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Abstract—This report presents the design of a Paillier cryp-

tosystem implemented entirely on an FPGA fabric. Homomorphic

cryptosystems, such as Paillier, are known to provide large

computational overhead – we present advances to overcome some

of these limitations. We utilize a block stream approach to handle

the logic of the large numbers of our system, and we implement

the hardware to exploit optimizations enabled by this approach

in order to encrypt and decrypt high quantities of votes in a

simulated election. Finally, we evaluate the performance of our

system compared to a software implementation over a general

purpose processor to demonstrate that our system is efficient –

even compared to powerful CPUs.

Index Terms—partially homomorphic encryption, field pro-

grammable gate arrays, Cryptography

I. SYSTEM COMPONENTS

Our cryptosystem design consists of implementing the fol-
lowing components on our Spartan 7 Xilinx FPGAs

• 4096-bits operators: Multiplier, Divider/Modulo, Adder,
Subtractor, Shifter, Bits Selector

• 4096-bits over 2048 bits Exponentiation Module
• 4096-bits Random Number Generator
• 8192-bits Montgomery Reducer
• UART Transmitter & Receiver
• SPI Transmitter & Receiver s
• Redundancy Check Modules
As of the date of this preliminary report, we have suc-

cessfully implemented, simulated, and synthesized the Mont-
gomery Reducer and all the 4096-bits components, save the
4096-bits Divider which is in active work. In III we go in
detail of our design approaches for these components and their
simulated results.

II. ENCRYPTION SCHEME

A. Mechanism

The purpose of our system is to run a secure election demo,
following the desirable properties of:

• Vote secrecy – no one with access to the vote database
can determine what a given person voted for.

• Confirmable votes – any individual voter can confirm
their vote is being counted correctly, at any point in time.

• Vote-selling prevention – voters can never prove they
voted in a specific way, which otherwise would allow for
a mechanism of selling and buying votes.

Our system achieves these properties through the imple-
mentation of Paillier Cryptosystem, a Partially Homomorphic
Encryption (PHE) scheme. It allows us to compute the tally
of an election without ever decrypting individual votes. In
particular, the product of two ciphertexts will decrypt to the
sum of their corresponding plaintexts.

D(E(m1, r1) · E(m2, r2) mod n
2) = m1 +m2 mod n (1)

Where m1,m2 are the messages in plaintext, r1, r2 are
random 4096-bits numbers, n is the product of two 1024-
bits primes, and D and E are our Paillier decrypt and encrypt
functions.

Here, if a voter wants to vote for candidate A, they will
cast a ballot with messages mA = 1 for said candidate, and
m→A = 0 for the others.

A Paillier voting machine will encrypt the message using
E and send it to a Tallier machine. For reference, a ballot

receipt, consisting of the corresponding ciphertext, is given
back to the voter. The Tallier will multiply the ciphertexts of
all voters. By the homomorphic property (1), decrypting this
product will be equivalent to adding 1 for every vote in favor
for a candidate, and 0 not in favor.

Once an election is declared over, the Tallier sends the
votes to the Decryptor that possesses the private key and the
decryption function D, deciphering the result tallies for every
candidate and announcing the winner.

To allow for confirmable votes, every constituent has access
to the database of all votes – allowing them to check that their
encrypted stored vote matches their ballot receipt and, if they
were to perform the tally product, they would obtain the same
encrypted tally announced by the official Tallier.

Paillier is based on the assumption that it is hard to
determine whether a given number is an n-residue modulo n

2.
In particular, a system implemented with a key size of 2048-
bits, such as the one presented, will require a computational
effort of 3 · 1020 MIPS-year [2]. Hence, no one without the
private key will be able to determine individual votes, granting
vote secrecy.

Moreover, while voters may compare their ballot receipt
with the ciphertext in the database, they can only verify that
the vote is unchanged, but cannot confirm or demonstrate to
whom the vote was casted for, as that would require the private
key. This ensures vote-selling prevention.



Other valid security concerns – such as how to improve
trustworthiness of the Decryptor machine (e.g. by distributing
the decryption power over many trustworthy officials using
Shamir’s), how to ensure the voting machine does not output
a modified vote (e.g. by implementing Benaloh’s challenge),
how to prevent fake or double votes (e.g. through a Validator
Authority) or the general question of how to make the system
more accessible to the public – will not be focused on in this
demo, but are posed as future points of exploration.

