
Quantum Juggling Trainer

Yue Chen Li, Toya Takahashi, Victoria Nguyen
Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge, MA 02139
yuecli@mit.edu, toyat@mit.edu, vkn@mit.edu

Abstract—This paper presents the design and imple-
mentation of Quantum Juggling Trainer, a system that
aids users in practicing juggling patterns specified in
Siteswap notation. Leveraging FPGA technology, the
trainer processes real-time video input to track the tra-
jectories of juggling balls and assesses the accuracy
of the user’s performance against a specified pattern.
This paper discusses the technical challenges and design
trade-offs in implementing the system, as well as ideas
for future improvement.

1. Introduction
Juggling is a skill that requires precision and timing,

which can be improved by practicing complex patterns.
By tracking ball trajectories and comparing them against
patterns specified in Siteswap notation (Section 2.1), the
Quantum Juggling Trainer provides real-time feedback to
help users improve their juggling technique. We previ-
ously implemented live k-means clustering to track juggling
in Python, and found the video feedback to be too slow.
Hence, we decided to use the FPGA to efficiently track the
juggling pattern in addition to evaluating it in real time.

Our design has three key components:

1. Pattern generation (Section 3)
2. Object tracking

(a) Preprocessing (Section 4)
(b) K-means (Section 5)

3. Pattern evaluation
(a) Trajectory Simulation (Section 6)
(b) Pattern evaluation (Section 7)

In section 2.2, we present a more in-depth description of the
design. Moreover, in each of the sections listed above, we
discuss the specific implementation. Finally, we present an
overall evaluation of our results in section 8.

2. Background (Victoria)
In this section, we will explain the necessary background

information and key details of our overall design.

2.1. Siteswap
Siteswap [1] is a notation for describing juggling pat-

terns by encoding the sequence and timing of throws and
catches. Each number in a siteswap pattern represents the
number of beats a ball remains in the air before being caught
and rethrown; hence, higher numbers correspond to higher
throws. Odd numbers indicate throws that cross to the op-
posite hand, while even numbers represent throws that stay
within the same hand. The pattern of throws described by a
sequence can be looped indefinitely. For example, a “531”
corresponds to a trick with three types of throws: a high
throw (5), a low throw (3), and a horizontal pass (1). This
notation provides a concise way to analyze and invent jug-
gling patterns.

2.2. Overall Design
The block diagram for our overall design is shown in

Fig 1, and an example video output is shown in Fig 2.
The data flow is as follows: first, the input pattern for the
trainer is specified using switches and buttons. The num-
ber of balls and preprocessed camera data (which generates
the pink mask for the hands and cyan mask for the balls)
are inputted to Object Tracking. This module then outputs
the locations of the balls and hands (which appear as red
and green crosshairs, respectively). The positions of the
hands and pattern input, are passed to Trajectory Genera-
tion, which outputs a calculated trajectory to the standard
video mux (which appears as moving red squares, rooted at
green squares indicating initial hand coordinates), as well as
the model coordinates of the balls to Evaluate Pattern. The
number of balls and real coordinates from Object Tracking
are also passed to Evaluate Pattern. Then, Evaluate Pat-
tern compares the model and real coordinates to determine
correctness. If the user is juggling correctly, the screen’s
border turns blue; otherwise it turns red (no juggling occurs
in Fig 2, so the border is red).

2.3. Technical Challenges
One technical challenge is in meeting resource and tim-

ing constraints when implementing the k-means algorithm.

1



Fig. 1. Overview Block Diagram

Fig. 2. Video output of Quantum Juggling Trainer: The balls are
indicated by the cyan mask with a red crosshair tracking each one.
The hands are indicated by the pink mask with green crosshairs
tracking each one. Additionally, green squares indicate the initial
position of the hands, which serve as endpoints for the trajectory,
which is indicated by the moving red squares. The red border
indicates the observed juggling is incorrect.

The algorithm requires us to store the whole frame across
multiple iterations of centroid updates, and it takes a long
time to process all the pixels in each iteration.

