Do Re M1 F(PG)a Final Report

Sriram Sethuraman
Department of Mechanical

Jessica Shoemaker
Electrical Engineering and

Cole Ruehle
Electrical Engineering and

Engineering Computer Science Computer Science
Massachusetts Institute of Massachusetts Institute of Massachusetts Institute of
Technology Technology Technology
Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA
sriram_s @mit.edu jtshoe@mit.edu cruehle @mit.edu

Fig. 1. System Block Diagram

Abstract—Our project is a singing trainer game based on
a viral TikTok filter. The primary objective is to create an
interactive platform that processes .wav files to train users to
sing along accurately. The system will analyze a song file, convert
it into a format the FPGA can interpret, and display a flappy-
bird-style game where the player’s pitch controls the height of a
ball navigating through obstacles. Only singing the correct notes
at the right time allows the ball to pass, enhancing the player’s
musical accuracy.

Index Terms—audio processing, FPGA, pitch detection, game
engine, music training

I. INTRODUCTION

We present a report on a singing trainer game, inspired by
a viral TikTok filter. The system aims to process audio input,
detect fundamental frequencies (notes), and integrate this data
into a real-time interactive video game. The player’s sung pitch
controls a ball in a visual environment, ensuring that only
accurate notes lead to successful navigation of obstacles.

II. OVERALL DESIGN

Our design consists of multiple components: audio pro-
cessing for real-time pitch detection, music processing for
interpreting a given .wav file of a melody, video generation
to visualize the gameplay, and file storage/loading from an SD
card.

III. AUDIO PROCESSING
A. Big Picture

The goal of the audio processing component is to output the
fundamental frequency (pitch) of a user’s voice in real time.
Three main components form the processing chain:

« Microphone controller: Samples audio and provides the

signal.

« Bandpass filter: Restricts the signal to 100-1000 Hz, a

typical human vocal range.

o YIN algorithm: A fundamental frequency detection
method implemented from scratch in SystemVerilog.

B. Microphone

We currently use the analog microphone and SPI ADC
system from a previous lab setup. The sampling rate started
out at 8 kHz, allowing ample time for the band pass filter
and YIN calculations each cycle. However, after testing, the
sampling rate was increased to 16 kHz to allow for higher
resolution of the YIN algorithm (more discussion below).

C. Bandpass Filter

The bandpass filter ensures only frequencies of interest
(100-1000 Hz) reach the YIN algorithm. We tested a 6th-
order Infinite Impulse Response (IIR) filter designed in Python
(scipy.signal) and then implemented it in SystemVerilog. An
IIR filter was chosen for the limited number of taps necessary
to implement it in hardware compared to an equivalent FIR
filter. The filter was implemented as the following difference
function:

al0] - y[n] = b[0] - z[n] + b[1] - x[n — 1] + - - + b[M] - z[n — M]

—al]-y[n = 1) —--- —a[N]-y[n — NJ

The coefficients and intermediate values are stored as 32-bit
fixed point numbers for accurate calculation. A state machine
(IDLE, CALC, UPDATE) controls the filtering process. Simu-
lation results closely matched Python outputs, confirming the
filter’s correctness. After testing, the 6th order IIR filter was
replaced with a 2nd order IIR filter to account for the 16 kHz
audio change (more discussion later).

Registers named a and b were used to store coefficients,
and registers x and y buffer the last few values of x[n] and
y[n] for use in calculation. The module is controlled using a
simple state machine with three states:

o IDLE: Do nothing until a new audio sample is received.

When it is, switch to CALC.

o CALC: Every clock cycle,

result < result + bfi] - x[n — i] — a[i] - y[n — i].

This lasts 7 cycles before switching to UPDATE.

o UPDATE: Shift the x and y buffers and store the latest
values of z[n]| and y[n]. Set the output valid signal high
and return to IDLE.



140 A

120 4

100 4

80 4

60

40

0 200 400 600 800 1000

Fig. 2. Unfiltered audio sample

80 1

60 4

40

20 A

T T T T T T
0 200 400 600 800 1000

Fig. 3. Filtered audio sample (simulation output)

D. YIN Algorithm

YIN is a fundamental frequency detection algorithm created
in the early 2000’s specifically for real time low-latency music
and voice processing. It is a variation on autocorrelation, where
the difference between a signal and a shifted version of it is
calculated for many different shifts, and the lowest shift with
lowest difference gives the fundamental period (and inverting
that gives you frequency). Other than the benefits listed above,
the main reason this algorithm was chosen was that it can be
implemented completely from scratch instead of relying upon
IP to carry out a FFT. The input to YIN is a signal “window,”
and after lots of testing I found a window size of 500 samples
to yield the best results. The steps to YIN are fairly simple,
but lead to very accurate results.