B. System Design

For our current system, we will implement the case of a
two-candidate election. A generalized system – as described
above – is only a matter of scaling the number of messages
by the number of candidates.

Our goal is to implement the above mechanism in an
efficient manner. In figure 1, we demonstrate this by having
an “Encryptor FPGA” acting as the Voting Machine, and a
“Decryptor FPGA” acting as both the Tallier and Decryptor.
The act of a voter casting a ballot is simulated and sent to the
Voting Machine via UART. The Encryptor and Decryptor com-
municate through SPI and the data clock period is increased
in order to prevent loss of ballots.

There are several essential modules required for implement-
ing a complete Paillier cryptosystem [1].

Key Generation. From two large primes p,q and a large
random number g, we calculate the public key for our En-
cryptor, (n, g) where n=pq. The private key for our Decryptor
will be (ω, µ) = (ω(n),ω→1(n) mod n), where ω is Euler’s
totient function. Since our purpose is optimizing encryption
and decryption, we precompute these one-time generated keys
outside the boards, and provide them to the corresponding
modules.

Encryptor – [Figure 2] A random 4096-bit number r is
generated for every encryption. Then, given a message m and
public key (n, g), the encryption function is

E(r, n) = gm · rn mod n2 (2)

Decryptor – [Figure 3] Given a ciphertext c (or product of
ciphertexts), and given public key (n, g), private key (ε, µ),
the decryption function is 1

D(c) =
(cω mod n2) → 1

n
· µ mod n (3)

A major challenge of the system is implementing the large
numbers operators. Evidently, it is infeasible to carelessly
utilize 4096-bits wires and registers, as that would exhaust
the resources and violate timing constraints. Instead, we took
inspiration on how CPython implements large numbers [4].
We divide the 4096-bits number into 32-bits blocks, and
implement our operators by only working with a few blocks
at a time.

To allow components to access blocks, we considered two
different approaches:

1 a
b denotes the quotient of a over b

1) Centralized Memory. Modules would send read and
write requests to a Memory Arbiter utilizing pointers.
Modules would interact by sending other modules point-
ers referencing to the desired numbers. However, the ar-
biter adds much complexity to the system, and utilizing
memory in this manner adds overhead circumventable
by the next approach. We do not use this method.

2) Modules Data Streaming. This is allowed by designing
the system such that every module only depends on the
module immediately before it. As blocks are processed,
these modules either throw away the original input
(e.g. addition) or ”cache” away the entries to perform
the computation if necessary (e.g. multiplication). The
results are sent in blocks to the next components for
processing, continuing the cycle in a serial fashion.

Henceforth, our design will follow a block stream approach.

C. System Optimization – Montgomery

The 4096-bits over 2048-bits Modular Exponentiation Oper-
ator is the main bottleneck of both encryption and decryption.
A 4096-bits long-division Divider (acting also as a Modulo
operator) requires at least 4 million cycles. If it were to be
used in the modular exponentiation, it would need to be run
2048 times, resulting in an impractical lowerbound of 85.9
seconds2 to encrypt a single vote.

To tackle this, we utilize Montgomery Modular Multipli-

cation [3], which allows us to substitute almost every single
divider with much faster multipliers, shifters, and bit selectors.

To compute a2u

mod N , the Montgomery approach is:

1) Compute a = aR mod N , where R = 2→log2N↑.
Moreover, this can be optimized to avoid using the
Divider by precomputing R = R

2 mod N , since
Redc(aR) = aRRR

→1 mod N = aR mod N = a.

Redc(T ) = TR
→1 mod N (4)

2) Calculate T = a · a = a
2
R

2.
3) Calculate Redc(T ) = Redc(a2R2) = a

2
R mod N = a2

4) Repeat last step with T = x ·x, where x is the output of
the last step. Finish when you get the desired exponent.

5) We obtain a
2u
R. Reduce one more time to obtain a

2u .

.
Ultimately, this design results in only needing to synthesize

two dividers for the entire system! In III-B we go over how
to efficiently implement Redc, and in III-C how to utilize it
to implement a general an mod N operator.

