
Gridthym: 6.205 Final Project Report
1st Giuliana Cabrera

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

gpcs@mit.edu

2nd Carlos Sanchez
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
cjsanche@mit.edu

3rd Rafael Chavez
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
rbchavez@mit.edu

Abstract—We present the design of an FPGA-based interac-
tive rhythm and piano-learning game that integrates real-time
multimedia processing and hardware-accelerated gameplay. The
system utilizes a modular hardware architecture to manage
song storage via an SD card, keyboard input for note and
pitch detection, audio playback in WAV and MIDI formats,
and dynamic game visualization. Players interact with falling
tiles corresponding to musical notes, creating an immersive
experience.

Our implementation leverages the FPGA’s parallel processing
capabilities to handle custom song parsing, keyboard input
processing, and audio synthesis while driving a high-resolution
visualization module. The SD card interface supports seamless
loading of user-defined songs, and the audio pipeline ensures
high-quality playback with low latency. The game visualization
replicates a piano-learning interface, enabling precise synchro-
nization of gameplay elements with audio output.

We evaluate the system’s performance in terms of responsive-
ness and accuracy, discuss its scalability for additional features
such as advanced visual effects, and outline future improvements
for enhanced educational and interactive experiences.

Index Terms—FPGA, MIDI, WAV, HDMI, SD

I. HARDWARE AND DESIGN OVERVIEW

The hardware in our project consists of:
• 2 GB SD Card: Formatted with the FAT file system,

the SD card serves as the primary storage for MIDI and
WAV files, providing the audio tracks and timing data
necessary for game-play.

• Keyboard Interface: An external keyboard is used to
input notes and pitches. This is facilitated by a custom
keyboard_controller.sv module which processes
an 11-bit signal. The module implements checks for start
and stop bits, along with parity for error handling. The
output, an 8-bit ps/2 hexcode, is then processed later on
for game controls.

At a high level, the system operates by reading audio data
from the SD card, processing it for synchronization, and
rendering it visually as falling tiles on an HDMI display.
Players interact with the system by pressing the corresponding
keys on the keyboard, which are processed in real-time to eval-
uate gameplay performance. The DAC ensures precise audio
reproduction, aligning with both visual and input components
for a cohesive experience.

The block diagram provides an overview of the interactions
between these components as shown in figure 1, as shown
below.



Fig. 1. Fig 1. Overview diagram of the Gridthym system, illustrating the
integration of SD card storage, keyboard input, audio processing, and real-tie
visualization.



II. USER INTERFACE

A. Display [Carlos]

In selecting the game, the user will be able to use one of the
buttons already built into the FPGA to circle through several
MIDI files. We are using the seven-segment display in the
Urbana Board to show which file we are reading from; File 1
is the Pokemon RGB midi file, File 2 is Creep by Radiohead,
File 3 is Billie Jean by Michael Jackson, and File 4 is a hex-
code used for testing. Pressing button 3 once will change the
song to play. The press (debounced) is used as a song trigger
and changes the number that appears on the display to signify
which song you are playing as described above.

B. SD-Card [Carlos]

The sd controller module we use is from a previous project,
all credit goes to Jonathan Matthews’ group [2]. The sd con-
troller module operates at 25 MHz and essentially facilitates
communication between the FPGA and the card through SPI.
The module handles initializing the SD card, creating ‘ready’
statuses between the SD card and peripherals further down
in the block diagram, and reading/writing to the SD card.
Our project utilizes only the read feature. The read operation
is performed in 512 byte increments beginning at an initial
address.

The controller currently feeds into a BRAM with a width
of 8 bits and depth of 512 entries (just enough for a single
‘read’ operation).

However, due to the varying sizes of the MIDI files on the
SD card, we implemented another module to increment the
initial address based on the sector length of each individual
file. This file-selector.sv module acts as a mapping
that changes the accessed sector within the SD card to read
from and write to the BRAM each trigger (trigger being either
a song change or an external pulse provided from any of the
audio processing modules). The initial trigger is automatic and
given by the song selection which would be button 3.