« First, the difference function is calculated on the sample
window. It is a function of tau (shift amount), and W is

the window size.

w
do(r) =Y () — wj4r)°
j=1
¢ Next, the Cumulative Mean Normalized Difference Func-
tion (CMNDF) is calculated. This is also a function of
tau and divides the difference function by the average of
the difference function of all shifts below the input.

d/ 17 if 7= 07
()= %, otherwise.
T Laj=1"T

o The candidate output shift is the lowest 7 for which the
CMNDF is below a certain threshold (usually set to 0.1
according to the paper).

o Lastly, we use parabolic interpolation to estimate the
“true” vertex of the CMNDEF.

d(r—1)—-d.(r+1)

(d, (7 — 1) — 2d,(7) + di(r + 1))

« And the final output just requires converting our best shift
into the frequency.

T~T+2

sample rate
fo=———
.

Implementing this in Verilog is slightly more challenging.
The module contains two register arrays (hopefully both syn-
thesized as BRAM), one of length WINDOW_SIZE to store the
audio samples and another of length MAX_TAU - MIN_TAU
to store the difference function outputs. (On a side note, we
know MAX_TAU and MIN_TAU since we know the lowest and
highest frequencies we are searching for). This is the only
memory really needed for this computation as the rest can be
computed on the fly.

This module is a state machine very similar in nature to the
bandpass filter state machine, with each state being a step
in the process. In testing, it was found that the parabolic
interpolation step contributed very insignificantly to the ac-
curacy of the algorithm and was therefore dropped from the
implementation to save resources and compute time.

o IDLE: When a new filtered audio sample comes in,
update the buffer. If a new computation is triggered, go
to DIFF_FUNCTION.

o DIFF_FUNCTION: Iterate through all 7 to calculate
the difference function for each one. This step is by
far the most time consuming since 500 subtractions and
multiplications have to be done for each 7. Once we have
reached MAX_TAU, go to CMNDF.

« CMNDF: Calculate the CMNDF starting from MIN_TAU
by using an accumulator to store the partial sum and a
custom divider. When we’ve found a 7 that has a CMNDF
less than 0.1, switch to PI.

o TD (trigger divide): Plug in the value of 7 we found
into a divider computing sample rate / 7 Then, switch to
DIVIDE.

o DIVIDE: When the divider is done, output the funda-
mental frequency.



E. Optimizations

Firstly, in the implementation of YIN, many divisions
were saved by manipulating the CMNDF equation. Instead
of finding 7 such that

d-(7)
(2¥7 )

we can find 7 such that

<01,

Tode (1) < 0.1 d.(j).
j=1

This approach avoids any division and only requires two mul-
tiplications. Here is a graphical representation of the CMNDF
portion of the YIN algorithm working to find the point where
7-d.(7) and 0.1- 377, d(j) meet.

le8

L

0 10 20 30 40 50 60 70 80

Fig. 4. CMNDF finding the correct tau (simulation output)

Another set of optimizations that had to be made was
pipelining a significant portion of the computations executed
by both YIN and the bandpass filter since the design did not
meeting timing. There isn’t much detail to go into with this,
just that a lot of operations that consisted of indexing into an
array, carrying out a multiplication, then adding that result to
a running sum were split into three clock cycles instead of
one.

The last optimization that helped improve the YIN algorithm
was rewriting all of it to work with 16 kHz audio instead of
8 kHz audio. This is because the final fundamental frequency
is computed as

F

)
Tfinal

fo=

so doubling F firstly increases the “resolution” of 7 (each
shift increment shifts the signal half as much compared to its
period as before). Secondly, since the value of 7 is an integer,
doubling F gives us more resolution in the set of outputs we
can return.

F. Evaluating YIN

After running many simulations of the YIN module I've
calculated that it takes approximately 30,000-40,000 clock
cycles after pipelining, which could be significantly improved
by performing multiplications in parallel since only 14 DSP’s
are used in this design. However, this isn’t necessary at all
since using the 100 MHz clock this runs 2,500 times per
second, which is already overkill, since we only need a
frequency update at 60 Hz, the screen refresh rate.