2Assuming 100MHz Clock Speed



Fig. 1. High-level Block Diagram of the System

Fig. 2. Encryptor Block Diagram

Fig. 3. Decryptor Block Diagram



Fig. 4. FSM Multiplier Block Diagram

III. HARDWARE IMPLEMENTATION

A. Multiplier

The performance of our system is tightly dependent on
the performance of the 4096-bit multiplier implementation.
Montgomery modular exponentiation, the bottleneck of our
system, requires looping around three multiplications 2048
times. Hence, we see that

tsystem → texp → 2048 ↑ 3 ↑ MultiplierCycles ↑ 10→8 seconds

Historically, efficient multiplication algorithms have been
vastly researched. A common theme is the trade-off between
speed and resources – usually, calculating a product in less
cycles requires utilizing greater number of resources.

Our system utilizes 4 DSPs in order to compute the product
of 32-bit blocks combinationally – this allows us to divide our
algorithm into the multiplication of two 4096/32 = 128 blocks
numbers.

To implement this, we considered several base algorithms,
with potential optimizations:

1) Grade-school multiplication. Intuitive algorithm that
runs in O(n2) and utilizes resonable resources.

2) (Binomial) Karatsuba’s. Very expensive and complex,
but runs in O(nlog2 3).

3) Generalized-polynomial Karatsuba Multiplication.
Moderately expensive, requiring only 1

2n
2 + 1

2n

multiplications. [7]
4) Others, such as Schönhage–Strassen FFT. Proved to be

too resource expensive or unpractical, despite significant
speeds.

Where n represents the number of blocks, or single-cycle
multiplications, of the numbers.

Figure 4 depicts our implementation of the Grade-school
multiplication algorithm. It consists of multiplying every 1282

pair of blocks of the two 4096-bits numbers. After every
multiplication, we carefully add the results into an accu-
mulator BRAM. This has to be done with great scrutiny
in order to not waste cycles. Our original implementation,
fpga e/fsm multipler original.sv, required 82,689 cycles to
complete, as it needed to record intermediate products into
an additional BRAM. We optimized it, as per Figure 4, by
doing the required accumulator additions at the same time as
we output results from the multiplier, achieving 16,646 cycles,
very close to the limit of Grade-school of 1282 = 16, 384.

We further optimized in fpga e/fsm multipler parallel.sv
by making adding 4 Combinational Multipliers in parallel,
to calculate four products simultaneously. This allows us to
achieve a 4296 cycles multiplier. However, this multiplier must
be used sparingly, as it requires 16 DSPs. Our Encryptor FPGA
utilizes 6 parallel and 6 unparallel multipliers, reaching the
maximum of 120 DSPs, and attaining

tsystem → texp → 2048 ↑ 3 ↑ 4296 ↑ 10→8 = 0.264 seconds

per encryption. This is considerably efficient compared to
similarly systems (see IV), and even to modern CPUs. Both
Intel i7 and M1 CPUs were able to run the encryption in
software in between 0.15 to 0.10 seconds.

As described above, Binomial Karatsuba’s requires
significant hardware resources that would exhaust our
DSPs in our system, making this unfeasible. However,
python scripts/general karatsuba demo.py showcases a pro-
totype of a generalized Karatusuba, requiring only one 32-
bit Combinational Multiplier and only twice the amount of
BRAMs. Implementing this system and parallelizing it would,
in theory, allow our encryption to be 4 times faster. This is a
future possible avenue of improving our system to outperform
modern CPUs.

B. Montgomery Reduction

Recall II-C and (4):

Redc(T ) = TR
→1 mod N

Where N = n
2 in our case (1).

To optimize Redc, figure 5 implements the following steps
[3]:



Fig. 5. Montgomery Reduction Block Diagram

TABLE I
4096-BITS MULTIPLIER APPROACHES

Component Cycles BRAM DSPs
Grade-school

Multiplier,
32-bits Blocks

16,646 1.5 4

Grade-school

Multiplier,
64-bits Blocks

4230 3 16

Parallel grade-school

Multiplier,
32-bits Blocks

4,296 3 16

1) Compute m := (T mod R) · k mod R, where k is a
constant from Bezout’s RR

→1 = kN + 1
2) Compute t := (T +mN)/R
3) if t < N return t, else t-N

Notice that t ↓ 2N and t ↔ TR
→1 (mod N). Moreover,

since R = 2↑log2N↓, all steps only require shifting, bit selects,
addition, or multiplication – but no expensive division, as
desired.

