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Abstract—We propose a Field Piano Gate Array (FPGA), that
will track the positions of three human fingers relative to a
printed piano keyboard, with the FPGA playing the respective
chords as fingers touch the “piano keys”. The system will utilize
two FPGA boards that each have a camera attachment, where
we call one of the FPGA’s the “top camera” and the other as the
“side camera”. The “top camera” FPGA will be responsible for
keeping track of the position of each finger with respect to the
note it is above. The “side camera” FPGA will be responsible for
keeping track of whether or not the fingers are making contact
with the keyboard. In the case the fingers are making contact with
the keyboard, a chord of three notes will be transmitted through a
speaker connected to the audio jack of the “side camera” FPGA.

Index Terms—digital systems, field programmable gate array.

I. PHYSICAL CONSTRUCTION

Our final design will consist of:
• An FPGA with a camera attachment, which we call the

top camera
• A second FPGA with a camera attachment and an audio

device connected to its headphone jack, which we call
the side camera

• Four wires connecting the two FPGA’s to allow for SPI
communication from the top camera to the side camera

For the system to work as desired, we require the following:
• A neatly printed picture of an octave of a piano keyboard
• Three pink colored gloves which fit on three fingers of

the hand
• Correctly positioned “top camera” and “side camera”

FPGA’s
The whole setup is captured in Figure 1. The bottom left
corner houses the side camera FPGA and a speaker connected
to it. The printout of the piano keyboard lies directly under
the top camera FPGA, oriented upside down as we flip the
camera inputs. Both FPGA’s are using cameras to detect the
location of the pink foam that is lying on the keyboard printout.
The FPGA’s are communicating using the four physical wires
between them.

II. IMAGE PROCESSING

Our first task is to detect key boundaries given an image of
a piano octave. To do this, we utilize the sobel X and Y filters
to give us the horizontal and vertical key boundaries.

A. Sobel Masking

First, we run the sobel X and Y filtered camera input
through a sobel masking module, which, given a pixel,
first converts it from RGB to YCrCb color. Then, if the
luminance Y of the pixel is greater than the threshold
10→b0 000 111 111, the pixel gets mapped to 1. Otherwise,
it gets mapped to 0. We chose this threshold to most clearly
match the luminance of the piano key boundaries, so that
background noise is optimally reduced. See an example of
the output of this module in Figure 2.

Upon reset, the user turns on sw[8], which captures two
static images, one of the masked sobel X image and one of
the masked sobel Y image. These two images get saved to two
different BRAMs on the top camera FPGA, from which we
then run an image processing algorithm to detect the placement
of the lines.

Fig. 1. Entire setup of our system with both FPGA’s.



B. Detecting Key Boundaries

The algorithm works as follows. For the sobel X masked
image, there should be 13 vertical lines in the upper half of
the piano, demarcating the 7 white notes and 5 black notes.
There should be 8 vertical lines in the bottom half of the
piano, demarcating the 7 white notes. However, each line
is not necessarily one white pixel wide – most of the time,
each line may be 2 or 3 consecutive pixels wide. We scan
through each row of the image, counting the number of white
“clusters” encountered by counting the number of times where
the previous pixel is 0 and the current pixel is 1. If this is true,
we save the pixel’s hcount coordinate in an unpacked array.
At the end of each row, if the number of clusters encountered
is 13, we output the 13 saved hcount values as our top 13
x coordinates. If the number of clusters encountered is 8, we
output the 8 saved hcount values as our bottom 8 x coordinates.

For the sobel Y masked image, there should be 2 longer
horizontal lines demarcating the top and bottom of the key-
board, and 5 short horizontal lines in the center demarcating
the bottoms of the 5 black keys. We scan through each
column of the image, counting again the number of white
clusters encountered. At the end of each column, if the number
of clusters encountered is 2, we output the 2 saved vcount
values as our top/bottom boundaries. If the number of clusters
encountered is 3, we output the 3 saved vcount values as our
top/bottom and black key boundaries.

We acknowledge several limitations to this algorithm. The
first is that it is not completely tolerant to background noise.
For example, if there is an extra white pixel from a background
object that coincides in the same row as a hole in a key
boundary line, the resulting key boundaries will be computed
incorrectly. However, one of the requirements of our setup is
that the top camera is pointed directly above the piano octave,
with no other objects in view. Given this, it is rare that extra
white pixels will appear in the image, and also rare that masked
key boundary lines will have holes.

