
Convolutional Neural Network Hardware
Accelerator

1st Youry Moise
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
yourym@mit.edu

2nd Jake Li
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
jakel238@mit.edu

Abstract—We plan to use our FPGA to design a hardware
accelerator that is capable of running images from the MNIST
dataset through a convolutional neural network (CNN) algorithm.
Doing this in hardware has the potential to significantly speed
up predictions, as computationally demanding operations such as
convolutions and matrix multiplications do not need to be done
in software. Using an FPGA specifically offers benefits in terms
of flexibility, as we can change our architecture relatively easily
to implement a variety of machine learning models. Images can
come in through either a subsampled camera feed or a computer
connected over SPI, and the output of the network is displayed
on our seven segment counter and the HDMI monitor. We have
defined our commitment to be sending an image to the FPGA
from a laptop and running it through our pipeline. Our goal
is to interpret camera frames as input images. Our reach goals
include implementing backpropagation to train our model.

I. ARCHITECTURE (YOURY)

Images enter our network, described in figures 1 and 2,
through one of two methods: they can be sent as frames
from a camera, which will be downsampled and converted to
grayscale, or from a computer over SPI through a Teensy 4.0.
The network itself consists of one 5x5 convolutions followed
by a 2x2 max pool layer. We take these outputs to a Global
Average Pooling (GAP) layer, which calculates the average of
the pixels in the image output by max pool. Our label selector
makes a prediction based on the GAP output and displays it
on a seven segment counter and an HDMI monitor. To meet
our stretch goal, we would have to add a module to calculate
the loss and feed its output to our convolution layers to update
their weights using backpropagation.

Fig. 1. High Level Architecture - Input

Fig. 2. High Level Architecture - CNN

II. CHECKOFF LIST (YOURY)

A. Original

Commitment:
Our commitment originally involved sending data from a
computer to the FPGA via a Teensy 4.0, running an image
through layers of convolutions with predetermined weights,
max pooling, and global average pooling, calculating running
loss, displaying predicted labels on the seven segment counter,
and being able to switch between ”training”, ”testing”, and
”user” modes.

Goal:
Our goal was to update the weights in the convolution through
backpropagation, communicate bidirectionally between the
FPGA and our computers, run camera frames through the
network, display the predicted label on an HDMI monitor, and
identify some minimum threshold for making a prediction on
input images.

Stretch Goal:
As a stretch goal, we aimed to incorporate images from the
CIFAR10 dataset, which consists of images of objects such
as airplanes, birds, and trucks. We also wanted to implement
a more complex architecture, use softmax and negative log
likelihood loss for training, and increase the rate of data
transfer to the FPGA, as that was the main bottleneck for
our latency and throughput.



B. Revised

We reconsidered our goals and architecture after receiving
feedback from the course staff and running tests to determine
how feasible our initial plans were.

Regarding architecture, we originally planned to have three
convolution layers (two 5x5 and one 2x2), but Vivado often
crashed during the placement stage. The original model was
quite resource intensive, as it had 30 instances of convolu-
tion mnist, thirty of max pool, 10 of gap, 21 line buffer5’s,
2 filters (blur and sharpen), 1 label selector, 1 downsample,
1 SPI transceiver, and 1 digit sprite. This was all on top of
the existing camera and HDMI video pipeline that we had
already developed from previous labs. We tried to simplify
our top level by removing everything involving the camera
and HDMI pipelines, but even with just SPI and two layers,
our builds tended to freeze. We also tended to run out of
slices on the FPGA, requesting 2292 when we only had 2190
remaining. As a result, we decided to target an architecture
with just one convolution and max pool layer. We discuss the
resource utilization and congestion in more depth during the
Evaluation section.

Commitment:
Our commitment remains largely the same, except there is no
requirement for switching between training, testing, and user
modes.

Goal:
For our goal, we decided only to target running camera frames
through our network, and not pursuing backpropagation or
identifying the minimum threshold at which the FPGA can
make a prediction.

Stretch:
Because of the high resource utilization, we decided to set
backpropagation and training as stretch goals, as adding these
features would add more complexity that would require sig-
nificant optimizations or reductions to the overall design.

III. GOALS (JAKE)

We were initially targeting an accuracy of 70%, as a
Pytorch model with what we thought was the same architecture
achieved close to 90%. Later on, we realized that the model
we were using had the output of each convolution in a layer
connected to the input of every convolution in the next layer.
Our plan, however, was to have each output connected to one
input as described in the architecture section. Once we edited
the Pytorch model to reflect this, the accuracy was closer to
50%.

