
Ciphered Inference Accelerator Final Report
1st Shreya Chaudhary

EECS

MIT

Cambridge, MA, US
shreyach@mit.edu

2nd Ruth Lu
EECS

MIT

Cambridge, MA, US
ruthluvu@mit.edu

Abstract—We present a design for an FPGA-based accelerator

for encryption and decryption using learning with errors (LWE),

as well as inference on MNIST digits using fully homomorphic

encryption (FHE) and bootstrapping for error reduction. FHE is

a cryptographic algorithm that allows operations to be performed

directly on ciphertext encrypted with LWE. It has important

implications for secure machine learning, allowing a machine

learning algorithm to perform inference on data without the data

being revealed to the algorithm. However, because it is slow, FHE

is not currently used in practice. Consequently, we propose using

an FPGA to accelerate using FHE on machine learning models.

We specifically focus on implementing Torus FHE (TFHE) which

is generally better for machine learning models, and we improve

latency by exploiting parallelism in the matrix operation steps

and optimizing data transfer. We achieve 26 times speedup over

unoptimized CPU Python code.

Index Terms—Digital systems, Field programmable gate ar-

rays, Cryptography, Hardware security, Accelerator architec-

tures, Matrices

I. INTRODUCTION

Fully homomorphic encryption (FHE) is a post-quantum-
secure algorithm allowing computation on encrypted data
such that an adversarial algorithm can compute an output
without learning any information about the input or output.
FHE is an especially powerful algorithm for ensuring data
privacy for inference models and can play an increasingly
important role as machine learning models are used more
in practice. Users can send encrypted data to an untrusted
party’s model for training or predictions, ensuring privacy for
sensitive information like medical data. Despite these benefits,
FHE is not used in practice due to its slowness: it involves
many matrix computations for encryption, decryption, and
operations on encrypted data. Specialized hardware, like that
of an FPGA, could be used to accelerate these specific and
highly parallelizable operations.

Consequently, we built an accelerator for running machine
learning inference models with fully homomorphic encryption
(FHE). Our accelerator uses UART to send and receive data
including the public key, secret key, plaintext, and ciphertext
between the computer and FPGA. We currently support en-
cryption using LWE, decryption using LWE, and noiseless
inference using a neural network for a simple MNIST pre-
diction.

Fig. 1. The final system will perform 3 different operations, each correspond-
ing to part of the secure inference process.

II. DATA TRANSFER AND STORAGE

To send matrices to and from the computer, we use the
UART protocol. Data was sent at a BAUD rate of 100,000,
with 1 ms of sleep between each send. The timeout between
sending the data was necessary to allow the UART receive to
“catch up,” avoiding bugs with sending 0s or nonsense values.
This data is then put into a compress module the A BRAM
has a width of 32 bits while UART can only send 8 bits at a
time.

Matrices are stored in 4 BRAMS: one to store the public
key (or the ciphertext input for inference) of width 32 bits
and depth 25250, one to store the secret key (or switching
key for inference) of width 2 bits and depth 250, one to store
the plaintext of width 2 bits and depth 50 bits, and one to
store the message (or output of inference) of width 32 bits
and depth 2500 bits. This means that all matrix operations are
parallelized by a factor of 2. Due to the limits of the BRAM,
given our parameters, this is the largest possible parallelization
unless BRAM sharding is used.

Fig. 2. The format the A matrix was stored in BRAM.

There is also a BRAM that stores neural net weights of
width 3 and depth 1000, and another that stores biases of
width 3 and depth 10. These are read from a .mem file using
a pretrained neural net.

Once data has been sent in, the user flips a switch when
they wish to begin computation. The computation to perform
is selected by using 2 other switches, which will decide if the



system sends the data back out, encrypts the data, decrypts the
data, or performs inference on the data.

Fig. 3. Calculations begin when switch 0 is turned on. Switches 1 and 2
decide which output is stored into the BRAM.

We then use UART to send the results back to the computer,
reading from each of the four BRAMs (not including the
neural network weight BRAMs) and decomposing the results
into a series of bytes.

III. LWE ENCRYPTION AND DECRYPTION

To suit the needs of the MNIST inference, the encryption
module needs to encode 100 bits of data (N = 100), which
represent 100 pixels of a scaled-down MNIST input image.

