
LIVE JUST DANCE IN HD: E
Final Report

Justin Chen
Department of Physics

Massachusetts Institute of Technology
Cambridge, MA, USA

jchen01@mit.edu

David Lee
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

dlee888@mit.edu

Abstract—We present a pose extractor and comparer using a
2D-to-1D skeletonization algorithm in addition to a green screen
mask, noise reduction convolution, and custom scoring algorithm,
all implemented on an FPGA. Our entire pipeline including the
skeletonization algorithm is designed to run with minimal latency
and output a complete comparison between a baseline model and
the human pose within two frames of video. All outputs and
scores are fed through HDMI and are capable of being overlaid
on top of a pipelined HD camera feed.

Index Terms—Digital systems, pose extraction, Field pro-
grammable gate arrays, skeletonization

I. OVERVIEW

A. Problem Summary

The problem of pose extraction is complex, with most
modern solutions requiring deep learning technologies and
large GPUs to run in real time. In this project, we explore
the possibility of running a simpler pose extraction algorithm,
one that can run in real time on our given Field Programmable
Gate Array (FPGA). Specifically, we explore whether or not
it is possible to use this algorithm for our purpose of pose
comparison, the problem of determining a heuristic that given
two poses outputs a number that quantifies how similar the
poses are.

It is challenging to come up with and implement a solution
fast enough to run in real time yet provides enough information
to be able to extract a meaningful score. Our presented
algorithm finds some middle ground in this tradeoff, where
the image is downsampled and the pose extraction algorithm
is able to run within several passes of the frame. Furthermore,
with the use of a snappy two-iteration algorithm, we are also
able to define a meaningful comparison metric that is able to
run within one pass of an input pose.

B. Construction

The construction of our system consists of our FPGA
connected to an OV5640 camera through PMOD pins and an
external monitor through an HDMI cable.

Our pose extraction algorithm consists of the following main
parts. Firstly, the FPGA is connected to a camera that outputs
HD 1280→ 720 video. The output is simultaneously fed into
a DRAM frame buffer in addition to logic that will check for
whether or not each pixel is part of a green screen background.

Fig. 1: Block diagram overview

Secondly, the masked camera output will be binned down to
a resolution of 320 → 180, where it will be passed into the
skeletonization module. Finally, the skeletonization module
will take the blob passed in and run a skeletonization algorithm
to output a skeleton that represents the pose of a human in the
camera frame. This pose is then upscaled and overlaid on top
of the HD video feed.

Following that, we also implemented a pose comparison
feature. The press of a button allows the current skeleton
on display to be stored as a “benchmark skeleton”. After a
benchmark skeleton is stored, later skeleton frames are scored
against this benchmark skeleton in real time and a numerical
score is displayed on the screen.

A simple summary of this in block diagram format is shown
in Fig. 1.

II. POSE EXTRACTION

A. Green Screen Detection (Justin)

Our algorithm begins by extracting a human blob from a
green screen background. To do this, we take data outputted
from the frame buffer and use their RGB values to determine
whether or not the pixel is “green enough”.

Our first iteration of used RGB values and created threshold
maxima for the red and blue values (↑ 0x70), and a threshold
minimum for the green value (↑ 0xA0). Following testing, it
was found that a simple threshold would not suffice due to
inconsistencies in the saturation and value of the green color
depending on the external lighting.

Our second iteration utilized the YCbCr family of color
spaces. Similar to our first iteration, we define 3 thresholds,
each in 4-bit or 5 bit resolution space that are then each
extended to 8 bits by zero-padding. Luminance (Y) is filtered
by a minimum threshold, while chroma blue (Cb) and chroma
red (Cr) are filtered by a maximum threshold. A sample mask
over a green notebook is displayed for visual detail.

Component Switches Optimal Threshold Value
Luminance (Y) [7:6],[3:1] > 8→b0

Cb [15:12] < 8→b1000 0000
Cr [11:8] < 8→b0111 0000

TABLE I: YCrCb controls and threshold values.

The performance of masking by YCbCr is suitable to
our lighting and fabric. In future works seeking to improve
performance, the possibility of using HSV style color spaces
could also be explored. We predict HSV style color spaces to
have less noise and better low-light performance than what we
currently have implemented.

B. Binning (Justin)

Binning serves two purposes – noise reduction and down
scaling. To create a viable skeleton, any noise should be
significantly eliminated as to not create any stray features that
the algorithm may consider as part of the human. Further,
down scaling was preemptively included, as the skeletoniza-
tion algorithm runtime in the worst case is O(wh ·min(w, h)),
where w and h are the width and the height of the input image,
respectively.

