon thread. Our setup is
very similar to his: a 64x64 2mm pitch LED matrix display
that we interface with using the HUB75 protocol through 14
DIP pins of a CMOD A7-35T FPGA, spun quickly (100s of
RPM) within a sturdy, transparent structure. The mechanical
aspects of this project are explained in Section II. In addition,

a slip ring is used to supply the power and ground lines to
the FPGA, which is mounted on a breadboard that is spinning
with the panel.

After completing the physical construction, we first rendered
a sphere (spinning a circle defined combinationally using
the circle formula). Once we managed to get consistent
signals from the infrared sensor, we implemented a hemisphere
visualization, which quickly updates the display based on
where it is in the revolution, to appear as a floating half-
sphere. After developing a Fibonacci lattice-based addressing
methodology (i.e., selectively updating single columns per
rotational theta, as opposed to the whole screen every
time, to achieve even pixel density), we implemented a cube
visualization. With a stable cube visual (after some debouncing
on the IR sensor signal), we developed a pipeline to voxelize
any OBJ file into a 64x64x64 Cartesian coordinate system
and store it in a .mem file within the CMOD’s BRAM, which
is then served via rotational_frame_buffer.sv into
cylindrical coordinates for our hub75_output.sv module
to send out to the display. This workflow enabled us to
render exciting visuals like the Stanford Bunny (Fig 1),
TIE fighter from Star Wars (Fig 2), Darth Vader’s helmet,
the Great Dome, a human skull, and even the STL of our
3Display Aluminum Extrusion Frame CAD (Fig 5)! Finally,
we implemented a 3D ”screen saver” of a small ball bouncing
within a box.

In person, the system produces highly convincing 3D visual
effects, but they are difficult to capture on camera. Our final
project video showcases some of our visualizations here and

.

II. MECHANICAL ASPECTS (LIAM & NATHANIEL)
The FPGA 3Display is made of seven primary physical

components:
• A HUB75 64 x 64 2mm pitch LED matrix panel that acts

as the main display for the project.
• A CMOD A7-35T FPGA that is used to control the

display. We chose to use the CMOD A7-35T FPGA over
the Urbana board for two main reasons: the onboard flash
program memory, which would allow for programs to run
without a direct connection to a computer, and its smaller
size which would make it easier to mount on a spinning
display. There are, of course, trade-offs with this choice.

https://www.youtube.com/watch?v=na7pvihXhYs
https://www.youtube.com/watch?v=na7pvihXhYs
https://mastodon.social/@ancientjames
https://mastodon.social/@ancientjames/113455330264814531
https://www.adafruit.com/product/5362
https://youtu.be/dmettyEq79U

Fig. 1. Stanford Bunny visualization

Fig. 2. Star Wars TIE Fighter visualization

For example, we only have access to the CMOD’s BRAM
and SRAM capabilities, which are on the order of KBs
in size, while the Urbana boasts a 1Gbit-large DRAM.
However, we discovered that this was, in fact, sufficient
for storing our visualizations (see Section V).

• An 8-channel slip ring that is used to supply power and
ground to the spinning display and FPGA.

• A custom 3D printed mount for the LED matrix panel,
FPGA, and slip ring. It was completed over multiple
iterations and includes front pocket counterweights like
washer and nuts to increase rotational stability. It is
designed such that the LED panel intersects with and is
centered on the motor shaft’s axis of rotation. (See Fig.

Fig. 3. FPGA 3Display Mount + Breadboard (Back)

4.)
• An IR trip sensor mounted on the spinning display and

an IR emitter on the stationary frame. The rate of trips
of the sensor is used to estimate the rate of rotation of
the display. The SystemVerilog implementation for this
logic can be found in detect_to_theta.sv within
the hdl folder of our code repository.

• A brushed motor and control electronics that are used to
rotate the display.

• A custom frame built out of aluminum extrusions to hold
and stabilize the brushed motor and the LED panel with
the mount. (See Fig. 5.)

Much of this work was done at the Cypress Engineering
Design Studio in Building 38, with gracious assistance from
instructors Anthony Pennes, Dave Lewis, and Alec Reduker.
Although there is room for improvement and iteration, the
structure holds together well in its current form, sufficient to
sustain our desired graphics. Fig. 3 reveals the back of the
3D mount (including the CMOD board).