The workflow again follows our block stream approach
– inputs come in 32 bit blocks representing sections of the
8192 and 4096 bit numbers. As R is just a power of 2, our
mod module is invalidates the top half of the input, while the
right shift module does the opposite. Addition and subtraction
are likewise done in a classic ripple carry fashion whilst the
comparator runs a finite state machine as per figure 7. There
is some nuance with the signals, however which is why we
need (for simplicity) the 2 BRAMs, so we can reuse the input
after it has been consumed by other modules.

In terms of efficiency, our module takes 8,980 clock cycles
(for the parallel version). Keeping in mind that each parallel
multiplier takes 4,296 clock cycles and that they are blocking,
we can see that all the non-multiplier logic just adds in 8, 980↗
2 ↘ 4, 296 = 114 extra clock cycles for the rest of the logic.

Fig. 6. Montgomery exponentiation Block Diagram

This means that if we want to increase the throughput of this
module, the only feasible way is by increasing the throughput
of the multiplier.



C. Montgomery Exponentiation

The squaring streamer implements the steps described in
II-C to square the input values. For some a, it is initially fed
in the value a ·R (mod N) (in blocks stream approach). This
input will be forwarded, likewise block-by-block, twice to a
multiplier which will effectively square the input value. The
multiplier now represents the value a

2 · R2 (mod N) which
is then fed into a Montgomery reducer, which cancels out
one of the R terms, eventually outputting a

2 · R (mod N).
This output, while sent out of the module, is also fed back
into the multiplier and a loop repeats, having the squaring
streamer effectively compute and send out a2

i ·R (mod N).
The streamer, unlike in the preliminary report, does not have a
specification on whether or not it must terminate after 2048, or
some set number of, iterations. Instead, it is the responsibility
of the module hooked up to it (in this case, the Montgomery
accumulator) to reset the module before passing in its next
input. This saves the headache of dealing with off-by-one or
timing issues with internal counters.

The accumulator works similarly to the streamer but in
addition to the initial state mux there is also an extra mux
based on the bit values of n. This mux allows us to switch
between the identity operation (multiplying by R mod n

2)
and the input of the squarer streamer, effectively allowing us
to selectively update the running product with the value of a2

x

if 2x is in the bitwise representation of n. We query the next
n bit with the request signal, and when we iterated through
the whole number we output the result from the Montgomery
reduction, yielding a

n as desired. As hinted above, when the
last valid out signal is sent from the accumulator, a reset signal
is sent to the streamer.

D. Magic Number Division

Long division is an important algorithm for computing the
quotient and residues when no special tricks apply. However, it
is also very resource and time expensive – as it is O(n2) with
respect to the number of bits. Moreover, implementing such an
algorithm correctly in this scale, would be a real uphill battle
with all the large, intermediate values needing to be updated
mid-way.

However, from our encryption scheme we can tell we are
only dividing by the fixed constant n. This allows us to instead
implement algorithms for fixed integer division. In particular,
there is a neat trick frequently used by compilers, commonly
known as a Magic Number Divider. If the quotient of the
division is expected to fall in a certain range, you can pre-
compute 1

n left shifted by some number, and multiplied by
some constant. Then, after multiplying and right shifting,
you’d receive the result of the division ”deleting” the decimal
values. Thus, overall allowing division to be implemented
via multiplication, shifting, and (depending on the constant)
maybe 1 or 2 more cheap, restoring operations gives the
expected value.

Another nice detail for our crypto-system is that the inputs
to the divider are upper bounded by n

2. This allows us to
generate a very convenient constant, making our restoring

process single right-shift operation. Thus, division essentially
only has the cost of a singular multiplication for our system
:).

IV. EVALUATION

Our system uses all 120 DSPs and about 50% of the boards
block RAM. We also used 54% of the available slices and
around 20% consumption for slice logic. There is a trade-
off between computational efficiency and resource efficiency
for our different modules. However by using more complex
routing logic for reads and writes, there should be a way
to reduce BRAM consumption for the multipliers to only 1
BRAM block per multiplier, as well as potentially decreasing
the amount of constants in the top level.