The main timing requirement for this component was to be
able to keep up with the screen refresh rate, which it does.
And after all the pipelining optimizations, the max delay path
in these modules has a WNS of 0.611 ns, adhering to proper
timing.

The minimum goal for this part of the system was to be
able to accurately detect frequency of singing live from scratch
using the lab microphones, which has been accomplished here.
The 12S microphone was to be utilized if YIN was finished
before Thanksgiving, however it was a very difficult system
to both have simulating correctly and working correctly on
hardware so that goal was not achieved.

IV. MusIC PROCESSING
A. NoteLoader Module

This module is a finite state machine, with the follow-
ing states IDLE, LOAD, YIN, and UPDATE. These states
progress in order and after update, if the limit for total
notes is not reached, it goes back into load state, other-
wise it goes to the idle state. The note loader uses 512x16
BRAM storage to keep track of the audio sample information.

B. Frequency to Note Module

The Frequency to Note module takes a frequency output
of YIN and identifies each note by letter (A-G), accidental
(natural or flat), and octave. Each note is encoded into an 8-
bit binary sequence with bits allocated as follows: letters (3
bits), accidental (2 bits), octave (3 bits).

The system can store the first 32 notes, transferring them to
BRAM for integration with the graphics engine. This allows
for synchronized note display and gameplay interaction.

C. Note Processor Module

This is the main module of the music processing component,
tying the pieces together and making sure the timing is
consistent between modules.



D. Evaluation of Design

This portion of the project takes up sizable amount of
BRAM, but we made sure to budget for this and choose to
preprocess song information such that we would have enough
resources for all parts of the game. The timing passes for all
these modules, although hooking noteloader up to future parts
of the code proved to be challenging due to the different clocks
in various modules.

V. VIDEO GENERATION

A. Sprite Generation

We generate three main sprites:
o Walls: Represent notes as block sprites with variable

Y

Move ‘

If overlap - ~If another block

with ball sprite within 1/4 of screen

—

14
t Bounce
- /

Slow

f \\v
o

If any overlap in rendering
between blocks

Fig. 5. Finite state machine for wall behavior.

gaps. The gap position corresponds to the correct pitch.
Walls move horizontally, challenging the player to match
the pitch. The wall sprite takes in the note as a frequency
and uses a simple formula to display frequencies within
Jessica’s vocal range on the screen.

Each of the 3 walls also interacts with the other 2 to
determine their movement speed. This is a constant set in
the game code, and when walls are unblocked they move
from left to right at this speed. When the sprite reaches
x = 0 it requests a new note from the note selector, and
re initializes its internal variables to render a new gap at
the correct height.

Secondly there is an interaction with the ball, each sprite
functions as a FSM, and in the case that the ball sprite
intersects the ball in a location other than the gap, it enters
the bounce state, in which it quickly moves away from
the ball then returns to its normal movement speed. The
bounce is not constant to create a fun feeling imitating the
behavior of a rubber ball, or spring. It is this bouncing
behavior that will cause 2 blocks to overlap. After the

bounce completes the movement speed returns to normal.
Finally there is interaction between the blocks. When
a block is within 1/4 of the screen of any other block
sprite it slows its speed to 1/2 of the previous speed.
This condition is ignored if the blocks are past the ball
as they cannot intersect and are no longer of interest to the
player. Finally, if 2 blocks intersect, they freeze ending
the game with a loss giving players a limited time to
master the note, and making it a challenge.

« Ball: Controlled by the player’s pitch input from YIN.
This updates every time Yin is called and again takes
in a frequency and outputs a hight using the matching
formula from the wall section. All of the logic of ball
interaction is calculated by the walls, so the ball behaves
as a naive actor.

o Note Labels: Small images representing letters, acci-
dentals (flat), or blanks. This is where the True Note
implementation is most useful. Using a simple set math
in Verilog one can map the true note representation into a
set of memory locations that store the sprites for letters.
This allows you to avoid creating a secondary table that
converts from frequency to this representation just for this
purpose and removes ambiguity with slight differences in
pitch that may be identified by the note decoder and what
the sprites were expecting.