III. SYSTEMVERILOG IMPLEMENTATION

All of the SystemVerilog code we’ve written can be found
in the hdl folder of our GitHub repository. Cocotb simu-
lation scripts in Python can also be found there, under the
sim folder. top_level.sv bridges hub75_output.sv,
frame_manager.sv, and detect_to_theta.sv. Sev-
eral modules (related to more complex visualizations like
Boids) are being developed and tested separately. The way
our SystemVerilog modules work together can be understood
through our high-level block diagram (Fig 3.). Some of the
components featured in that diagram have yet to be imple-
mented to the extent they’re planned to be.

A. hub75_output.sv (Nathaniel)
HUB75 displays allow for rapid refreshing of a 64 x 64

display by multiplexing rows (columns in physical setup)
of the display. Two rows are addressed at the same time,

https://www.adafruit.com/product/2168
https://github.com/liamkronman/FPGA-3Display

Fig. 4. 3D-Printed Display Mount (Fusion 360 CAD)

Fig. 5. 3Display Aluminum Extrusion Frame (Fusion 360 CAD)

and the individual LEDs are set by clocking in the RGB
values. To achieve more than one-bit color resolution with
a HUB75 display, the columns must be set multiple times
by the controller to modulate the LEDs. To interact with the
display, the FPGA connects to five address lines, which are
used to index into the 32-row groups, three control signals
(CLK, Latch, and Output Enable), and two RGB ports.

Binary Count Modulation (also known as BCM) is used
in place of PWM to achieve color resolution as BCM allows
for a total of fewer writing periods (three instead of eight
with PWM), even though it is the same number of cycles.
Reducing the number of writing periods is essential as the
display is turned off for the writing periods, and entire columns
are addressed at the same time, making it so a change in one
pixel’s duty cycle requires rewriting 63 others. BCM works

Fig. 6. Top Level Block Diagram

by representing brightness in binary numbers and weighting
the time duration of each bit modulated proportional to its
weight in binary form; with three bits of color resolution for
each color, the least significant bit is held on the display for
PERIOD cycles, while the most significant bit is held on the
display for 23· PERIOD cycles.

In SystemVerilog, the hub75_output.sv module acts
as a hardware abstraction module to control the display.
Operating similarly to an AXI-S communication—with ready,
valid, and last signals—the module takes a column index and
an RGB array (with 3 bits of resolution per RGB color) of the
corresponding columns as inputs. It outputs the control and
modulated RGB signals to the HUB75 display. The module
is written as a finite-state machine with three states (IDLE,
WRITING, and MODULATING). In the IDLE state, the
module waits for the column and address data indicated by a
data-valid signal. Once the data are acquired, it moves to the
WRITING state. In the WRITING state, the module writes
column data with one bit of color resolution to the proper
address by clocking in the individual pixels and latching the
columns. In the MODULATING state, the module counts up to
the proportional number of clock cycles for the current binary
bit in the BCM. If it has finished the third and last bit of color
resolution in the BCM, the module moves back to the IDLE
state for the next set of column data.

B. frame_manager.sv (Liam)
The frame_manager.sv module generates and streams

pixel data for a volumetric display (to hub75_output.sv),
handling two active columns at a time. It supports multiple
rendering modes – sphere, cube, and other 3D assets –
selectable via the mode input. Based on the rotational angle
(dtheta), the module computes the appropriate columns
using submodules and outputs the data to a HUB75 LED
matrix controller. Synchronization is achieved through the
hub75_ready signal, ensuring valid data is sent at the right

Fig. 7. Frame Manager High Level Diagram

time. A data_valid signal indicates when the computed
pixel data is ready, and hub75_last indicates when the next
period is ready. Fig. 7 illuminates how frame_manager
multiplexes some submodules that serve frames.

C. rot_frame_buffer.sv (JT)

The job of the rotational frame buffer is essentially to supply
a column of data given an angle of rotation. The job is a little
more complex when you consider that any data displayed on
angle ω, the angle ω + ε will have the exact same data, but
flipped across the origin axis.

Furthermore, the buffer requires independent read and write
lines if we are going to do any live animations. The buffer
should display a column of “0” (no data) if there is an ongoing
write, and behave as a normal BRAM module if there is none.
Writes are also complex, since entire columns are stored per
address, so writing a point should “or” itself with existing
points on its column.

Writes must also be accompanied by a “flushing” mecha-
nism to prepare the buffer for the next frame. Otherwise, points
would accumulate in the buffer during an animation/simula-
tion, and the buffer would show all frames at once.

The Rotational Frame Buffer also includes the radius as
the most significant bits, so that every column of information
is concatenated with all information needed to display it, as
it’s assumed we know the angle given its the address of the
column.