The second limitation is that the key boundary lines are not
completely straight– each one has a slight curve to it, so that
the hcount of the top of a vertical key boundary may be several
pixels off from the hcount of its center. To mitigate this, we
chose to use a camera with the least fisheye lens effect. If,
once integrating everything together, we still find this to be
an issue, we may consider extending our algorithm to add an
averaging step. For example, with the vertical key boundaries,
instead of taking the first row with 13 clusters to be the key
boundaries (which will occur near the very top of the piano),
we can keep track of every row with 13 clusters, and average
their results.

Fig. 2. Raw camera input, masked sobel x filter, and masked sobel y filter.

C. Key Association

Once we have the hcount and vcount values of our key
boundaries, we need to associate each pixel in the camera
input with a specific piano note. Note that we assume the
piano paper does not move after sw[8] is flipped, so that our
key boundaries and associations remain continually valid. This
module takes in an x com and y com corresponding to some
pixel, does computations based on the previously computed
key boundaries, and outputs the piano note corresponding to
the pixel’s position. We encode piano notes in decimal and
allow each to be 4 bits, so that an invalid note (outside the
keyboard) is 0, C is 1, C sharp is 2, etc, and finally B is 12.

III. CENTER OF MASS TRACKING

Our next task is to track the positions of the three fingers
playing the piano. We require the user to wear three pink glove
tips on their thumb, middle, and pinky fingers, and adjust our
Cr mask to optimally detect only the pink pixels.

A. k-Means

We first give our motivation for using the k-means algo-
rithms and we follow with an introduction of our implemen-
tation of the k-means algorithm.

To track the center of mass of the pink glove tip on each
of the three fingers, we propose the usage of the k-means
clustering algorithm with k = 3. This choice is motivated
by two choices. The first is the spatial distribution of the
finger tips, where we expect them to be clearly separated from
each other so there are distinct clusters present. The second
is the fact that when the hand is moving, the new centroids
will be very close to the previous centroids designated by the
algorithm.

Our k-means algorithm works by guessing initial locations
of centroids for each cluster, and then iteratively converging
upon the actual centroid of each cluster. Formally, let X =
{x1, . . . , xn} represent the set of n 2-dimension data points,
each representing a tuple of the x and y coordinates of one of
the masked (pink) pixels.

The algorithm begins by initializing some centroids
µ1, µ2, µ3. Each centroid represents the center of mass of each
distinct cluster within X , where a cluster is loosely defined
as points that are close together but far from other points.
These centroids are simply the centroids determined by the
algorithm in the immediately previous run of the algorithm.
In the case that there are no previous runs of the algorithm
(we have just booted our design up), then the centroids are
assigned such that they split the space into halves vertically
and fourths horizontally. Explicitly,

µ1 = [320, 360]

µ2 = [640, 360]

µ3 = [960, 360]

The next step of the algorithm is to assign each point x → X
to one of the centroids, using the rule

ClusterAssignment (x) = argmin
i↑{1,2,3}

↑x↓ µi↑1



Note that we are using Manhattan distance (ω1 norm) as our
distance metric instead of the classical Euclidean distance,
since it is a heuristic that sacrifices a minimal amount of
accuracy for a great increase in speed.

The final step of the algorithm is to recompute the centroids
of each cluster. This is calculated by a simple center of mass
averaging given by

µi =
1

|Ci|
∑

x↑Ci

x

where Ci represents the set of points contained within cluster
i. Essentially, we are averaging the x and y coordinate values
for each point within a cluster, for all clusters.

In our case, we only run a single iteration of the algorithm,
going through the steps of assignment and recalculation of the
centroids only once for every fresh input of X . This choice
was supported by the fact that the fingers cannot possibly move
far from it’s previous position, relative to the clock speed of
our system, so convergence should be able to be achieved
in only one iteration if the algorithm is given access to the
immediately prior centroids.

Realize that this implementation is scalable and allows us
the freedom to set k to any number in the set {1, 2, 3, 4, 5}
for finger detection, if we so desire.

Fig. 3. Three note detection via k-means.