To avoid having to work with floating point values, we
decided to test how integer weights affected our accuracy. We
took the final weights set by our Pytorch model, multiplied
them by 100, and casted them to integers (the multiplication
was necessary because many of the weights were small
decimals). We ran our Pytorch model with these new weights
and achieved an accuracy of 40% at best. As a result of this
testing, we hoped to get an accuracy of at least 30%. After
changing our architecture to only have one convolution and

one max pool, our Pytorch model had an accuracy of about
25%-30%.

Regarding out latency goals, we planned to extend our SPI
receiver to work with 20 MHz SPI. We need to send 28→28→
8 = 6272 bits to the FPGA to represent a full image. At a
frequency of 20 MHz, it will take 6272

20→106 = 0.0003 seconds
to send an image. It takes on the order of tens of cycles for
one pixel to propagate through our pipeline, which adds a few
millionths of a second of delay, so our final latency is still
about 0.0003 seconds.

To meet our reach goal and successfully train on 60,000
images, we would need 0.0003→60000 = 18 seconds of delay.

IV. SPI (JAKE)

A majority of the training time needed for our model comes
from transferring the MNIST image data from a computer to
our FPGA. For simplicity and robustness, we decided to use
a Teensy 4.0 to serve as a peripheral that takes in USB data
from the computer and outputs SPI data, with the controller
being our FPGA.

Fig. 3. SPI Setup with Camera

A. Teensy 4.0 to FPGA

We started with lab 2’s SPI controller and created a custom
SPI Peripheral configuration on the Teensy as it is not natively
supported and would allow us to better utilize the higher
USB communication speeds. We created the SPI peripheral
using the digitalFastRead() and digitalFastWrite() functions to
quickly bit-bang our pixel values as we read the serial clock
output from the FPGA. We set the trigger on the SPI controller
to a PMODB input set by a digitalFastWrite() on the Teensy
in order to automate this communication. The trigger is set
right before the Teensy begins reading the FGPA DCLK.

Once the Teensy receives data from the laptop we set pin 21
on the Teensy to HIGH, then LOW after a 10 ns delay. We also
shifted the pins in the top level.xdc to allow for simultaneous
connection of the camera and Teensy, with Teensy taking up
the PMODB side and the camera remaining in PMODA.



B. Laptop to Teensy 4.0

To more easily integrate MNIST image data, we created a
python function and used pyserial to send 28x28 pixel image
to the Teensy. On the Teensy side, this requires storing each
of these values received from USB serial in a byte buffer of
size 784. This implementation was used to reduce propagation
delay between the laptop, Teensy, and FPGA. This way the
Teensy only needs to refer to its own memory to write each
pixel instead of waiting for the laptop to send another pixel.

To test the entire communication protocol, we edited the
lab 2 top level.sv to display each message it receives on the
7 segment display. This allowed us to verify that our FPGA
was receiving the proper data and that our protocols were
implemented correctly. The testing included the following
functions:

custom pixel(): accepts integers 0 to 255 as a python
input(). Sends a single pixel at a time.

custom image(): accepts an list of lists that represents a
28x28 mnist image. The python script has a few sample images
to pass into this function.

send images(): sends multiple images and accepts a list of
images.

Each of these pixels are turned into binary using bytearray()
and sent across USB serial. This was displayed on the 7
segment display in hexadecimal.

C. SPI Timing

With a period of 8 cycles of the 74.25 Mhz camera clock,
we are able to transmit pixel data at 9.3 Mhz SPI. For 60,000
images, this would take 38 seconds to load all the images for
training.

V. CAMERA PIPELINE (YOURY)
A. Downsample

For running camera frames through our accelerator, we
will have to downsample the original outputs of the pixel
reconstructor from 320x180 to 28x28. We initially attempted
to do so by extending the method we used in class, simply
taking every 45th pixel in every 25th row (previously using
a camera outputing 1280x720), but as this is an extremely
aggressive downsample, the output image was full aliases and
looked almost nothing like the original.