VI. PHYSICS/GAME ENGINE

The physics and overall game engine is very simple and
largely controlled by the behavior of the wall sprites simplify-
ing the process by avoiding many interacting state machines.

VII. FILE STORAGE AND ACCESS

A. Big Picture

The File Access component retrieves binary data from an
SD card over SPI and stores it in BRAM for processing. We
use a simple custom file system to locate file start sectors and
lengths from metadata in sector 0.

B. File Generation

Files are raw binary, and a Python script prepares the SD
card structure:

o Sector 0: Header with start sector and length of each file.
« Subsequent sectors: Continuous blocks of file data.

C. File Access and Loading

The FPGA uses SPI commands (CMDO0O, CMD1, CMD17)
to initialize and read SD card sectors. A state machine man-
ages initialization, reading the header, and loading the file into
BRAM. Data is transferred in 512-byte sectors and stored for
downstream processing.



e ™
CS High for at least
100 clocks
\ /

Y
CMDO
Initialize SPI
AN J

CMD8
Voltage Check

ACMD41
Any response
| otherthan 0

YN
CMD17
Request Data
AN J

When receive
count is 64

//_ o

RECIEVE

| When waiting for

~ ~ next byte

R

Fig. 6. Finite State Machine for SD Card Access

VIII. EVALUATION/GOAL EVALUATIONS

We reached our commitment goal for audio, which was to
use an existing microphone to output pitch in real time. We did
proceed to use a different microphone since the one we had
already worked with proved to be adequate for the purposes of
our game. For graphics our goal was to display past and future
notes as well as sprite representations of these notes. We met
this goal and even got to our stretch goal of retro graphics,
implementing a “Flappy Bird” feel to the game design. For
music, the goal was to dynamically select the first 32 notes of a
song and output frequencies and this goal was met. We decided
not to pursue the stretch goal of synchronously processing the
audio at the same time as the singer because we determined
this was not a good allocation of BRAM and other FPGA
resources. Lastly, we hit our commitment for song loading,
successfully loading from a mem file. Although we saw some
success with the reading of SD cards, we ultimately ran out of
time to implement this song selection feature into the game.

Vivado Log Analysis

o Timing The process of running YIN is challenging from

a timing perspective as it involves a number of multi-
plications and most importantly a divide. Therefore the
largest goal in implementing it was to try and reduce the
negative slack in order to make the design functional. Our
final negative slack was -9 ns which though negative was
still functionally enough to produce a functional output
for both use cases.

e Resource Usage The Overall resource usage of the
system is within the bounds of what the FPGA can
provide. As both YIN calculations are done at different
times, there is no competition for resources between
them. Additionally our greatest worry, BRAM saturation,
did not occur despite the music files being rather long
when loaded onto the system. With the total amount of
allocated BRAM being 73 kilobytes, that was more than
enough to store our compressed sprites and segments of
simplified song

« Latency While the latency of YIN is low enough for
live input as discussed above. So is the case with the
note loading process which is likely the most intense
action that takes place during the process of playing the
game. We have been able to limit that to the process of
running YIN 32 times sequentially, which though it may
seem time inefficient is more than enough to produce a
seamless user experience as YIN has been optimized to
be run many times per second to update ball position.

IX. CONCLUSION AND FUTURE WORK

This report outlines the full pipeline: from audio input,
filtering, and pitch detection (YIN), to note interpretation from
a .wav file, real-time sprite generation, and a physics-based
game engine, all supported by file storage on an SD card. This
project could be augmented by building on a bigger FPGA,
allowing for longer songs and bigger files in addition to the
integration of the SD card.

X. THE CODE

You can find the project repository on |EGEE

XI. CONTRIBUTION

All members of the group worked diligently throughout the
semester to being this game to life. Sethuraman focused on the
YIN research and implementation as well as mic testing and
sim data generation. He wrote the mic connection and tested
various sampling frequencies to decide on the most accurate.
Shoemaker generated audio files for testing and built song
processing aspects. She researched making smooth sine waves
and provided vocals testing for the project. Ruehle worked on
graphics and researched/implemented the beginnings of the SD
card connection to the game design. He tested different visual
styles and font choices to make the game look like it does in
its current iteration. All worked together on integration and
testing of modules.



REFERENCES

[1] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency
estimator for speech and music,” The Journal of the Acoustical Society
of America, vol. 111, no. 4, pp. 1917-1930, 2002.