An example of the binning module in action can be seen in
Fig. 2.

Input to the binning module is 1-bit data from the green
screen threshold informing whether the pixel at a particular
coordinate location should be ignored and included. Each of
these pixels is stored in one of 4 horizontal line buffers (block
ram). As the fourth line buffer is written to, we read from
all 4 line buffers and tally the number of human pixels (1’s)
versus green pixels (0’s). Whichever one is the majority is
outputted by the binning module alongside a new, downscaled
(320x180) coordinate position for the pixel.

(a) Pre-binning output of the green mask

(b) Post binning with noise reduction and down sampling

Fig. 2: Zoomed in input and output of the binning module.

C. Skeletonization (David)

For skeletonization, we use the algorithm presented in [1].
We chose this algorithm because it strikes a good balance
between being able to run within a fixed number of frames on
our resource-limited FPGA, while also being able to provide
us with enough information to make a reasonable score of our
pose.

The input to this algorithm is a binary image (i.e., with
all pixels equal to either 0 or 1), containing some number of
continuous objects. The output of the algorithm is an image
of the same resolution, consisting of a “skeleton”, where each
continuous object in the original image has been thinned down
to width 1.

The algorithm involves iterating over the entire image
multiple times. Each iteration, pixels that satisfy a certain
criterion (based solely on the 3 → 3 grid of pixels centered
around it) are removed from the blob and set to 0. After many
iterations of this algorithm, we will arrive at a state where
no more pixels can be removed. In this case, the algorithm is
done and we can output the resulting image.

An example of the behavior of the algorithm (simulated
using a python program) can be seen in Fig. 3

(a) A binary image to be inputted to the skeletonization algo-
rithm

(b) The output skeleton overlaid in red on top of the input image

Fig. 3: Simulated input and output of the skeletonization
algorithm.

To implement this, we opted to use a BRAM frame buffer to
store the input image and the resulting skeleton. The decision
to use BRAM made sense as it was relatively fast and easy to
implement, and was feasible because of the small image (320→
180) and the small bit depth (only 1 bit was needed for each
pixel). Additionally, we implemented four rolling line buffers,
three to read the last 3 rows of the image, and the fourth
to write the next row into the buffer. Storing the last three
columns of the frame buffer output enabled us to correctly
calculate the new image resulting after each iteration.

The module was implemented to continuously run iterations
until no more pixels could be removed. Since the time it takes
to process each frame is variable and extra frame buffers would
be resource intense, we decided to not pipeline the module
but instead have a busy flag that dictated whether or not new
inputs would be accepted. Empirically, the module seems to
skeletonize an image once every 1-3 frames.

We chose to write the module in this manner because it takes
an unknown time to calculate a skeleton, and the theoretical
maximum number of iterations a skeletonization could take
is 179. This happens when the input is the complete frame,
in which case the algorithm will remove exactly one line per
iteration. However, in practice, we find that the number of

iterations is usually much less. Therefore, a fully pipelined
solution would likely require much more extraneous resources
(needing a new frame buffer for each different image in the
pipeline) and also have a larger latency.

III. SCORING AND DISPLAY

For the sake of clarity in this section, let us refer to the
skeleton that we are comparing to as the “benchmark skele-
ton”, and the skeleton of the human as the “trial skeleton”.
To score a trial skeleton on how accurately it replicates a
benchmark pose, we present a unique method that utilizes our
skeletonization computation and balances computational time
and memory.

A. Heat map
The scoring method is divided into two main steps. The

first of which is to populate and maintain a 2D heat map
(array) that stores the Manhattan distance of every pixel to the
nearest point on the benchmark skeleton. An example of what
this would look like is displayed in Figure 4. The maximum
distance that the array needs to store is

MAX-DISTANCE = 320 + 180 = 500px.

Thus our heat map maintains a 320 by 180 frame buffer, with
each entry necessitating

↓log2(MAX-DISTANCE)↔ = 9 bits.

A quick calculation gives us an estimated memory usage of
roughly 20% of our BRAM allowance. To populate the entries
of the heat map, we introduce a two-pass algorithm.

Fig. 4: Example calculation of a skeleton heat map.

B. Two-pass Algorithm (David)
Our method of scoring requires no off-board computation

and is intended to directly compare the similarity between two
skeletons. We do this by using a two-pass method of finding
the distance to the nearest benchmark skeleton pixel for every
trial skeleton pixel, and summing up the total distance. To save
on computation, we use the manhattan distance. The direct

algorithm requires only two passes which are described as
follows:

FORWARD PASS

Initially, we initialize a distance array d(x, y) to be 0 for
foreground pixels and ↗ otherwise.

