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Abstract— Our project aims to create an interactive video 

game inspired by the mechanics of a classic game, Super Mario 

Bros level 1. In this game, the player controls Mario using the 

buttons on the FPGA to move, jump, and interact with elements 

in the game world, such as coins, blocks, and enemies like 

Goombas. We implemented logic for enemy behavior, ensuring 

they appear in specific locations. Depending on the player’s 

interaction with each enemy, Mario can defeat them or be 

defeated. Additionally, blocks in the background, such as bricks 

and question mark blocks, dynamically change their format when 

Mario collides with them, reflecting interactions like breaking a 

brick or revealing a coin. Boundaries have also been added to 

prevent Mario from walking through certain objects in the 

background, such as pipes, while still allowing him to walk on top 

of them. This ensures realistic and immersive navigation through 

the game world, maintaining the classic feel of the original 

gameplay. The system processes player inputs and interactions in 

real-time, providing a responsive and interactive experience. 

I. MARIO’S LOGIC (ANA & FABIANA)

The Mario logic simulates the behavior and movement of 
our Mario sprite character in our 2D game environment. It 
handles Mario's position updates, animations, interactions with 
the environment (pipes, bricks), and collision detection with 
enemies. 

For left and right movement, the Mario module checks if the 
corresponding left (btn[3]) or right button (btn[2]) is active on 
the FPGA. If so, Mario’s x-coordinate (x_array_location) is 
incremented or decremented accordingly. At the same time, the 
module toggles between two Mario sprites to create a walking 
animation, providing a smooth visual effect. Also, if mario 
collides with a solid block (pipes, bricks, question blocks) when 
he tries to move to the left or right his x and y location will not 
change.  

The jumping and falling logic incorporate a maximum jump 
height, a jump speed, and a gravity speed. When Mario is 
jumping (pressing btn[1] on the FPGA), his y-coordinate 
increases by the jump speed until reaching the maximum height 
or colliding with a solid block above him. If a collision occurs, 
the module triggers the falling flag, causing Mario to descend at 
the gravity speed. When falling, Mario updates his ground 
position to the first solid block detected below him, ensuring 
realistic interactions with the environment. 

Collision detection with enemies is handled through a 
combinational logic block that iterates over the positions of all 
active enemies. Mario’s position is compared with the 
boundaries of each enemy to detect overlaps. If an overlap is 
found and the enemy is still alive, a collision is flagged. The 
results of these individual checks are aggregated into a single 
signal to determine whether Mario has died. 

Fig. 1 Mario Sprite 

If a collision with an enemy is detected, Mario transitions to 
a "death" state (mario_died). In this state, Mario’s vertical 
position (y_array_location) gradually increases, simulating him 
being knocked off the screen until he disappears completely, 
signaling the end of the game.  

The before_mario module calculates the image data needed 
to render Mario on the screen based on his center position in the 
game world. It takes as inputs Mario's x and y coordinates 
(relative to his center of mass) constantly updated by the Mario 
module, the current horizontal and vertical display counts, and 
the index of the specific image that we want to display. It also 
accounts for the background offset to ensure precise alignment. 
It computes the corresponding address data for the sprite image 
stored. This address is passed to the mario_sprite module, which 
uses it to render the correct portion of Mario's sprite (fig.1) on 
the display, ensuring accurate positioning and seamless 
interaction with the game environment. 

The mario_sprite module takes the image address generated 
by the before_mario module, along with the current horizontal 
and vertical counts (hcount and vcount). It accesses BRAMs that 
store two files: image_mario.mem, containing concatenated 
sprite data for Mario, and palette_mario.mem, which defines the 
corresponding color palette. These files were generated using 
the img_to_mem.py script from Lab 5. Using the provided 



address, the module retrieves the pixel data and determines the 
appropriate color from the palette. It then outputs the pixel color 
to be displayed at the specified position defined by hcount and 
vcount, ensuring that Mario’s sprite is rendered accurately on 
the screen 

II. DISPLAY AND GAME LOGIC (ANA & FABIANA)

A. General Background (Ana & Fabiana)

The background of the world consists of a large image with
dimensions of 3376 pixels (width) x 240 pixels (height). 
However, each displayed frame is limited to 576 pixels (width) 
x 240 pixels (height) (fig.2), corresponding to the visible section 
of the background at any given moment. 

Fig. 2 Mario World 1-1 

To render the background via HDMI, the project uses: 

• Two main modules: before_sprite and image_sprite2.

• Three key files: guide.mem, image.mem, and
palette.mem.

The entire background is composed of 36 unique images 
representing various elements such as bricks, clouds, pipes, and 
bushes (fig. 3). A Python script was used to identify and extract 
these unique images from the full background. These images 
were concatenated into a single image and synthesized into the 
image.mem and palette.mem files. 

The background is divided into 16x16 pixel blocks, each 
represented by one of the 36 unique images. Another Python 
script was used to process the full background and map each 
16x16 block to its corresponding unique image, resulting in a 
guide.mem file. This file contains: 

• 211 blocks in width (16x16 blocks) by 15 blocks in
height, totaling 3165 blocks.

The before_sprite module reads the current horizontal and 
vertical values and uses the guide.mem file stored in BRAM to 
determine which unique image should be drawn at that specific 
position. 

It outputs a unique_image_index, which corresponds to one 
of the 36 unique images. 

The image_sprite2 module receives the 
unique_image_index from the before_sprite module, along with 
the current horizontal and vertical count. 

This module accesses BRAMs containing the image.mem 
and palette.mem files, which were generated using the 
concatenated unique images and processed with the 
"img_to_mem.py" script from Lab 5. These files contain the 
pixel data and color palette for the unique images. 