C. Keyboard [Carlos]

The second prominent piece of hardware was the ps/2
keyboard. The keyboard requires 4 connections: a Vcc of 5V,
GND, Data, and Clk. Our setup holds the keyboard in a device-
host relationship with the FPGA. The FPGA can only provide
3.3V for Vcc, which proved to be sufficient for operation.
Additional probing revealed that the keyboard’s clock, an input
into the FPGA, is 12.5 kHz, vastly slower than the 25 MHz
clock everything is running on. Knowing this, we develop our
module to focus on determining the falling edge of the Data
signal from the keyboard and slowly fill an 11-bit register with
the bits from Data. Our ps2keyboard reader follows an FSM
similar to UART, but with an additional state to check the
odd parity as shown in Figure 2 (on the right). Once in the
STOP/TRANSMIT state, a combinational circuit switches bits
around and outputs a valid 8 bit long, ps/2 hex code that would
be read by the game mechanics ’section’ of our project.

Fig. 2. PS2keyboard− reader FSM

D. Challenges and Future Changes

• Multiple Key Press Detection: Our keyboard interface
only reads one key at a time due to the limitations of
a PS/2 protocol. Future projects should have multiple
outputs to account for simultaneous keypresses.

• Synchronous SD Card Reading: All of our modules
run at a 25MHz clock. Since most notes in the MIDI
files last longer than 0.5 seconds, we can leverage our
speed to read from the SD card and output its bytes, all
while still being on time. However, there may be files
that require synchronous reading such as WAV files with
large amounts of data.

III. AUDIO PROCESSING

Once the file is selected from the SD card, the audio
processor will synthesize and analyze the audio data based
on the corresponding file format. To add complexity, the only
preprocessing done on the files is to turn them into Type 0
MIDI files, which are suitable to process sequentially. To avoid
having a large synchronization buffer from our display game,
we pass the note values from our processor to the display
game, which will output audio when the rendered tiles reach
the portion of the screen that takes the keyboard input.

A. MIDI File Sequencing

MIDI files are structured to convey musical note information
in a compact, event-based format. Each file consists of mes-
sages specifying pitch, velocities, and durations, along with
optional, yet frequent meta events that need to be ignored. For
this project, MIDI files are parsed to extract the note events
and convert them into waveforms, while reading and ignoring
meta events. More specifically, each MIDI file is divided into:

• Header and Track Chunks: Byte chunks that are usually
at the beginning of the file and contain crucial timing
information for our playback. By extracting our ticks per
quarter note and the microseconds for each quarter note,



we can calculate the number of clock cycles for each
MIDI tick, and even change them while keeping the same
song structure. For our case, we set the ticks per quarter
note to 96 and

• Ticks Per Quarter Note: Extracted from the MIDI
header, which defaults to 480 or 960 ticks per quarter
note if unspecified. To allow for the song to be easily
tested with existing midi sequencers and playable for our
user, we lowered this value to 96, resulting in about 5200
microseconds, or 130,000 clock cycles per tick.

• Delta Time Parsing: Variable-length byte sequences are
decoded to determine how many ticks to wait before
executing the next MIDI event. The lower 7 bits of each
byte are concatenated until the MSB is high.

• NoteEvent[0]: Contains a note on or off value in the
upper nibble, along with the lower byte containing the
track channel of the MIDI sound. Notably, this byte
contains a 1 on its MSB.

• NoteEvent[1]: Contains the pitch of the note in the lower
7 bits, and a 0 in the MSB.

• NoteEvent[2]: Contains the velocity of the note in the
lower 7 bits, and a 0 in the MSB.

• Meta Events : These variable length events give you
information about the song’s structure, but don’t tell you
what notes to play. While these Events are helpful for
rhythm analysis, they don’t add helpful information that
a beginner could take advantage of, so we don’t output
these events

Because we can’t access the entire MIDI file from the
FPGA, we utilize BRAM that is updated by the SD card to
parse the MIDI file. We stream the BRAM at each clock cycle
unless we are at the waiting stage of our sequencer, in which
case we wait until we reach the stage where we need to decode
the MIDI event.

Once 512 bytes of the MIDI file are processed, we wait for
the BRAM to be updated in the top level before accepting
a new byte. Since a tick alone takes about 130,000 clock
cycles, waiting for a BRAM refresh does not cause issues
with approximating the melody and visual of a song. We use
the note value’s signal, and feed it to the display game in real
time to create a visual of the song being played.