Then, we iterate through the image, starting from the top
left corner until the bottom right corner. For each pixel (x, y),
the distance d(x, y) is updated using the following formula:

d(x, y) = min






d(x, y), current pixel value
d(x↘ 1, y) + 1, left neighbor
d(x, y ↘ 1) + 1, top neighbor

BACKWARD PASS

After the forward pass, the distance d(x, y) is refined by
processing the image in reverse order, starting at the bottom
right corner and iterating until the top left corner. The update
formula is:

d(x, y) = min






d(x, y), current pixel value
after forward pass

d(x+ 1, y) + 1, right neighbor
d(x, y + 1) + 1, bottom neighbor

Following just two iterations, our heat map is fully popu-
lated and may be stored for as long as needed i.e. until another
benchmark pose wants to be used for comparison. To notify
the module to create a heat map of a new benchmark skeleton,
a button (specifically button 3) is pressed, triggering a flag (a
sort of valid/invalid boolean) that only lowers once a complete
skeleton has been inputted into the algorithm.

Once a forward and backward pass has been completed,
the same module can also handle queries to the heat map. By
sending in horizontal and vertical coordinates of pixels with
the flag lowered, the module queries it’s internal frame buffer
and returns the corresponding distance exactly three cycles
later.

The module was implemented so that the forward pass is
done simultaneously while the skeleton is being inputted. This
decreases latency and removes the need for a line buffer, since
we do not need an additional read port for the pixel we are
currently calculating. The backward pass was implemented
using the same frame buffer with an additional line buffer
to be able to access the pixel above the current pixel being
iterated.

C. Skeleton Scorer (Justin)
We use a skeleton scorer (as opposed to an individual pixel-

distance-scorer) to repeatedly compare trial skeletons, that are
constantly being generated by the skeletonization module, to
the benchmark skeleton stored in our heat map. To do so, we
organize our module into three states: IDLE, COMPUTING,
OUTPUTTING.

In the IDLE stage, we reset all the variables and prepare
the next trial skeleton. This stage is crucial because output
from the skeletonization and heatmap modules is relatively

uncontrolled. Thus, without an IDLE stage, the skeleton scorer
would be unable to detect when to start a new comparison. An
IDLE stage was also helpful in controlling a single-cycle valid
out signal described in the OUTPUTTING stage.

The scorer transitions to the computing stage upon receiving
a valid input of horizontal and vertical counts of zero. For
every pixel that is received we minimize needless computation
by considering all distances further than 31 pixels to be
equivalent (e.g. a distance of 99 pixels would be truncated
to 31). It is important to note that this cannot be done in
the heat map module, as the two-pass algorithm requires
real, uncapped distance for it to work properly. Afterward,
the distance is converted into a score ranging from 0 to 7
by applying an integer division of 4 (e.g. a distance of 11
translates to a score of 2). The singular pixel score is tallied
into a cumulative skeleton score. A worst-possible score equal
to 7 times (the # of pixels in trial skeleton) is calculated in
parallel. Computed in combinational logic, the final score of a
trial skeleton depends on the relationship between the skeleton
score and the max score, and also ranges from 0 to 7.

Finally, our OUTPUTTING state sends a single cycle high
signal that updates a score on screen. OUTPUTTING sequen-
tially transitions back to the IDLE state immediately after one
cycle.

D. On Screen Visuals (Justin)
After completing thorough pipelining, our entire scoring

system can output a score on the scale of ten times per second.
These scores sometimes experience jitters, so to improve
readability we use an event counter to output only one score
for every ten that we calculate.

To physically display the score, we chose to implement a
score sprite that functions as a seven-segment display formed
from seven block sprites. Based on the final score, specific
block sprites are activated. In addition, worse (larger) scores
appear redder, while better (lower) scores appear green. An
example of this in action can be seen in Fig. 5.

We implement an additional frame buffer in our top-level
code to store the benchmark skeleton that shows the user the
pose that they must attempt to mimic. This skeleton is blue
and it’s write enable signal is attached to the aforementioned
flag used to indicate when a new benchmark skeleton would
be entered in for heat map generation.