Our approach to resolving this involved blurring and at-
tempting to reduce the size in stages rather than using one large
downsample. When we did this, however, our final image was
usually full of green pixels and resembled colorful static by the
time it got to 28x28, which we fixed by adding sharpen filters.
We experimented with various combinations and amounts of
blur and sharpen filters, but blurring, downsampling directly
to 28x28, and sharpening seemed to work the best. When
we used this strategy, we achieved these results for a 32x30
picture (these dimensions were chosen because they evenly
divide 1280x720). We extended this to 28x28 and achieved
the results in figure 5.

The most immediately noticeable issue is the fact that the
black and white lines are disjoint in several places, making

Fig. 4. Original Image

Fig. 5. Original downsample with extreme aliasing

Fig. 6. Downsample to 32x30

the picture look as if the lines are going from the bottom left
to the top right instead of top left to the bottom right. There
are also many artifacts on the right side of the screen, likely
due to pipelining issues, as by the time the HDMI pipeline has
received a valid pixel to display, the HDMI hcount and vcount
values have already gone through several cycles, which also
causes the image displayed to be far from the left edge of the
screen.

B. Color to Grayscale

Finally, before putting the images through our pipeline, we
had to convert them from 16 bit color to 8 bit grayscale. This
is typically done using the formula 0.299*Red + 0.587*Green
+ 0.114*Blue. To reduce the complexity of this calculation, we
approximated it to be 0.25 * Red + 0.5 * Green + 0.125 * Blue,
or Red >> 2 + Green >> 1 + Blue >> 3, which is a standard
approximation for real-time systems. This approximation is
unnoticeable to the human eye, but may cause issues with our
calculations. If we find that they do during testing, another
commonly used method involves approximating 0.299, 0.587,
and 0.114 as 77, 150, and 29 divided by 256, which would just
be a multiply and a right shift by 8 for each channel, which
should not be too intense for our FPGA.



Fig. 7. Downsample to 28x28

VI. NEURAL NETWORK PIPELINE (JAKE)
A. Convolutions

To create our convolution module, we started with the
lab 7 version and adapted it to handle different sized data
inputs as well as different kernel sizes to better suit our
CNN architecture. The module has the new parameters in-
cluding IMAGE SIZE, DATA SIZE, and K SIZE as well
as new inputs for weight coefficients for the kernel and the
shift value. Currently we will input these values ourselves
to test the accuracy of our model, but will implement the
backpropagation portion to handle this in the future. For
the MNIST dataset we set these parameters to 28, 8, and
5 or 2 based on the kernel size we choose. IMAGE SIZE
sets our hcount and vcount bounds, K SIZE sets the size
of our 2D array cache that takes in inputs from the line
buffer, and DATA SIZE sets the maximum value of our kernel
weights, pixels, and helps compute the maximum value of our
convolution output. We found that the maximum value we can
expect from the convolution will be a product of the maximum
value of the weights(255), pixel input(255), total number of
kernel weights (52 or 22) and found that adding the size of
these inputs computes the size of this parameter. For a 5x5
kernel taking MNIST inputs for example, our max data size
is 8 + 8 + 5 + 1 = 22 bits. Compared to the lab 7 version of
this module we also kept some of the clamping logic, lower
bound of 0 and the upper bound is no longer 8 bit because we
are not outputting RGB pixels. We will have to set a 16 bit
upper bound, possibly as a separate output logic, if we end up
implementing a visual representation of the convolution that
displays onto the screen. This convolution module also utilizes
a 3 stage pipeline split as: multiply weights, sum values, shift
and clamp final output.

B. Max Pool

Our max pool filter is a 2x2 kernel with a stride of 2 that
starts at the top left pixel of our convolved image and returns
only the pixel with the highest value, returning an output that
is four times smaller than the input. To implement this, we
reused the existing convolution architecture, using an array of
pixels instead of BRAMs for simplicity. This has a “top row”
and “bottom row”, each of which is the width of the input
image. At the beginning, when it receives “valid” signals, it

adds as many pixels as it can to the top row. Once that happens,
it starts filling in the bottom row. After every other pixel that it
adds to the bottom row, it looks at the previous pixel, as well
as the two corresponding pixels in the “top row”, and sets the
output pixel to be the maximum of those four values. Once
the bottom row has been read, it switches to adding to the
top row again. This process continues until it has received all
the pixels. The Max Pool module also returns the new hcount
and vcount of the pixel it has just processed based on the
dimensions of the output, each of which should be half of the
corresponding input dimension.