D. rot_frame_buffer_to_hub75.sv (Nathaniel)

Because of the way the columns are outputted out of
rot_frame_buffer, with respect to the relative angle
of the display instead of the multiplexed column index for
HUB75 (i.e. two columns with different HUB75 indices are
given at the same time), there is a need for a module that

Fig. 8. Discretized Fibonacci Lattice

inputs data into the HUB75 one column at a time. The
module acts as an FSM with three states (IDLE, WRIT-
ING COLUMN0, and WRITING COLUMN1). In the IDLE
state, the module is always retrieving the most recent out-
put from rotational_frame_buffer and transitions to
WRITING COLUMN0 if the tlast signal from HUB75 is
true, getting ready to write once the display is ready. In
the WRITING COLUMN0 state, the module sends out the
column and index for the left side of the display to the HUB75
controller and sets the column with the same index on the
right side to zero. After the next tlast signal from Hub75,
the module transitions to the WRITING COLUMN1, which
does the same for WRITING COLUMN1 but for the right
side of the display instead of the left. After the module is
finished transferring both sets of column data and indices to
the HUB75 controller module, the state returns to IDLE for
the next set of data.

E. cartesian_to_cylindrical.sv (JT)

Converting between cartesian space to cylindrical space
is arduous with a purely hardware implementation, so we
decided to avoid the problem of implementing our own
atan_2(x, y) and distance_to_origin(x, y)
functions, by simply pre-computing a 64→64 space of inputs,
then reducing our 256→ 256 simulation space to 64→ 64 (Fig
9).

Calling the space cylindrical is slightly misleading, since
the atan lookup table returns numbers in a range from 0-
1023, not only by their angle from the horizontal, but by
their distance from a discretized Fibonacci Lattice (Fig 8,
9). Figure 9 has exaggeratedly low resolution in order to
visualize the difference from a typical atan_2() function.

Fig. 9. Pre-computed atan_2 and distance Table

F. draw_ball.sv & ball_simulation.sv (JT)
Because of the construction of rot_frame_buffer, as

long as we flush the buffer, we don’t have to worry about
overwriting logic here, and can simply send points in as
long as the timing between each is correct and they have
been pipelined through cartesian_to_cylindrical.
draw_ball.sv is parameterized by logic that will initiate
a new frame, and logic that will draw a ball in x y z space.

We can then control this module by another FSM,
ball_simulation.sv, which simply writes a new frame
every time the IR sensor is tripped.

G. detect_to_theta.sv (Liam)
The detect_to_theta module measures the angular

position (theta) and period of rotation for a system using
an infrared (IR) sensor. It detects when the sensor is triggered
(ir_tripped) and uses this to calculate the time since
the last trigger, outputting the result as period. The module
resets theta on each IR trigger and increments it on every
clock cycle, effectively tracking the elapsed time between
consecutive triggers.

However, the actual output of detect_to_theta is
dtheta, which is a discretized version of theta, between 0
through 1023 (we’ve defined our ROTATIONAL_RES). That
means there has to be some logic which converts the intermedi-
ate theta and period arrays into the normalized dtheta.
This is done via an angle_counter variable, which incre-
ments up to (dtheta >> $clog2(ROTATIONAL_RES)).
Essentially, whenever angle_counter overflows, dtheta
is incremented by one, and since we are dependent on the
last period, this will bound the dtheta between 0 and
ROTATIONAL_RES - 1.

This module is designed for high-resolution angular track-
ing, with the THETA_RES parameter allowing customization
of the resolution (width of 100 bits, calculated for a 24MHz
clock and tuned experimentally). We also debounced the IR
sensor reading, which can be seen in debouncer.sv, which
is a variant of the module developed for class, but with a
new CLK_PERIOD_NS of 42ns and DEBOUNCE_TIME_MS
of 10ms, verified experimentally.

Future enhancements could include adjustments to mitigate
the lag between period updates and real-time rotation tracking.
A demonstration of the operation of the IR break beam
sensor can be seen here, where LED1 of the CMOD turns
on whenever the IR receiver reads a ”high” signal.

H. OBJ Pipeline (Liam)
.OBJ is a standard file format to store 3D assets. An OBJ

file includes information about vertices, textures, and other
geometries that can be used to generate an asset in a display-
specific format.