With respect to timing, we have 0.423ns of slack, with
a critical path coming just from a 32-bit multiplication and
putting it in a register. This means that our system is optimal
with respect to timing. We attempted increasing the register
to 64, but this caused our system to not meet timing, with the
same critical path as before.

Since the exponentiation is a our main bottleneck, our
system approximately takes 2048 · (4296+8980) → 27000000
clock cycles. This results in about 3.7 encryptions per second.

We ran the same encryption process in a 125 MHz Rasp-
berry Pi, and it took 91.2 seconds to complete, while an
M1 MAC took about 0.12 seconds to complete, and our
FPGA took about 0.27 seconds. This means that since our
simplistic FPGA was able to reach near the speeds of such a
modern system (which probably uses hardware accelerators),
this indicates the good compatibility of a Paillier encryption
scheme on an FPGA system.

Our system has achieved most of our goals, though we
would have liked to have the decryption working in hardware
rather than just simulation.

Our vast utilization of Montgomery for the system allows
use to drastically reduce the instances where we need a
divider, lowering the cycles per encryption (instead of the
lowerbound of 86 seconds with Divider to just 5 seconds using
Montgomery). Future optimizations focusing on the multiplier,
or particular use cases of the multiplier, are being considered
to further lower our Exponentiation, the main bottleneck of
our system.

TABLE II
CYCLES PER COMPONENT

Component Cycles BRAM
4096-bits Adder, Subtractor, Shifter, Selector →128 0
4096-bits grade-school Multiplier 16,646 1.5
2048-bits grade-school Multiplier 4,230 1.5
4096-bits Parallel grade-school Multiplier 4,296 3
4096-bits Montgomery Reduction 33,680 4
4096-bits Parallel Montgomery Reduction 8,980 7
4096-bits over 2048-bits Modular Exponentiation 102,273,024 12
4096-bits over 2048-bits Parallel Modular Exponentiation 25,989,120 21
4096-bits by 2048-bits magic number Divider 16,902 2



If we were able to do things differently, we’d like to
have payed more careful attention to register-assigns to avoid
latches (this resulted in some nasty bugs, seemingly non-
deterministic bugs!). We also would’ve like to have a better
sense of the algorithms that we use and the specifics of how
each component interacts with the rest of the system before
beginning to implement modules. This would’ve allowed us
to create less complex modules that would still be perfectly
suitable for our purposes. -

V. FUTURE WORK

Currently we have only been able to synthesize the encryp-
tion pipeline, though the decryption one should be similar.
From here, some future works would include figuring out
further ways to restructure the multiplier pipeline to a non-
blocking implementation, or using algorithms with higher
performance such as Karatsuba’s. Finally it would be ideal to
have these votes be stored in some sort of permanent storage
with some unique identifiers, so our voting system is more
robust, and could implement Benaloh’s challenge.

VI. APPENDIX

A. Source Files

All our source files are in
https://github.com/LuisGuille1729/fpga election
It includes:
• fpga e/ – Encryptor system design & simulation files
• fpga d/ – Decryptor system design & simulation files
• python scripts/ – UART transmission and receiving, and

prototypes for Paillier, Montgomery, Optimized Multipli-
cations, Dividers.

B. Team Contributions

Everyone
• Diagrams, Write up, Proof Reading Each Other, Debug-

ging
• Encryptor Top Level
• Decryptor Top Level
• Researching 4096-bit Adder, Multiplier, Divider, Modulo

implementations, and Encryption Schemes
Rafa
• Montgomery Accumulator
• Multiplier
• Block Repeater
• Byte Repeater
• Padder
• Adder
• Accumulator
• Vote Processor
• Vote Accumulator
Luis
• Optimized multiplier (fsm multiplier.sv)
• Parallel multiplier (fsm multiplier parallel.sv)

Fig. 7. Running Comparator – Finite State Machine

• montgomery reduce.sv
• Magic Divider (fixed divider.sv)
• UART, SPI communications (spi pe.sv)
• Communication Scripts
• Prototype and Math Scripts (python scripts)
Nico
• Block Repeater
• Montgomery Streamer
• Padder
• Revising Other Modules and Overall Logic
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