C. Global Average Pooling and Label Selector

After going through our entire pipeline, the max pool layer
will be returning pixels corresponding to a 12x12 image, or
144 pixels in total. We have 10 GAP layers, each connected to
one max pool layer, responsible for calculating the average of
each set of 144 pixels sent from the corresponding max pool
module. Once 144 pixels have been received and the average
has been calculated, GAP indicates that it has a valid output,
which is fed into the label selector.

The label selector takes 10 values as inputs, the con-
catenated outputs of all GAP layers. It performs a pairwise
comparison to find the index of the maximum value. The com-
parisons are done combinationally, and the output is returned
sequentially, allowing this layer to complete in just one cycle.
The label that returns with the highest value is displayed on
the seven segment display and fed into the digit sprite module.

D. Digit Sprite

GAP’s output is fed into our DigitSprite module, which is
an extension of ImageSprite2. We have a sprite sheet with 10
32x32 pictures of digits 0-9, which are compressed through
palettization. The images are black and white, so the palette
consists only of 0xffffff and 0x8b8a8a, which were determined
by using the img to mem program to find the two most
common colors in the images. These colors are stored in a
packed array instead of a BROM since we are only storing
48 bits of information. We still have an image BROM, which
has a depth of 10240 (10 32x32 images) and a width of 1
(1 bit to encode the two palette addresses). DigitSprite has
one new input, num in, which it uses to determine which
digit to display by setting the image BROM offset to be
WIDTH*HEIGHT*num in.

VII. EVALUATION (YOURY)
A. Status

We have reached our commitment goals, as we have suc-
cessfully transmitted data from our computer to the FPGA
and gotten images to travel through our pipeline end-to-end,
with our final results being displayed on our seven segment
counter. We have met some parts of our goal; we are able to
run our model on camera frames, but have not reached the
accuracy we were initially targeting. We did not get to start
working on our stretch goals, as we do not have support for
backpropgation, loss calculations, or the CIFAR10 dataset.



Fig. 8. Digit sprite on monitor

B. Accuracy

Label Max Accuracy
0 15%
1 20%
2 5%
3 5%
4 15%
5 30%
6 10%
7 25%
8 15%
9 15%

Our average accuracy was 15.5%, which varied depending
on the digit in the picture, with 2 and 3 being our worst at
5% accuracy, and 5 being the best at 30%. During testing, we
noticed that, although many digits were predicted incorrectly,
they were often predicted to be digits that looked similar on
paper. For example, while testing 9, half of the predictions
were 4 or 6, many 4’s were guessed as 9, 2’s were seen as 7’s,
and 8’s were seen as 5’s. These digits are relatively similar,
especially when accounting for the messy handwriting that
appears in the MNIST dataset. Because of this, we believe
that, if we were to add some more complexity to our model,
such as by adding another layer, we could distinguish between
similar digits and improve our overall accuracy.

When receiving pixels from the SPI pipeline, the accuracy
of our model varies depending on the digit that is sent. It
performs well with numbers such as 5, 7, and 8, achieving up
to 25% accuracy, with our best run getting 40% accuracy when
given 10 8’s in a row. For other numbers, such as 0 and 3, our
model performs poorly, getting only 10% of its predictions
correct. When the correct label is 1, most predictions are
incorrect, but many are 7, which is relatively close to 1. The
same is true for 9, which is often predicted to be a 4.

The accuracy of our network when connected to the camera
pipeline is quite low. Its predictions are quite inconsistent, and

without any logic to limit the number of valid predictions,
users can see the seven segment display or monitor update
several times per second.

C. Timing and Resource Utilization

A breakdown of the latency of each module in the network
is as follows:

SPI - We are using 9.3 MHz SPI, so we send 1 bit every 108
nanoseconds. Each pixel is 8 bits, so this is 862 nanoseconds
per pixel. The images are 28x28, so the time to send one image
over SPI is 28*28*862 = 675,771 nanoseconds.

Blur and sharpen - Each of these depends on the fil-
ter module from lab 7, which has a propagation delay of
three clock cycles, adding six clock cycles total. The other
modules, including convolution mnist, max pool, GAP, and
label selector, take one clock cycle to complete. Each runs on
the 74 MHz pixel clock, with 13.468 nanoseconds per clock
cycle, for a total of 13.468*10 = 134.68 nanoseconds per pixel
received from the SPI receiver or camera. This is the amount
of time required for the final pixel to propagate to the label
selector, so the latency for a full image is 675,771 + 134.68
= 675905.68 nanoseconds.