Additionally, we had to define a strategy for pattern eval-
uation. For example, we needed to determine a criteria for
how many frames a pattern could deviate before being de-
clared wrong, or how to judge the closeness of two trajec-
tories. Algorithmically, we anticipated this would involve
complex logic, and also careful tuning of various threshold
parameters.

In the remainder of the paper, we explain our design
choices and discuss workarounds.

3. Pattern Generation (Toya)
The pattern generation module outputs a valid siteswap

pattern for downstream modules, switching between two
primary states: the INPUT mode, where it accepts user in-
put from the switches, and the VALIDATE mode, which
checks the validity of the user-specified pattern (as detailed
in 3.1). The input pattern is displayed on the seven-segment
display, and if the pattern is invalid, an error message is
shown. Additionally, the module calculates the number of
balls required to perform the juggling sequence encoded by
the validated pattern. This is done by averaging the throw
numbers, which are combinationally summed and passed to
a 6-bit divider module with constant latency. The output
logic is pipelined to account for the division delay, ensuring
synchronization of results.

3.1. Pattern Validation
Pattern generation includes a submodule for combina-

tionally validating an input siteswap pattern. The validity of
a siteswap pattern is determined by ensuring no two throws
land at the same time. This is achieved by tracking a count-
down for each throw in the pattern. Consider the a valid
siteswap pattern “531”:

Beats: 1 2 3 4 5 6
Siteswap: 5 3 1 5 3 1
Countdown1: 5 4 3 2 1 0
Countdown2: 3 2 1 0
Countdown3: 1 0

For the first throw, countdown1 starts at 5 on beat 1 and
decreases until reaching 0 on beat 5 which is when the ball



is caught. Simultaneously, at beat 5, countdown2 reaches 0,
indicating the other hand is making a throw with a height
of 3. In a valid siteswap pattern like ”531,” no countdown
value coincides with another throw’s height at any beat, ex-
cept when a throw is initiated, ensuring proper sequencing
and avoiding collisions. However, in an invalid siteswap
pattern like “542”, the countdown values matches at the
same beat:

Beats: 1 2 3 4 5 6
Siteswap: 5 4 2 5 4 2
Countdown1: 5 4 3 2 1 0
Countdown2: 4 3 2 1 0
Countdown3: 2 1 0

To handle any pattern with a maximum length of 7 and
up to 7 balls, two unpacked arrays of length 7 are defined.
The first array, countdown, tracks the countdown for each
throw, decrementing as illustrated above. The second ar-
ray, countdown valid, flags whether the corresponding
countdown value was compared against the siteswap pat-
tern. The module generates a validity signal, asserting it
as high only when none of the masked countdown values
match the siteswap pattern at any beat.

4. Preprocessing and Video Outputs (Toya)
To maintain high-definition video while processing

Gaussian blurred images for speckle noise reduction, the
video pipeline is divided into DRAM and BRAM pathways.
The full-resolution 720p image is stored in the DRAM
frame buffer and passed to the video multiplexer as the
background image. In parallel, Gaussian blur is applied
twice to the image before it is downsampled and stored in
the BRAM frame buffer. The downsampled image under-
goes image thresholding to create a mask identifying “ball-
pixels,” which serves as input for the k-means algorithm to
pinpoint the locations of the juggling balls.

Experimental evaluation revealed that keying on lumi-
nance values, combined with the use of glowing juggling
balls, yields the most accurate results. We also found that
keying on the Chroma Red values for the gloves when they
were set to be red yielded accurate results for tracking the
locations of the hands. Despite both items being LED, the
balls were significantly brighter than the gloves, so we were
able to use luminance with a relatively high lower threshold
to find the balls. Similarly, since the balls were so bright,
we were able to set them to be colored pink so that when
they were near the hands, they helped increase the Chroma
Red value of the gloves.

Finally, the masked downsampled image and crosshairs
marking the ball locations are then passed to the video mux,
enabling optional overlay onto the high-definition video
from DRAM. We improved the mux to support two sepa-

rate sets of masks and crosshairs so that the balls and hands
could be colored differently for more optimal visibility.