B. Side Camera Center of Mass

We used the algorithm implemented during Lab 5 center
of mass calculation of a Cr mask to and lower and upper
threshold values of A0 to F0 to optimally track only the pink
pixels. We used the pink foam of the FPGA kit, cut into small
cubes, to tape onto the user’s fingers to be tracked. To see how
the center of mass is being tracked, sw[6] can be utilized to
see green crosshairs that track the center of mass. To compare
it to the threshold line, the user can switch on both sw[6] and
sw[7] to make it easiest to view.

IV. AUDIO GENERATION

A. The Physical Layer

We will utilize pulse-width modulation (PWM) to enable
audio signal playback through the headphone jack present on
the FPGA. Our design utilizes a 100 MHz system clock. The
audio will be 8-bit audio, which ensures a balance between
audio fidelity and space utilization on the BRAM of the FPGA.

B. Sine Wave Generation

We use the notion of direct digital synthesis (DDS) [1] to
construct our audio signals. Since we are using 8-bit audio, a
28 = 256 entry sine wave look-up table (LUT) is precomputed
using a Python script. Since we require non-negative integer
values for usage in our digital design, the ith entry of the LUT
is explicitly designated as follows:

LUT[i] =
sin( 2ωi256 ) + 1

2
· 255 (1)

Let us examine what is exactly happening in (1). The
sin( 2ωi256 ) simply computes the ith value of the sine function
over the range of 256 equally spaced values on [↓1, 1]. Adding
1 to this term shifts our range to [0, 2]. Similarly, dividing by
2 then shifts our range to [0, 1]. We are left with the problem
of converting our values to integers. We rectify this problem
with a multiplication by 255, since 8-bit values are represented
by numbers from 0 to 255, inclusive.

We generate our notes by indexing into a singular LUT. To
do this, we utilize a phase accumulator for each individual
note. The phase accumulator is 32-bit which ensures good
resolution of lookup index without much drawback on storage.
Note that since our audio is 8-bit, we index into the LUT with
the 8 MSB of the phase accumulator at each cycle.

Each cycle, the phase accumulator is incremented by a
frequency tuning word (FTW), where each musical note in
the octave is differentiated by a unique FTW. In essence, the
FTW allows the phase accumulator to cycle through the fixed
LUT at a rate such that it produces an audio signal at the
exact frequency of the note the FTW corresponds to. The FTW
values for each note are derived as follows, where fN denotes
the frequency of the musical note:

FTW =
232 · fN
100 · 106 (2)

The 232 term follows from the maximal value of a 32-bit
phase accumulator, and the 100 · 106 term follows from the
clock speed of the system (100 MHz). The FTW values are
precomputed using another Python script and mapped to their
corresponding notes.

C. Chord Mixing

In order to combine three notes into a chord audio signal,
the sine wave amplitudes of each of the three notes at each
cycle must be summed. To prevent distortion from integer
overflow, the amplitudes are divided by 4 prior to summing,
which guarantees no overflow on the basis that 3

4N ↔ N . This
also reduces the volume of the audio to a tolerable level.

D. Pulse-Width Modulation

Given the final mixed chord value which we wish to output
as audio, we pass it through a PWM module to convert the
sine-wave signal to a square-wave signal. This signal is then
passed to the digital-to-analog converter present on the FPGA
in the form of a headphone jack, from where the audio is then
output.



Fig. 4. Block diagram for the entire system. Blue blocks denote modules repurposed from past labs, orange blocks denote new modules written for this
project, purple blocks denote memory allocation, green blocks denote communication between the FPGAs, and red blocks are used for audio output.

V. SIDE CAMERA

A. Startup Alignment

At startup, using a HDMI screen, the user can flip sw[7] on
the side FPGA to see a blue line appear on the screen. The
user can place the side camera on the table and point it toward
the leftmost width of the paper camera. It should be pointed
in the direction such that the right hand’s thumb side view is
seen. The blue line should be lined with the farther edge of
the piano printout. Be sure to center the camera.

We consider playing if the fingers make contact with the
page. Thus this blue line is used as a reference threshold when
tracking the hand’s movement. The FPGA will track the center
of mass of the fingers such that if the fingers fall within 10

pixels or below the blue line, it is considered “playing”. If
it is above this blue line, the FPGA does not consider any
extraneous movement to be “playing”. This threshold was
determined by testing the thumb on the furthest key from the
camera, which in this case is the C note. We found that the
center of mass algorithm, combined with consistent camera
distance, has made it easiest to track whether the user is
actually playing a note on the paper given.