For decryption, the output of the neural net will be 10
integers, so the decryption module only needs to handle N
= 10.

A. LWE Background

LWE is a type of encryption that takes advantage of the
difficulty of solving noisy linear equations.

Fig. 4. Ciphertext broken down by sections based on the parameter values
of p, q, and delta.

We set our parameters to k = 500, q = 216, and p = 210,
which means we have a ! of 26 bits. Setting p to 210 ensures
there is enough room to perform all necessary neural net
computations. Setting q to 216 gives us enough room for errors
to build up before we bootstrap, although it limits the amount
of parallelization we can achieve. Finally, setting k to 500,
which is significantly greater than our N of 100, ensures the
computations are secure.

B. Python Implementation of LWE

To implement LWE [3], we implemented the aforemen-
tioned encryption and decryption modules and added functions
for a simple addition and multiplication of ciphertext. We did
this without using NumPy and instead manually multiplying
the vectors by iterating through the Python lists.

Python performance was benchmarked by having the pro-
gram encode or decode 100 random plaintexts or ciphertexts.
Encryption with the above parameters takes 0.022 seconds on
average. Decryption takes 0.0064 seconds on average.

C. FPGA Polynomial Multiplication

To perform the public-private encoding of the plaintext,
the system iterates over 2 terms of each polynomial in the
secret key at a time and multiplies it with 2 terms of the
corresponding polynomial of the public key. This is repeated
for every polynomial, and the terms (along with the noised
ciphertext output of the error addition module) are added to
the b BRAM, which stores the encrypted message.

Fig. 5. Example of performing polynomial multiplication on the first row of
the public and secret keys. There are a total of N=100 rows.

D. Error Addition

For adding error to the ciphertext, we randomly sample 2
bits from an LSFR module. In the same module, we also left
shift the plaintext by ! bits and add it to the error. Together,
these are sent to be added to the ciphertext along with the
output of the polynomial multiplication.

The output of error addition and polynomial multiplication
is added with the b memory contents and put back into the b
memory.

Fig. 6. Block diagram of the encryption process.



E. Verification and Benchmarking

Since the error addition is random, we ensured our en-
crypted output was correct by decrypting it and verifying that
it was the same as the inputted plaintext. For decryption, we
check that the output was identical to the original plaintext
that we encrypted and sent in.

Because the FPGA uses counters to decide which addresses
need to be read out of the matrix, it is possible to directly
calculate the number of iterations the counter uses for a full
encode cycle. There are a few cycles of pipelining afterwards,
but these can be disregarded. As each address is read, the
system performs computation on them. It needs to iterate over
a total of 100 (N) * 250 (security parameter divided by 2)
addresses. This means the system will read addresses for a
total of 25k cycles for encryption, which translates to 8.3 →
10→4 of calculation.

For decryption, the system will read from 2.5k addresses
since N is 10 instead of 100, which will take about 8.3→10→5

seconds.

IV. SECURE INFERENCE

To demonstrate a simplified example use case of the CIA,
we designed it to perform inference on MNIST, a popular
handwritten digit recognition task [1].

Since we are passing in a ciphered input, we used FHE [3]
operations to ensure that the output remains correct.

A. FHE Background

With most encryption schemes, it is impossible to per-
form most functions on the ciphertext without destroying its
integrity. But when using LWE ciphertexts, FHE operations
can be used to perform certain arithmetic operations without
knowing the content of the ciphertext.

Matrix multiplication involves repeated multiplication and
addition. To multiply a ciphertext with a constant number, we
can multiply every value in A and the message by that number.
To add two ciphertexts, we can add every value in A and the
message.

The addition of a ciphertext and an unencrypted number
(which will be used to add biases to the neural net) can be done
by turning the number into a trivial ciphertext (a ciphertext
where A, s, and the error are all set to 0, and the message is
left shifted by ! bits), then adding it to the ciphertext.

B. Designing the Quantized NN

Because our system can only handle integer operations, we
must quantize the floating point weights of the neural net into
integers. In order to prevent the error from growing too rapidly,
we use 3-bit zero-point quantization [4].

To create the input, we resized the 28 by 28 images of
MNIST to 10 by 10 using PyTorch, then made all pixels with
values above 127 equal to 1 and the rest equal to 0.