5. Object Tracking (Victoria)
To track the objects, we take the mask from the prepro-

cessing module and apply the k-means clustering algorithm
to determine the ball locations. The module takes inputs
k (number of balls) and the initial guess for centroid coor-
dinates, as well as parameter MAX_ITERS which specifies
the number of k-means iterations (tuned to 20). We instan-
tiate two of these modules: one for the hands and one for
the balls.

The module operates as a state machine (Fig 3) with
four states: STORE (section 5.1), UPDATE (section 5.2),
DIVIDE (section 5.3), and IDLE (section 5.3).

STstart UP DI IDLE

new frame

new frame max vcount

max iters

data valid out

Fig. 3. K-means state diagram

5.1. Store

The module begins in the STORE state on reset. In this
state, the mask is stored in BRAM memory at every four
hcount and vcount within the frame. The memory con-
sists of 5 BRAMs, each with a width of 64 and depth of 180,
capable of storing one row of a 320→ 180 image across the
BRAMs. With consecutive pixels in the same BRAM, it up-
dates a locally stored 64 bits of data. Once x_in changes to
exceed the domain of the current BRAM, the write enable
signal for the current BRAM goes high and the 64 bits are
cleared for the next BRAM’s data. When the new_frame
signal goes high, the module transitions to UPDATE.

One problem we encountered with storing the mask was
that the top_level module would send the same pixel
four times due to downsampling, which caused problems
with writing the data to the BRAMs in our implementation.
We resolved this by keeping track of the previous pixel so
that we would only write when a new pixel came in.

5.2. Update

During the UPDATE state, we read back the data stored
in our BRAMs to update the centroids. Although 64 pix-
els are read during each BRAM read request, only 2 pixels
are processed at a time. For each of the pixels being pro-
cessed, we calculate the distance to the current centroids.
The minimum module then finds the minimum distance



between each pixel and any of the first num_balls cen-
troids. The k-means module subsequently calculates, for
each centroid, the sum of the x-coordinates, y-coordinates,
and total mass of the points closest to it. These sums are
used to update a running total for each centroid. Once
all pixels have been updated (when the vcount equals the
height), we proceed to the DIVIDE stage.

One problem we encountered here was the amount of
operations and space it took to calculate these distances
and running sums made it impossible to do entire rows,
or even large chunks of them in parallel. After many at-
tempts to maintain a small number of cycles against a neg-
ative WNS and overutilized LUT, we decided that it was
infeasible to complete a sufficient number of iterations of
k-means within our vertical sync period. Thus, we ended up
only computing small widths of pixels in parallel at a time
and dropping every other frame in order to comfortably fit
each iteration of k-means within the resources available on
the FPGA.

5.3. Divide and Idle
In the DIVIDE state, these sums are divided by the

total mass to compute the updated centroid coordinates.
The process iterates between UPDATE and DIVIDE for
MAX_ITERS cycles. After completion of the iterations, the
data_valid_out signal is set high, and the module re-
turns to IDLE to process the next frame of pixels. The cen-
troids don’t change between this stage and when the module
returns to STORE on a new_frame signal, and the corre-
sponding centroids are displayed by crosshairs on the video
output.

6. Trajectory Simulation (YC)
After a valid pattern is specified, the trajectory simu-

lation module generates the locations of the balls and (to
be implemented) hands frame by frame using an idealized
parabolic motion model. The calculated locations were fed
downstream to the video mux which overlays it onto the
camera feed.

6.1. Ball Logic
Given a siteswap pattern, the first task is to determine

which ball is being thrown at each beat. This was achieved
by maintaining a ‘queue’ with that information for the next
7 beats, including the current beat. When we tick a beat, we
updated this structure (1) by shifting every value right once,
since the ball to be thrown at beat b is the ball to be thrown
at beat b + 1, and (2) by handling the ball that is thrown in
the current beat separately. Update (2) required setting the
queue at the b↑ 1-th beat to the current ball.