B. FPGA-to-FPGA Communication

We utilized Serial Peripheral Interface (SPI) to transfer bits
of data from the top camera FPGA, in our case, the Controller,
to the side camera FPGA, the Peripheral. The top camera will



communicate the three-note chord, each note represented by
4-bits for a 12-bit long message.

The top camera, after tracking and assigning center of mass
values to the three fingers, will identify the three notes of
the chord that the fingers are hovering above. Each note is
encoded as described in Section 2.C, identified as the thumb,
middle finger, and pinky finger and encoded in the order of
thumb note, middle note, and pinky note. After assignment,
SPI transmission will be triggered per 1 MHz (once each 1
million clock cycles), and using a 50% duty cycle, each bit
will be held on the line for 20 clock cycles (10 cycles high
and 10 cycles low). This number was determined as the clock
runs at 74.25 MHz, so the transmission must finish before this
maximum time. Thus, to optimize for speed as we wish to
have no identifiable delay, we found that 20 clock cycles were
the smallest number to quickly transfer data. The Chip Select
(CS) line will be held low for the duration of the transmission,
allowing the Peripheral FPGA to know when the transmission
itself is occurring. New bit values will be put on the Controlled
Out Peripheral In (COPI) line on the falling edge of the Data
Clock (DCLK). Bits are sent out by the most significant bit
(MSB) first.

Fig. 5. PMODB diagram.

A four-wire connection is made between the top camera and
side camera FPGA using PMODB connections as described in
Figure 5 above. The GND pins are connected for synchroniza-
tion purposes, and the additional wires to connect the output
of the top camera DCLK, CS, COPI into inputs as DCLK,
CS, and CIPO respectively. On the side camera FPGA side,
when the CS line is pulled low, it begins to read from the
transmission, sampling on the rising edge of the DCLK. Once
all 12 bits are sent and sampled, the CS line should be pulled
high and the side camera utilizes the values sent over the line
to determine the notes played.

As we are trying to read synchronous data between the
two FPGAs of real-time piano playing motion, after the two

FPGAs fully process their own camera data input, there will be
a delay before the chord notes are sent over from the top FPGA
to the side FPGA. Each trigger of transmission is 1 MHz, so
each chord data transmitted SPI is not necessarily from the
newest data read. However, assuming that it is the newest data
read, SPI would take at least 270 clock cycles to send over
the data fully over the wires (12 bits total bits, 20 clock cycles
per full duty cycle and additional duty cycles for the start and
stop of transmission). There may also be additional delays with
the implementation of audio as whether the notes are played
out or not depends on the center of mass calculation. In that
calculation, the divider has latency dependent on the numbers
involved, and thus the latency cannot be determined without
knowing the actual value. However, we felt that without
pipelining to synchronize these two FPGAs fully, there was
no discernible delay noticeable by the human ear, which was
one of our main goals of the project. The advantage of the
FPGAs is the speed at which all these calculations are made,
so we felt additional pipelining to synchronize the two FPGAs
fully was not necessary.

C. Audio Output

Transferred notes received by the side camera will be used
to create chord note audio. If the center-of-mass tracking finds
that the user is ”playing” the notes which is when the y
center of mass goes below a threshold, the audio generated
as described in Section 4 will be played out through the
speaker/headphone jack of the FPGA. Otherwise, no audio
is output.

VI. EVALUATION

A. Timing

The worst negative slack of the top camera system is 0.587.
The worst negative slack of the side camera system is 0.472.
There are no strict timing requirements we must meet besides
positive worst negative slack because we do not require high
quality audio. There is no noticeable human delay between the
states of playing and not playing and the changing of notes as
you move around the FPGA which would be attributed to the
speed of calculation of FPGAs and communication between
the two FPGA’s.

In terms of latency of the top camera FPGA, the initial
frame read takes 12 cycles to save into the BRAM per pixel,
and an additional 320*180 cycles to calculate the key bound-
aries for one frame, giving a latency of 8.53 milliseconds. In
terms of the k-means algorithm, the calculation has a divider
which is hard to estimate as the delay is dependent on the
evaluation of the division. However, there is a 1 cycle delay
to transmit to SPI and 7 cycle process to display cross-hairs
on the video mux.