B. Audio Output using PWM

When the player presses the correct key according to
the display, the corresponding column should enable audio
to be played at the frequency of the corresponding note.
To do this, we map each column to a MIDI value rang-
ing from 60-71, and a sine wave at the corresponding fre-
quency. To do this, we compute clock cycles per sample =

clock frequency
(note frequency ∗samples per cycle) Lastly, we step through an 8
bit sine table with respect to this number of clock ticks. We
use the amplitude as the duty cycle for our PWM, which
produces our desired sound. Both approximations made use
of Python files that generated the look-ups to avoid time-
consuming operations.

Fig. 3. MIDI Sequencer FSM

The extracted note’s frequency values are precomputed
on the FPGA, allowing for efficient access during game-
play directly from Data Byte 0. These mappings were also
inexpensive on the memory, only needing 255 bytes for the
sine table and 512 bytes for the MIDI to frequency mapping

To create sounds from MIDI files, we use a waveform gen-
erator to create different types of waveforms at the specified
frequencies to allow for variations in sound. Waveform types
include sine, sawtooth, and square waves.

C. Challenges and Future Work

• Harmonic Pitch Detection: Because we were limited by
hardware that made it difficult to detect multiple notes on
the keyboard and display, we only considered taking the
most recent note as our note value. Future sequencers
should output every note that is being played to allow
for higher difficulty songs.

• Instrument Synthesis from MIDI files: Currently, the
audio output from MIDI doesn’t resemble the sound of
an instrument. It would be ideal to gather pre-processed
sounds from instruments to make the game more intuitive.

• Integration Testing: Although complete MIDI files have
been analyzed, there still needs to be testing to ensure that
the audio portion will continue to work with the display
data buffer and output notes as close to the actual tempo
of the song as possible.

• I2S audio: To improve the audio quality of the audio
output, we can use an I2S protocol to a DAC and a
speaker with AUX.

IV. VISUALIZATION OF THE GAME - GIULIANA

The visualization aspect of the Gridthym project focuses
on rendering the interactive rhythm game on a 1280x720
resolution HDMI display.

A. Background and Design Inspiration

The visualization approach draws inspiration from classical
sprite-based game designs, such as those described in Will
Green’s ”Hardware Sprites” methodology [1]. Key goals in-
clude:



• Efficient rendering of piano tiles using hardware sprites.
• Real-time synchronization between game visuals and

audio cues.
• Scalability to support dynamic game elements and poten-

tial resolution enhancements.
Each piano tile is represented as a bitmap sprite for in-

dependent movement and rendering, with the tiles appearing
depending on audio cues. Since the piano tiles are bitmaps,
this made it easier also to be able to change the look of the tiles
by having different bitmaps depending on the desired output.
This was also done using a JPG to REM tool which converted
a JPG image to a 16-bit bitmap that we could use to ”draw”
the tile.

B. Hardware Setup and Integration
The visualization system is implemented on an FPGA

platform and integrates the following hardware components:
• HDMI Display Module: Generates high-resolution out-

put (640x480) and precise synchronization signals (hori-
zontal and vertical sync).

• Sprite Engine: Handles efficient rendering and move-
ment of piano tiles using hardware sprites to minimize
redundant screen updates.

• Bitmap Storage: Pre-defined bitmap patterns for tiles
and other visual elements are stored in ROM, loaded
during initialization.

• BRAM Framebuffer: Stores pixel data for the current
and next frame, using double buffering to eliminate
tearing and ensure smooth animations. This wasn’t able
to be achieved for this project, but would prevent tearing
in future improvements of the project.

C. Technical Overview of Rendering
The rendering for the falling tiles in our game were imple-

mented using block RAM (BRAM) within the FPGA, with
one bitmap configured to hold pixel data of 12-bit depth.

The rendering process follows these steps:
1) Sprite Positioning: Audio cues determine the X and

Y coordinates of each tile, which are mapped to corre-
sponding pixel positions in the framebuffer.

2) Tile Rendering: Sprite bitmap data is fetched from
ROM and written into the active framebuffer. A simple
blending operation ensures that overlapping tiles are
rendered correctly.

3) Background and Effects: Additional elements, such
as the background and scoring effects, are drawn into
reserved regions of the framebuffer. For instance, a
separate memory region handles dynamic score up-
dates, which are overlayed during the final composition
could’ve been done.