Aside from the identity of the ball, other auxiliary in-
formation including the start time of the throw, which hand
the ball is thrown from, and the type of the throw was also

stored. These were maintained using arrays and wrap-on
counters that cycle between the two hands and the throws in
the Siteswap pattern.

6.2. Kinematics
For a given frame, the locations of the balls were calcu-

lated using kinematics equations. The x and y components
of their motion were considered independently and we as-
sumed they do not experience drag. In all calculations, we
used pixels as the unit for distance and frame count as the
unit for time.

x(t) = x(t0) + vx · (t↑ t0) (1)

y(t) = y(t0) + vy · (t↑ t0) +
1

2
· g̃ · (t↑ t0)

2 (2)

To determine x(t) and y(t) for a given ball using equa-
tions 1 and 2, we set x(t0) and y(t0) based on the starting
hand and t0 to the frame count when a ball is thrown. To re-
duce overlap between balls, x(t0) is set to xhand±s, where
s is a small offset parameter. We also read out the vx and
vy for the corresponding throw from a small pre-calculated
table that is detailed in section 6.3. g̃ is a hard-coded pa-
rameter tuned empirically.

6.3. Pre-calculations
Since a k-throw in Siteswap lasts k beats, we defined

the airborne time of a k-throw to be k · frame per beat,
where frame per beat is an adjustable input for scaling
the height of the trajectories using a potentiometer. Chang-
ing this value allows the juggler to adjust the speed of their
tosses, as well as for their standing in different positions rel-
ative to the camera. The potentiometer was implemented as
demonstrated in class, though we only took the first 3 bits of
the data we read because of the sensitivity of the trajectory
to our effective gravity. Since we are also using a camera,
we wired the potentiometer to the Pmod B ports.

For k > 0, we calculated the horizontal and vertical ve-
locity components using kinematics equations. vx is calcu-
lated from equation 4 using a divider module by fixing the
horizontal distance according to equation 3. For vy , we ob-
served that the vy = 0 at the top of the parabola to derive
equation 2, which was calculated only using multiplications
and a right bit shift.

distance =

{
xright hand ↑ xleft hand x is odd
2 ↓ offset x is even

(3)

vx =
distance

k · frame per beat
(4)

vy =

{
0 x = 2
1
2 · g · (k · frame per beat) otherwise

(5)



Note that k = 0 and k = 2 are special cases that were
handled separately. While k = 0 was defined as a throw
with no balls and the velocities’ values do not matter, it
could cause division by zero error in equation 4. On the
other hand, k = 2 was defined as a non-throw in which the
ball is simply held, hence vy is forced to be 0 in equation 5.
As the divider modules used in these calculations required
a variable number of cycles, we pre-calculated these veloc-
ities in a separate stage before the main calculations of the
ball and hand trajectories.

6.4. State-machine
Using the above parabolic motion model, the trajectory

generator module was implemented as a state machine (Fig
4) with three states, IDLE, INIT, and TRANSMIT. IDLE
is the reset state to clear the module’s outputs or trigger
a recalculation of the trajectories in module inputs (e.g.
Siteswap pattern) are changed. When a valid pattern was
received, the state machine transitions to INIT, which cor-
responds to the state where the calculations in section 6.3
are performed. To simplify the implementation, a separate
divider was used for each possible type of throw, yielding
7 dividers. After all the dividers finished their calculations,
the state machine finally transitions to TRANSMIT, which
corresponds to the state where the calculations in sections
6.1 and 6.2 are performed. Only in this state does the state
machine have valid outputs, and the state machine remains
in this state indefinitely unless it is reset.

IDstart IN TX

pattern valid==1 vx ready==1

rst in==1

rst in==1

Fig. 4. Trajectory state diagram

7. Pattern Evaluation (YC)
To evaluate a user’s juggling pattern, we compared it

against the calculated model juggling pattern. First, we
perform a frame-by-frame evaluation that checks if the er-
ror between the tracked and calculated balls is within some
threshold. After that, we determine a juggling pattern to
be correct by aggregating the frame-level judgments over a
fixed time window.