The throughput of our network depends primarily on GAP
and SPI. Because GAP takes the average of 144 pixels, it
only returns a valid signal once every 144 pixels. Over SPI,
we receive one pixel every 862 nanoseconds, so the throughput
is 1

862→144 = 0.000008, or 8000 predictions per second.
We were originally experiencing issues with our slack,

as Vivado consistently reported a WNS around -9, almost
reaching -10 at one point. This turned out to be an issue with
clock domain crossing. We forgot about the cross from the 200
MHz camera clock to the 74 MHz pixel clock that we used
in the labs. Because of that, we were running all our modules
off the camera clock, demanding that everything, including the
convolutions, produce outputs in just 5 nanoseconds, which
would have been impossible to do. We reintroduced the clock
domain switch, however, and we have reduced the WNS to
-0.5 and the TNS to -2.1.

Our resource utilization is about 20%, which is quite high,
as lab 7 only used 2.5% of the FPGA’s resources. We believe
this makes sense, however, as we have ten times as many
convolutions, and although each convolution is simpler since
it does not use a BRAM, the fact that we have ten max pools
on top of that, as well as the GAP and label selector, brings
us to 20% utilization.

Another, likely more pressing, issue is the congestion of
the resources being used. The “West Dir” area of the chip
has 86.7% congestion, which is almost double the amount of
congestion we experienced in lab 7.

For our block RAM usage, we need 256 x 24 (camera
settings), 10240 x 1 (digit sprite), and 4 x 320 x 16 (the line
buffers for the blur), for a total of 36 kilobits of memory,
which is about the size of 1 continuous block RAM. We do
have the sharpen filter after the blur, which also uses BRAMs,
but the sharpen works on pictures that are 28 x 28, so they
only use 28 x 16 = 448 bits, which is converted to DSP.



D. Additional Use Cases

With some tweaks, our project could apply to non convolu-
tional neural network architectures. Without the convolutions,
we would have resources for modules such as fully connected
layers and various activation functions. We could also extend
it to standard ML algorithms such as linear regression.

VIII. INSIGHTS (JAKE)

While working on our project, we realized we underes-
timated the complexity of implementing our architecture in
hardware. Before switching to a one layer model, some of
our builds would take over 10 minutes to complete, even
without the use of external IP that had to be generated before
our own modules. Starting over, we would attempt a much
simpler architecture, such as a binary image classifier. The
limited number of labels would have allowed for a much more
complicated model with high accuracy for the binary image
classes.

We would also primarily focus on the accelerator aspect
of this project. From the beginning, we wanted to keep the
complexity as low as possible, by not using floats or expensive
logarithmic or exponential functions, for example, because we
wanted to have resources left over for training and backpropa-
gation. Had we prioritized just making an accelerator, we could
have dedicated more resources and spent more time optimizing
for that use case, rather than spend time trying to make a more
general purpose project.

In order to do so, we would have also focused more on the
SPI communication between the board and the computer. By
fleshing out details such as start flags, signals indicating the
number of pixels already sent, or even data packet structures,
we would have been better able to keep our network aligned,
making sure the predictions we were seeing corresponded to
specific images and not some subset of pixels from several
images. While prioritizing SPI, we probably also would have
worried less about the camera pipeline. This pipeline likely
requires much fewer resources than the camera and HDMI
modules, which would have given us more freedom to add to
our network.

When it came to the images, all of our tests were done using
either SPI or the camera. The camera was not reliable because
of the frequency at which the input pixels were changing, the
distortion pattern, and the fact that it was recording a picture
through a screen or on paper instead of having direct access
to the pixels. Using SPI means we have external components,
which adds several failure modes that we have to consider
when debugging.

To prevent SPI and camera issues from bottlenecking other
progress, we could have saved palette and image mem files for
one mnist number and used the existing image sprite module
to load an image directly onto the FPGA. This would have
isolated the convolution pipeline from camera noise and issues
with SPI communication, allowing us to test the heart of the
project without worrying about the peripherals.

IX. AUTHOR CONTRIBUTIONS

Youry was responsible for the camera pipeline, max pool,
digit sprite, gap, and label selector. Jake was responsible for
the SPI pipeline, modified line buffer, and convolutions. Both
authors worked on the writing for the technical reports.