Converting OBJ geometries into a volumetric display-
friendly format can be very different than displaying for tra-
ditional 2D screens like TV, which utilize graphics rendering
pipelines to convert the 3D asset to a forced perspective using
techniques such as ray tracing. We do not need to worry as

much about projections and lighting (as we hope reality will
fill in that info for us :)).

The voxelizer.py script within the sim folder of our
code repository injests OBJ files, and, using the trimesh
Python library, casts the vertices into a discretized version
of a 64x64x64 Cartesian coordinate system. This vertex in-
formation is stored into .mem file within the data folder,
and then can be loaded by rot_frame_buffer.sv into
the cylindrical space for hub75_output.sv. This pipeline
enables us to display virtually any OBJ file!

I. Testing Philosophy
Since this is very much a visual project with two extremely

dependent parts: mechanical and software, our philosophy
while testing is that modules must be both numerically and
visually correct. An example of this is a mock display that
allows allows us to quickly and intuitively understand unin-
tended behavior of a module (Fig. 10).

As previously mentioned, our Cocotb simulation scripts can
be found within the sim folder of our repository. These have
been developed in tandem to our SystemVerilog modules,
ensuring that they work correctly before being sent over to
the FPGA.

IV. EVALUATION

The latency of all of our modules is extremely small
compared to what is required for a persistence of vision
display. We found that the refresh rate of our display, while
blazingly fast, was still no match for the speed of the CMOD
A7 chip. We had to greatly increase the duty cycle of the
PWM output module for coherent data to show up.

We are using 3 BRAM modules, with a utilization of around
20%. Since full color resolution is around 9 times the utility
of the highest resourced BRAM, which itself is at ↑ 10%,
we technically could display full color objects. This would be
hard to improve without implementing intense mathematical
operations on the fabric itself (arctan and distance).

Our design handles basic shapes, (sphere and cube), renders
animations (bouncing ball inside double cube), and arbitrary

Fig. 10. Mock Display

https://youtu.be/cuPCS9rIeik

.obj files. We hit all of our goals after pivoting between
simulations. We wanted to also implement 3D pong, but the
number of wires through our slip ring constrained us so that
we could not implement controls.

Fig. 11. Block RAM Utilization Summary

V. CONCLUSION

FPGA 3Display successfully demonstrates a fully functional
volumetric display system that combines mechanical precision
with advanced digital design techniques. By leveraging the
HUB75 protocol and a rotating RGB LED matrix, the system
creates dynamic 3D visualizations that are both visually com-
pelling and computationally efficient. We achieved real-time
rendering of volumetric shapes, animations, and complex 3D
models through a combination of hardware modules, such as
the rotational frame buffer, Cartesian-to-cylindrical transfor-
mation pipelines, and the HUB75 controller. Key mechanical
innovations, including a slip ring power delivery system and
a stabilized mounting structure, ensured reliable high-speed
operation.

Our evaluation highlights the efficient use of FPGA re-
sources, including BRAM and DSPs, to meet the stringent
requirements of persistence of vision displays. The project
also underscores the importance of modular design, as our
SystemVerilog framework allows for seamless integration of
new visualizations and future interactive features, such as 3D
gaming.

Author Contributions:
Nathaniel Felleke led the development of

the HUB75 controller (hub75_output.sv),
(rot_frame_buffer_to_hub75.sv) and ensured
the mechanical stability of the spinning rig, including the slip
ring integration.

Liam Kronman designed and implemented key rendering
modules (frame_manager.sv, detect_to_theta.sv)
and developed the OBJ voxelization pipeline. He also spear-
headed the visualization efforts, including the integration of
complex 3D models.

JT Markowitz focused on the rotational frame buffer
(rot_frame_buffer.sv) and the Cartesian-to-cylindrical
transformation module. He also developed and tested anima-
tions, such as the bouncing ball simulation. This collaborative
effort has established a foundation for advancing volumetric
displays. Future work could explore higher resolution matri-
ces, more sophisticated visualizations, and interactive input
devices, such as joysticks or gesture recognition systems, to
further enhance user engagement.

	Introduction
	Mechanical Aspects (Liam & Nathaniel)
	SystemVerilog Implementation
	hub75_output.sv (Nathaniel)
	frame_manager.sv (Liam)
	rot_frame_buffer.sv (JT)
	rot_frame_buffer_to_hub75.sv (Nathaniel)
	cartesian_to_cylindrical.sv (JT)
	draw_ball.sv & ball_simulation.sv (JT)
	detect_to_theta.sv (Liam)
	OBJ Pipeline (Liam)
	Testing Philosophy

	Evaluation
	Conclusion