7.1. Graph Modeling
The key challenge in this module is determining the cor-

respondence between tracked and calculated balls. To ap-
proach this problem, we begin by formally defining the
’best’ assignment of tracked balls to calculated balls as the

assignment that minimizes the error of the assignment. This
error is also the value that we compare to a threshold to de-
termine if a frame is ’valid’, i.e. the tracked balls are close
enough to the calculated balls. To penalize big deviations
for any ball and avoid needing to compute square roots, we
define this to be the sum of the square of the Euclidean dis-
tances between each pair of matched balls. Then, the error
can be computed by taking the sum of squared differences
in x and y-coordinates for each pair of balls.

With this definition, we can now model the problem as
an instance of minimum-cost maximum bipartite match-
ing1. Here, the graph is a complete bipartite graph with
two sets of vertices being the tracked and calculated balls;
the weights of each edge are the costs of matching the two
corresponding balls.

Fortunately, this is a classic problem that can be solved
by the Hungarian Algorithm, also known as the Kuhn-
Mankres algorithm. The outputs of this algorithm are the
matching and the cost of the matching, the latter of which
can be used directly2.

7.2. Frame-level Trajectory Evaluation
In our frame-level evaluation module, we first explicitly

construct the full adjacency matrix combinationally. Then,
we mechanically translated a reference C++ implementa-
tion of the Hungarian algorithm [2] into SystemVerilog. As
all calculations of weights and potentials in the algorithm
can involve negative numbers, the corresponding vectors
must be declared as signed.

The main challenge in the translation was the presence of
multiple nested loops; other parts of the code can be more
easily written as chunks of combinational logic. Since the
algorithm takes a variable number of cycles, it was imple-
mented as a state machine. The trick was to write each loop
as one would do in assembly code. Each while or do-while
loop was given labels in the C++ code for the body and
the loop-condition check, and each for loop was given la-
bels in the C++ code for the initialization, body, update,
and loop-condition check. Then, each remaining unlabeled
chunk of code was also assigned a label, and all the labels
were converted into states. Finally, appropriate transitions
were constructed based on the control flow of the C++ code.
Note that an initial state INIT and final state ANS were also
included. This naive translation of the algorithm yields a
total of 15 states and the entire module was implemented in
↔ 200 lines of SystemVerilog code.

7.3. Aggregated Evaluation
Since a pattern can be interpreted as a periodic function,

the user’s juggling was judged to be correct if at least a cer-
1In fact, it must be a perfect matching!
2The former would have been useful too, had pattern inference been

developed.



tain number of frames were correct in a fixed time window.
This was achieved by storing a counter of the number of
correct frames in the past N outputs of the frame evaluator.
To update the counter, we used a size N queue to maintain
the history. Finally, the counter was compared to a thresh-
old number of frames to decide if observed juggling pattern
replicates calculated juggling pattern satisfactorily.

8. Evaluation (Toya)
In this section we further discuss our implementation

and evaluate its performance on latency, throughput, and
resource utilization.

8.1. Deliverables
We delivered on our core goals stated in section 1: our

project correctly reads and validate patterns, and it correctly
generates trajectories from the hands positions and validate
them against the path of the balls. While we originally
planned to shift the trajectories to match the hand positions,
our final implementation allows the user to fix hand place-
ment by pressing a button. This was a practical decision
motivated by the fact that a juggler’s hands would ideally
circle around fixed points, and has the advantage of being
computational cheaper. Moreover, we also found our initial
goal of fitting the entire algorithm into one vertical sync pe-
riod to be infeasible, leading us to drop every other frame
for k-means.