V. DYNAMIC TILE PLACEMENT AND INTERACTION

Tiles are dynamically positioned based on real-time audio
signals. These signals are mapped to one of 12 positions
across the horizontal axis, representing musical notes. Tiles
corresponding to higher-pitched notes appear in the rightmost
columns, while lower-pitched notes are placed on the left.

VI. CHALLENGES AND SOLUTIONS

Key challenges and their resolutions include:
• Synchronization: Ensuring precise timing between the

audio module and visualization was addressed through
shared clock domains and handshake signals.

• Resource Optimization: Efficient BRAM utilization was
achieved by just using one BRAM bitmap for all the tiles.

• HDMI Timing Accuracy: The rendering pipeline was
carefully aligned with HDMI synchronization signals to
maintain a consistent refresh rate.

VII. MY CONTRIBUTIONS

One of the biggest challenges was creating a reliable clock
wizard that generated the necessary clocks (100 MHz, 25
MHz, 75 MHz, and TMDS) for different parts of the project.
Initially, the keyboard wouldn’t interact properly with the
display due to synchronization issues. The clock wizard I
developed resolved this by ensuring all modules operated with
the correct timing rather than relying on pipelining alone.

I worked on modules split into three parts: static tiles, falling
tiles, and game logic:

• Static Tiles: These were easier to implement as they did
not require BRAM. Instead, I used ‘hcount‘ and ‘vcount‘
along with the tiles’ ‘x‘ and ‘y‘ coordinates to color and
activate them.

• Falling Tiles: The falling tiles involved several sub-
modules: ‘TileBitmapBRAM‘, ‘TileRenderer‘, and ‘Tile-
Manager‘.

– TileManager: Managed signals from the audio mod-
ule and activated new tiles. Handling multiple tiles
in the same column efficiently was challenging. I
used a 2D array of active tiles and a counter to
track the number of active tiles per column, allowing
successful rendering of multiple tiles in the same
column.

– TileRenderer: Continuously checked the 2D tile
array to render active tiles. Using ‘hcount‘ and
‘vcount‘, it placed tiles correctly on the screen.

– TileBitmapBRAM: Stored bitmaps of tiles and pro-
vided pixel

VIII. ACHIEVEMENT OF GOALS AND POTENTIAL USE
CASES

A. Goals Achieved

The Gridthym project aimed to meet several key milestones,
classified into minimum, ideal, and stretch goals.

1) Minimum Goals: Our primary goal was to synchronize
keyboard input with the display. This was achieved by imple-
menting a robust clock wizard that provided the necessary
clock signals (100 MHz, 25 MHz, 75 MHz, and TMDS).
Initially, the keyboard failed to interact correctly with the
display due to improper synchronization. The clock wizard
resolved these issues by ensuring that all components operated
in sync, thereby meeting our minimum goal.



2) Ideal Goals: We aimed to enhance the visual experience
by adding multiple sprite flags, such as opacity and back-
ground graphics. This required precise timing control to ensure
smooth rendering of sprites without any visual glitches. By
meeting stringent timing requirements, we achieved a high-
quality visual output that exceeded our basic requirements.

B. Potential Use Cases

Beyond the current implementation, our design can be
adapted for various applications with minimal changes:

• Expanded Game Mechanics: Adding new game el-
ements such as power-ups or animated characters can
be easily integrated by leveraging the existing sprite
management system.

• Educational Tools: The system can be adapted for
interactive learning tools, providing real-time feedback
and engaging visuals for educational purposes.

•

The minimum milestone was barely reached because the
timing issues were underestimated and ended up causing more
issues than anticipated.

REFERENCES

[1] F. Buss, “Yet Another Graphics Controller (YaGraphCon),” GitHub
repository, July 2012. [Online]. Available: https://github.com/FrankBuss/
YaGraphCon. [Accessed: Nov. 27, 2024].

[2] J. Matthews Group, “SD Audio for FPGA-based Projects,” MIT De-
partment of Electrical Engineering and Computer Science, 2019. [On-
line]. Available: https://web.mit.edu/6.111/volume2/www/f2019/tools/
sd audio.pdf. [Accessed: Nov. 27, 2024].

[3] W. Green, “Exploring FPGA Graphics - Framebuffers and Animation,”
Project F website, Jan. 2024. [Online]. Available: https://projectf.io/
posts/. [Accessed: Nov. 27, 2024].