With an input layer of size 100 and an output layer of size
10, and no hidden layers, we were able to achieve 75% accu-
racy on MNIST validation data with 3-bit quantization. Adding
more layers led to worse performance in the quantized neural

net, which may be due to the increasing loss of information
with each quantized layer. While 75% is significantly worse
than SOTA (which often uses CNNs, which we have decided
not to implement because it would require significantly more
operations), it is sufficient to show that FPGAs can correctly
accelerate NN inference with FHEs.

C. FHE NN in Python

To perform the FHE inference step in Python, we encrypt
the 100 pixels (each represented by 1 bit). Then, we multiply
the weights matrix by the ciphertext matrix, and get the new
public key by multiplying the weights matrix by the public key
matrix. By decrypting, we were able to confirm that the output
of running inference on ciphertext is the same as running
inference on plaintext.

In vanilla Python, this takes 0.22 seconds.

D. NN Implementation on FPGA

Fig. 7. The NN module iterates over the corresponding rows and columns of
the weights and A matrix, then adds the result in the B BRAM.

To implement matrix multiplication, we iteratively multiply
a weight column by a ciphertext row and add it to the output
matrix. The output matrix includes both the public key output
and the ciphertext. Iterating this way allows us to bootstrap.

Finally, to add the biases, we left shift the biases by ! and
add them to all values in the output matrix.

Each weight has a magnitude of 3 bits (using two’s-
complement to handle negatives). Assuming there are less
than 50 pixels in the input equal to 1 while the rest are 0
(which seems reasonable, as most MNIST images are mostly
background), the output can be stored in 10 bits, which is why
p is 210.

Theoretically, the above procedure can be repeated for as
many layers as there are in the neural net. Since our neural
net only has an input and output layer, we only do it once.

To add the biases, during the first loop of the matrix
multiplication, a trivial ciphertext encoding the bias was added
to the output layer.

For a cycle of matrix multiplication, we iterate over 100
values of N, for each of which there are 251 memory addresses
in the ciphertext, for each of which need to multiplied by 10
weights. (We add biases during the multiplication process, so
that would not add extra calculation time.) This requires about
8.4 → 10→3 seconds.

While this neural net works if the error is small, if the error
is too large, it will become greater than 2!, which means
it will corrupt the output data. To combat this, we need to



implement bootstrapping, a method of lowering noise in LWE
ciphertext.

Although bootstrapping was not succesfully implemented
in hardware, our system can still perform FHE inference on a
ciphertext. Incoporating bootstrapping into hardware requires
a more theoretical understanding of how the components fit
together and since bootstrapping is memory-intensive, will
require us to use DRAM for our parameters.

V. BOOTSTRAPPING

Bootstrapping is a method to re-encode the ciphertext with
a new secret key, allowing the noise to be reduced. Some
operations such as multiplication lead to very large amounts of
noise which result in the solution being decrypted incorrectly.
Consequently, most FHE schemes require bootstrapping to
reduce the noise to allow for the ciphertext to be decrypted
correctly. At this time, we have implemented components of
bootstrapping in Python and in Verilog simulation, but it is
not yet incorporated into the full system.

We focused on implementing two of the main components
of bootstrapping for TFHE: modulus switching and blind
rotation [3]. Together, these components allow us to effectively
reencrypt the data to reduce noise.

A. Modulus Switching

Modulus switching converts the ciphertext from mod q to
mod ω where ω is a power of 2 such that p < ω < q. This
is effectively conducted with an element-wise scaling of the
original GLWE-encrypted ciphertext by ω

q .
We accomplish this by taking in the value at a certain

address location, scaling each packed value, then returning the
newly packed value. This gives us parallelization by modulus
switching two parts of the ciphertext in parallel. Since ω < q,
we can use the same BRAM to store the output. Both omega
and q are powers of 2, so in Verilog, we can subtract these
parameters to get log2(

q
ω ) = log2(q) ↑ log2(ω), then right

shift a component. This will effectively multiply the element
by ω

q as required by the algorithm while keeping the values
used as integers and saving clock cycles from unnecessary
multiplication and division. This entire process takes one cycle
or 10 ns for two values of the ciphertext to complete. So for
a ciphertext of size 200, this will take 10→6 seconds. If we
include the time to read and write the BRAM, this is 5 cycles
(two cycles to read, one cycle for the computation, and two
cycles to write) so 5 → 10→6 seconds.