8.2. Latency and Throughput
Since the results of our modules were visualized in ev-

ery frame, we evaluated latency and throughput based on
the number of frames required for calculations to complete.
The primary bottleneck is the UPDATE and DIVIDE states
of the k-means module, which take 2 frames to perform
20 iterations for convergence. During the UPDATE state,
the module requires 35 cycles per iteration to determine the
closest centroid for each pixel and sum the x,y, and total
masked pixel counts, processing all 5 BRAMs across 180
rows. The DIVIDE state then uses 14 cycles per iteration
to compute the means for each cluster. With 20 iterations,
these steps total (35·5·180+14)·20 = 630,280 cycles, well
within the full frame duration of 1650 · 750 = 1,237,500
cycles. Since we output video at 60 fps, the k-means mod-
ules track the balls and hands at 30 fps. While more k-
means iterations could fit within 2 frames, empirical testing
in Python confirmed that exceeding 20 iterations does not
significantly improve results.

8.3. Resource Utilization
BRAM We utilized 51.5 out of 75 BRAM tiles (68.7%),
with 24 tiles dedicated to the camera frame buffer for stor-
ing the downsampled 320 → 180 image. Thus, the most ef-
fective way to reduce BRAM usage would be to exclusively

use DRAM for image storage. This change would require
moving the Gaussian blur module to after the unstacker and
adding pipelining to align the blurred image with the origi-
nal camera feed. Additionally, a smaller optimization could
save 5 additional BRAM tiles by sharing the BRAMs used
for k-means between its instantiations for the balls and the
hands.

LUT We utilized 58.04% of slice LUTs and 17.92% of
the slice registers. Significant contributions came from the
DDR3 MIG, k-means, pattern evaluation, and trajectory
generation modules, each adding approximately 4,000 out
of 32,600 logic LUTs. Initially, we attempted to perform
k-means during the display’s vertical sync period by sum-
ming all 64 BRAM values in parallel. This required storing
clog2(

∑319
n=256 n) = 15 bits for the sum and clog2(64) = 6

bits for the total number of masked pixels across 7 clus-
ters. Additionally, to compute the sum combinationally, we
stored intermediate binary sums in a 64-element array, re-
sulting in 64 · 7 · (15 + 6) = 9,408 bits. In addition, 64
instantiations of the minimum module was required to find
the closest centroid for each pixel. Together with the large
number of bits used for storage, this caused LUT overuti-
lization errors. To resolve this, we spread the k-means it-
erations over two frames and limited the summation to two
pixel values per cycle.

DSP We utilized 98 out of 120 DSPs, with the majority
allocated to the pattern evaluator module (72 DSPs) and the
trajectory generator module (21 DSPs). The pattern evalu-
ator required DSPs to perform 49 parallel 11-bit multipli-
cations and 49 parallel 10-bit multiplications when comput-
ing squared Euclidean distances between pairs of juggling
balls. Although Manhattan distance would have reduced
DSP usage, we chose Euclidean distance for its higher sen-
sitivity in pattern evaluation, which is critical compared to
other modules like k-means that can effectively use Manhat-
tan distance. To address DSP overutilization, we restruc-
tured the k-means module, replacing multiplication-based
calculations for the summed x and y values with simpler
addition, which increased LUT usage but alleviated DSP
constraints. This adjustment effectively balanced resources.
The trajectory generation module, requiring 21 DSPs, used
them for computing uniformly accelerated motion equa-
tions.

8.4. Timing Requirement
WNS Our final build achieved a WNS of 0.292 ns, with
the critical path located at the camera registers. While this
indicates potential for more aggressive use of combinational
logic per cycle, such optimization would not provide signif-
icant benefit, as our throughput is constrained by the video
frame rate.



9. Reflection
Although we were able to achieve our commitment and

goals for the project, there were some aspects of the project
that we were not able to complete. Thus, some avenues for
further improvements include:

• Pattern inference: Our main stretch goal which we
were unable to accomplish was pattern inference, i.e.
given the observed juggling, the FPGA determines
what pattern is being juggled. Unfortunately, we faced
unexpected challenges in managing resource utiliza-
tion, making that goal outside the scope of this project.
However, we note that our current implementation of
pattern evaluation accomplishes half the task of this
goal by accumulating approximately enough data from
the juggling to judge the pattern, and we could build
upon it to actually infer the pattern instead.