In terms of latency of the side camera FPGA, there is a
2 clock cycle delay from camera input into the frame buffer
for pixel reconstruction and downscaling, 2 clock cycle delay
for clock domain crossing between clk pixel and clk camera,
in addition to an additional cycle to filter if the address is
good, 1 clock cycle for RGB to YCrB conversion, 1 cycle



to include the threshold before outputting to the video mux,
while HDMI h-count and v-count have been pipelined to be
delayed by 7 clock cycles to account for this for each pixel.
Additionally, if we use SPI of already received chord notes
and use the current y center of mass, there is a 2 clock cycle
delay between audio construction and output to the speaker. If
we also wait 270 additional cycles for the SPI transmission,
with the pixel clock running at 74.25MHz, the lowest latency
of the side camera is 5.43 milliseconds. We acknowledge that
this number may not be the most accurate due to the nature
of the center of mass calculation and SPI communication.

B. Memory

The top camera FPGA utilizes a peak memory of 3744
MB, and the side camera FPGA utilizes a peak memory of
2927 MB. For the top camera in terms of BRAM usage, we
calculated 1 frame of 320 x 180 resolution of 1 bit for the
thresholded initial piano input, and an additional frame of of
320 x 180 resolution of 16 bits per pixel. Thus, the total bit
usage is 1036800 bits stored in the BRAM of the FPGA. For
the side camera FPGA, we calculated 1 frame of 320x180
resolution of 16 bits per pixel to be stored per frame plus an
audio sine lookup table with 28 resolution audio at 27 sampling
rate, totaling to 954368 bits of BRAM. Both of these values
are below the 2.7Mbits of BRAM storage in the FPGAs. We
thought about optimizing the memory further by compressing
the sine wave into 1/4th of its original size, since it stores
all the necessary information in the uncompressed wave, by
symmetry, however, in terms of BRAM usage we felt we were
under the maximum and felt that our goals of processing speak
and audio quality were both met without this change.

C. Use Cases

Our design handles the following use case: detect chords
that fingers are hovering above and detect if the chord is
actively being played using “top” and “side” cameras. If it is,
play out audio of the corresponding key notes of three-finger
chord.

This use case fits precisely the ideal goal that we set for this
project. It is possible to modify our design to accommodate
the use case of playing four or five finger chords. This can be
done by changing the value of k in our k-means algorithm,
which was designed to be easily modifiable.

VII. REFLECTIONS

In hindsight, we learned a few things that would have been
helpful to know prior to starting the project.

• Camera distortion is real. Even though we positioned the
top camera perfectly perpendicular to the printed key-
board below, there is still extremely noticeable warping
that can be observed near the sides of the video. The
design of the key boundary detection being done by the
top camera works well in theory, but the distortion of the
camera lens makes it hard to detect the correct boundaries
of the keys. Given more time, it would perhaps be a
useful investment to create a custom piano keyboard

with customized spacing between distinct key boundaries
depending on how far the boundaries are from the center
of the keyboard. In this way, the spacings would be
approximately equivalent.

• Correct pipelining matters. We had some trouble with
a noticeable offset of the key boundaries being detected,
which was constant for each boundary. Our initial thought
was that it must have been due to incorrect pipelining
of the system, perhaps because the assignment of the
boundaries was occurring some number of cycles after it
was “truly” detected. The same issue was observed with
the mapping of the intervals of boundaries being mapped
to incorrect notes, which was also resolved by fixing the
pipelining of the system contained within the top camera
FPGA.

• The pink foam is not detected perfectly by the cameras.
The lighting was sometimes dim enough due to shadows
that the pink would change shades and not be easy to
detect by our cameras. This might have also been an
effect of the camera quality. We could have considered
tracking a different color but we were unsure if other
colors would have been any easier to track than the
“6.2050 pink” so we just stuck with it.

VIII. APPENDIX

A. Contributions

Lucy was responsible for implementing the top camera sobel
filtering of the printed keyboard, mapping finger placement
to the correct corresponding note being played, and the k-
means algorithm. Emily was responsible for implementing the
side camera logic necessary to determine if notes are actively
being played and the transmission of information between the
two FPGA’s. Nick was responsible for implementing the chord
audio generation and the k-means algorithm.

All three authors contributed equally to the writing of the
report.
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