B. Blind Rotation

It next uses blind rotation to shift all of the coefficients
of the input polynomial by an encrypted amount. Effectively
assuming M is a matrix of the coefficients, we are multiplying
by a X→ε where ε is an encrypted value. This will effectively
encrypt the value we need to decrypt / denoise the result.

The blind rotation algorithm works by first decomposing the
decryption value of ε into powers of 2 (iterating over each bit
of the value). If the ciphertext value at position i is 1, it will
rotate the message.

Since our data is compact with two values per row, our
Verilog implementation of blind rotation is slightly different
between even rotation amounts and odd rotation amounts. Our
Verilog module takes in a rotation amount along with the
previous address and previous data. If the rotation amount
is even, it will output a new address rotated by the rotation
amount divided by two to the left with a conditional ensuring
the address wraps. This takes the module one cycle per address
to rotate. If, however, the rotation amount is odd, for the first
input, we store it and don’t immediately return a valid address.
For subsequent addresses, however, we concatenate the LSB
of the previous value with the MSB of the new value and
return the previous address rotated with this new concatenated
data. To successfully rotate a full input, the module need one
extra call at the end. In addition, the odd number of rotations
assumes that the addresses will be fed into the module in order.

VI. OVERALL SYSTEM EVALUATION

A. Throughput, Latency, and Timing Requirements

As this project was designing an accelerator, one of our
most important design goals was throughput. We compared
our throughput with baseline Python without using any op-
timized libraries. As previously discussed, for the Python
implementation, we estimated the runtime using the time
module in Python based on multiple runs. The FPGA runtime
was estimated based on the cycle count.

Baseline Python CIA
Encryption 0.022 8.3 → 10→4

Decryption 0.0064 8.3 → 10→5

Inference 0.22 8.4 → 10→3

TABLE I
THROUGHPUT IN SECONDS OF CIA VS UN-OPTIMIZED PYTHON

IMPLEMENTATION

One of the main bottlenecks of our system is the time it
takes to pass the data in and out via UART. Currently, it takes
over 2 minutes to send the data from the computer to the
FPGA and less than a minute to send the data from the FPGA
to the computer. We did not account for the data transfer time
when comparing throughput. In addition, due to the long data
transfer time, latency was not a concern, since transferring
caused a bottleneck.

We were able to successfully satisfy timing with a positive
WNS=1.531. We did not run into issues with a negative slack
and consequently did not need to add additional pipelining.

B. Memory

We use four BRAMs for the A matrix (public key), secret
key, plaintext, and b.

The FHE algorithm itself is very memory-intensive, requir-
ing large matrices to maintain security. Consequently, we did
not have much to optimize over for memory, so we used the
memory necessary to store the matrices.



Width Depth Size
A 32 25250 0.101 MB
PT 2 100 200 bits
SK 2 250 500 bits
B 32 2510 0.01 MB

NN (weights) 3 1000 3000 bits
NN (bias) 3 10 30 bits

Total 0.1115 MB
TABLE II

MEMORY REQUIREMENTS OF CIA

C. Checklist

We were able to successfully accomplish our commitment,
as we can use UART to send and receive data and both encrypt
and decrypt LWE ciphertexts. In addition, we made progress
towards our goal with the neural network computation working
on the FPGA and components of bootstrapping working in
simulation. The last step to finish our goal would be better
understanding the bootstrapping algorithm to incorporate it
into our neural network computation to allow it to use noisy
(and therefore secure) ciphertext while getting the correct
result.

D. Implementation Insights

Surprisingly, one of the most challenging aspects of im-
plementing the accelerator was using UART to transmit data
from the computer to the FPGA. We ran into a variety of
errors, including having a faulty wire which led to one of
our machines getting the correct answer and the other getting
the incorrect answer. Furthermore, after getting the wire issue
resolved, we later noticed our uart receive stopped reading
data at random times around a certain a value which would
change with different BAUD rates and timeouts between the
sends. We eventually used a BAUD rate of 100,000 with 1
ms of sleep between each transmission. Although we were
not able to diagnose the exact cause, we suspect the UART
receive module was not robust enough to handle receiving over
100,000 values continuously. Solving this took many weeks,
so in hindsight, we are glad we started working on it early on.