• Potentiometer: Another point of improvement would
be our use of the potentiometer. Due to us requiring
an integer number of frames per beat and the limited
number of pixels per frame, we did not have a lot
of flexibility in the frames per beat as determined by
the potentiometer. We feel it would be a more effec-
tive use of the potentiometer if we allowed for floating
point frames per beat, which would facilitate a more
fine grained tuning of the juggling height/speed for the
user.

Additionally, there are many aspects of digital system
design that we learned throughout the development of this
project:

• Resource management: One of our greatest struggles
was managing our LUT and DSP usage. This was par-
ticularly emphasized during the implementation of k-
means, when we had to concede to dropping alternate
frames. We were eventually able to develop a better
intuition on how much is too much; for example, it
is infeasible to process 64 pixels at once in k-means.
This also taught us a lesson in optimization, as we had
to develop more efficient algorithms to handle repeti-
tive tasks or dodge multiplication.

• Test cases: one lesson that this project really empha-
sized was the importance of good test cases. Our spec-
ifications left a lot of opportunities for bugs, which
many of our initial test cases did not catch properly.
For example, our original k-means test case did not
properly consider the context in which the algorithm
was being used in. Rather than downsampling an im-
age to feed pixels from, we directly fed in pixels from
an image of reduced dimensions, which left us oblivi-
ous to the bug described in section 5.1.

10. Contribution
We detail the contributions from each of the members be-

low. All the members contributed in the initial planning of
the design as a whole, in particular the timing and memory
details given in the preliminary project design.

• Yue Chen Li: YC was responsible for coding the tra-
jectory simulation (section 6) and pattern evaluation
(section 7) modules. As the original inspiration for the
project, he was also responsible for testing and demo-
ing the project by juggling, as well as giving insights
into the reasonableness of its evaluation criteria.

• Toya Takahashi: Toya was responsible for coding
the pattern generation (section 3) and preprocessing
(section 4). The first required him to further research
Siteswap notation in order to implement the state ma-
chine. He additionally played a large role in debugging
the k-means module and negative WNS.

• Victoria Nguyen: Victoria was responsible for cod-
ing the k-means (section 5) module as well as reading
the potentiometer input into the trajectory module to
achieve a reasonable frames per beat. She additionally
edited together the final video.

11. Thanks
Finally, we would like to thank all the people who helped

us along the way:

• Our instructor, Joe Steinmeyer, for his lectures, lab
code, advice on our project, and teaching 6.205

• Kiran for advice, especially for tracking objects

• All the TAs and LAs who helped us debug in OH

• German House for lending us their TV and Shin for
lending us his monitor

Source code

References
[1] Siteswap Notation Used in Juggling Lab. [Online].

Available: https://jugglinglab.org/html/ssnotation.html

[2] Hungarian algorithm. [Online]. Available: https://cp-
algorithms.com/graph/hungarian-algorithm.html

https://jugglinglab.org/html/ssnotation.html
https://cp-algorithms.com/graph/hungarian-algorithm.html
https://cp-algorithms.com/graph/hungarian-algorithm.html

	. Introduction
	. Background (Victoria)
	. Siteswap
	. Overall Design
	. Technical Challenges

	. Pattern Generation (Toya)
	. Pattern Validation

	. Preprocessing and Video Outputs (Toya)
	. Object Tracking (Victoria)
	. Store
	. Update
	. Divide and Idle

	. Trajectory Simulation (YC)
	. Ball Logic
	. Kinematics
	. Pre-calculations
	. State-machine

	. Pattern Evaluation (YC)
	. Graph Modeling
	. Frame-level Trajectory Evaluation
	. Aggregated Evaluation

	. Evaluation (Toya)
	. Deliverables
	. Latency and Throughput
	. Resource Utilization
	. Timing Requirement

	. Reflection
	. Contribution
	. Thanks