IV. RESULTS AND DISCUSSION

A. Evaluation
In the worst case, our skeletonization module requires 179

iterations to complete. This would give a latency of 179→320→
180 = 10310400 pixels. Since we are running the pixel clock
at 74.25 MHz, this corresponds to 0.14 s, or just over 4 frames
of our 30 FPS video. In reality, the algorithm should run much
faster, as the input blob is usually a relatively small fraction
of the screen and therefore requires fewer iterations. Based on
video observation of the project in action, the skeletonization
is observed to output a skeleton every 1-2 frames under normal
conditions.

(a) Great score

(b) Fair Score

(c) Terrible Score

Fig. 5: A story of pose comparison told by three photos.

The two-pass algorithm implementation has a latency of
roughly 320→ 180 cycles after the skeleton is fully inputted.
This is because the forward pass is done while the skeleton is
inputted, and so afterwards only the backward pass remains.
Therefore, the latency of this module is well under 1 frame of
delay.

Some additional overhead is incurred due to the need
to store and read skeletons from a frame buffer. This is
because the skeletonization algorithm generally does not finish
computation in an integer number of frames. After we finish
a skeleton, we must store it in a frame buffer until the HDMI
output is ready to output the next frame. Conversely, we must
wait until a new frame is received from the camera before we
can start computing the next skeleton.

As for memory usage, the majority of our memory usage
comes from the pixel scorer module, which needs to store
a buffer of 320 → 180 distances, each with bit depth 9. We
calculated that this would take up roughly 20% of our available
BRAM. This is confirmed by the post synth util report, where
the module takes up 18 out of the 28 used RAMB36 blocks.
Other components that used significant amounts of BRAM
were the frame buffer for the skeleton and the benchmark
skeleton, as well as the internal frame buffer of the skele-
tonization module. Each of these stored a 320 → 180 frame
of bit depth 1. In total, our code used roughly 40% of our
available memory.

All of our modules run on the HDMI pixel clock, so our de-
sign must meet the timing requirement enforced by our 74.25
MHz pixel clock. Based on Vivado’s timing summary, we
were able to meet this requirement, with 0.403 nanoseconds
of slack.

B. Implementation Insights and Retrospective
Looking back, we learned some important lessons during

the development process:
• Think about proper pipelining when first implementing

modules. The effects of poor pipelining are not always
negligible. It’s much easier to write it correctly the first
time then to debug pipelining issues.

• Be careful and watch out for subtle issues such as
clock domain crossing or assigning to a variable both
sequentially and combinationally. These issues can be
very hard to spot and have very unintuitive side effects.

V. APPENDIX A: SOURCE CODE

VI. APPENDIX B: RESOURCE USAGE REPORTS

Below is a dump of relevant resource utilization reports:
+----------------------------+------+-------+------------+-----------+-------+

| Site Type | Used | Fixed | Prohibited | Available | Util% |

+----------------------------+------+-------+------------+-----------+-------+

| Slice LUTs | 6807 | 0 | 0 | 32600 | 20.88 |

| LUT as Logic | 6306 | 0 | 0 | 32600 | 19.34 |

| LUT as Memory | 501 | 0 | 0 | 9600 | 5.22 |

| LUT as Distributed RAM | 484 | 0 | | | |

| LUT as Shift Register | 17 | 0 | | | |

| Slice Registers | 5874 | 0 | 0 | 65200 | 9.01 |

| Register as Flip Flop | 5832 | 0 | 0 | 65200 | 8.94 |

| Register as Latch | 42 | 0 | 0 | 65200 | 0.06 |

| F7 Muxes | 31 | 0 | 0 | 16300 | 0.19 |

| F8 Muxes | 0 | 0 | 0 | 8150 | 0.00 |

+----------------------------+------+-------+------------+-----------+-------+

+-------------------+------+-------+------------+-----------+-------+

| Site Type | Used | Fixed | Prohibited | Available | Util% |

+-------------------+------+-------+------------+-----------+-------+

| Block RAM Tile | 31 | 0 | 0 | 75 | 41.33 |

| RAMB36/FIFO* | 28 | 0 | 0 | 75 | 37.33 |

| RAMB36E1 only | 28 | | | | |

| RAMB18 | 6 | 0 | 0 | 150 | 4.00 |

| RAMB18E1 only | 6 | | | | |

+-------------------+------+-------+------------+-----------+-------+

REFERENCES

[1] T. Y. Zhang and C. Y. Suen. 1984. A fast parallel algorithm for
thinning digital patterns. Commun. ACM 27, 3 (March 1984), 236–239.
https://doi.org/10.1145/357994.358023

[2] https://www.reddit.com/r/JustDance/comments/1eiiptc/just dance not
real dancing/