While the inability to receive matrices initially was a bottle-
neck for testing the actual computation modules on hardware,
we figured out we could test by preloading the BRAMs with
.mem files, which allowed significant progress to be made in
making the computation modules functional before the data
pipeline was.

One implementation lesson learned was that using AXIS
was unnecessary for this accelerator and actually hindered our
implementation attempts. Because of the organized nature of
matrix operations and the fact that all the data was already
stored on the board before computation began, it ended up
making more sense to just pass valid signals through instead
of telling any module to wait.

One theoretical mistake we made was initially using general
LWE (GLWE) instead of LWE. GLWE treats the entire input
image as one uniform ciphertext that needed to be operated on
as a whole, which prevented us from treating each pixel as a

node in a neural net. Because we did not write the CPU code
for the neural net before writing the encryption and decryption
hardware modules, we implemented GLWE on the hardware.
Fortunately, the switch from GLWE to LWE was fairly simple,
although it still would’ve been better to catch the error in
software before spending time on an incorrect algorithm in
hardware.

One persistent issue we encountered is that we misunder-
stood the memory requirements of the system. For instance,
we initially thought A was smaller than it actually was, and we
chose a value of q that was too small for what we wanted to
do. This problem was compounded by the fact that we could
not get DRAM to work. In the end, we relied on significantly
compressing the input and using a lower quantization on the
neural net in order to ensure all the data we wanted to process
would fit in BRAM. An unintended effect of using 3-bit
quantization was that adding a hidden layer actually made the
performance worse, so we removed that in our final design.

Finally, a possible timing optimization that we could’ve
made early on was BRAM sharding. This could have led to
a two or four times improvement on processing speed, but
it was too complex to implement after the data pipeline and
computation modules were already written.

CODE REPOSITORY

VII. INDIVIDUAL CONTRIBUTIONS

A. Code

Ruth trained and quantized the neural net in Python, as well
as wrote the FPGA modules for encryption, decryption, and
inference.

Shreya created the Python implementations of encryption
and decryption, as well as wrote the FPGA modules for
the pipeline for passing data in and out of the system and
bootstrapping.

We both collaborated for debugging various issues that
arose.

B. Report

We both collaborated on sections VI and II. Ruth wrote
sections III and IV and created the figures for the documents.
Shreya wrote sections I and V.

ACKNOWLEDGMENT

We thank Professor Joe Steinmeyer and the 6.205 teaching
team for their continued assistance and advice on implement-
ing this project.

REFERENCES

[1] Deng, L. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6), pp.141–142,
2012.

[2] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast
Fully Homomorphic Encryptionover the Torus. In Journal of Cryptology,
volume 33, pp. 34–91, 2020.

[3] I. Chillotti. TFHE Deep Dive. Zama.ai Blog, May 2022.



[4] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
D. Kalenichenko. Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference. Dec 2017.

[5] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez. 2021. F1: A Fast and Programmable
Accelerator for Fully Homomorphic Encryption. In MICRO ’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO ’21), October 18ś22, 2021, Virtual Event, Greece. ACM, New
York, NY, USA, 15 pages.

[6] Y. Zhu, X. Wang, L. Ju and S. Guo, ”FxHENN: FPGA-based ac-
celeration framework for homomorphic encrypted CNN inference,”
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Montreal, QC, Canada, 2023, pp. 896-907, doi:
10.1109/HPCA56546.2023.10071133.


	Introduction
	Data Transfer and Storage
	LWE Encryption and decryption
	LWE Background
	Python Implementation of LWE
	FPGA Polynomial Multiplication
	Error Addition
	Verification and Benchmarking

	Secure Inference
	FHE Background
	Designing the Quantized NN
	FHE NN in Python
	NN Implementation on FPGA

	Bootstrapping
	Modulus Switching
	Blind Rotation

	Overall System Evaluation
	Throughput, Latency, and Timing Requirements
	Memory
	Checklist
	Implementation Insights

	Individual Contributions
	Code
	Report

	References