Based on the unique_image_index and information from the 
image.mem and palette.mem files, the module determines the 
appropriate pixel color and outputs it to be displayed at the 
specified horizontal and vertical location. 

B. Collisions (Ana & Fabiana)

The display_logic module will determine which object to

draw at each horizontal count and vertical count by using the 

before_sprite module. If the object at the given horizontal count 

and vertical count is a brick, a question mark or a block and a 

range of Mario’s pixels (identified by Mario’s center of mass 

location) overlaps with these objects, the module will output a 

collision signal equal to 1. 

The collision_check module will include a BRAM 

initialized to zero (based on the size of guide.mem, as no 

collisions are present at the start of the game. When the 

display_logic detects a collision, it updates the corresponding 

entry in the BRAM to 1 at the specific horizontal count and 

vertical count of the collision. The output of the collision_check 

module will reflect whether a collision has occurred, returning 

1 if the BRAM contains a collision entry or if the display_logic 

reports a new collision. 

The before_sprite module uses this collision information 

from the collision_check to adjust the displayed sprite. If a 

collision is detected: 

• For bricks, the sprite will be replaced with the sky.

• For question mark blocks, the sprite will be replaced
with an "off" block.

If no collision is detected, the original object (brick or 
question mark block) is drawn as usual. This mechanism ensures 
the display dynamically updates based on gameplay, integrating 
seamlessly with the other modules responsible for background 
and sprite management. 

C. Enemies (Ana & Fabiana)

The starting locations (x and y) of all enemies are stored in
an array. The enemies_logic module functions similarly to the 
image_sprite module, drawing each enemy based on its initial 
coordinates from the array. Enemies are free to move within 
specified boundaries as long as their coordinates remain within 
the display's visible area. Each enemy is restricted to a 

Fig. 3 unique images from background 



predefined movement range, typically moving left and right 
within its designated area. 

To enhance animation, the enemies use a sprite set consisting 
of three images (fig.4). When an enemy is walking, the images 
alternate between the first two frames, creating the illusion of a 
walking Goomba. The third image is reserved for the "squashed" 
version of the Goomba after a collision. To render enemies on 
the screen, an alpha channel is utilized. This method enables 
enemy pixels to overlay background pixels seamlessly. If a pixel 
from the enemy sprite matches a specific alpha value (#9290FF), 
the background will be drawn at that position, creating a 
transparency effect. Otherwise, the pixel from the enemy sprite 
is rendered as usual. 

The module continuously updates each Goomba's location, 
allowing it to be compared with Mario's position in real-time. If 
Mario’s feet touch the Goomba's top y-coordinate and mario is 
within the ranges of the Goomba’s x coordinate, the Goomba 
will be replaced by its "squashed" version. After being squashed, 
the Goomba disappears, leaving only the background displayed 
at that location, and it will not reappear. This dynamic 
interaction ensures realistic gameplay and adds a satisfying level 
of interactivity. 

Fig. 4 Image sprite for Goombas 

D. Coins (Ana & Fabiana)

The starting locations (x and y) of all coins are stored in an
array. The coin's logic operates similarly to the enemies logic, 
drawing each coin based on its initial coordinates from the array. 
When Mario collides with a brick located at the same position 
as a coin's initial location, a flag is activated, triggering the coin 
to be drawn. The coin sprite consists of 4 unique 16x16 pixel 
images (fig.5). Each image is displayed in sequence, creating an 
animation effect that simulates the coin rotating. This enhances 
the visual dynamics of the game. 

The before_coin module calculates the address data where 
the coin should be drawn on the screen based on its current 
position. Once triggered, the coin module updates the coin's y-
coordinate, making it move upward and then downward within 
a defined range, simulating a bouncing effect. This movement 
continues until the animation is complete. At that point, the coin 
disappears, and the background is redrawn in its place. 

The coin_sprite module takes the calculated address and 
retrieves the specific image frame to render it on the screen. Like 
the enemies, the coins use an alpha channel for seamless 
integration with the background. Pixels outside the sprite 
boundaries or with a specific alpha value (purple, #9290FF) will 
display the background instead. This ensures that the coins 

appear and interact seamlessly with the game environment while 
maintaining a clean and visually appealing design. 

     Fig. 5 Image sprite for Coins 

E. Game Logic (Ana & Fabiana)

The Game Logic is found in different modules of our 
project. When the player dies due to a Goomba collision the 
game over state will begin. These actions are handled by the 
Mario module and the game over module. Lastly, the reset of the 
game happens in each individual module when the system reset 
flag is triggered by btn[0].  

The before_game_over module calculates the image data 
needed to render the game over sprite (fig.6)  on the screen based 
on the center position of the display. It takes as inputs the 
display’s x and y coordinates (relative to the center of our 576 
by 240 display), the current horizontal and vertical display 
counts, and the index of the specific image that we want to 
display (in this case is only one image of 73x9 pixels). It also 
accounts for the background offset to ensure precise alignment. 
It computes the corresponding memory address for the sprite 
image stored. This address is passed to the game_over_sprite 
module, which uses it to render the correct portion of the game 
over sprite on the display. 

The game_over_sprite module takes the image address 
generated by the before_game_over module, along with the 
current horizontal and vertical counts (hcount and vcount). It 
accesses BRAMs that store two files: image_gameover.mem, 
containing the sprite corresponding to the game over image, and 
palette_gameover.mem, which defines the corresponding color 
palette. These files were generated using the img_to_mem.py 
script from Lab 5. Using the provided address, the module 
retrieves the pixel data and determines the appropriate color 
from the palette. It then outputs the pixel color to be displayed 
at the specified position defined by horizontal count and vertical 
count. 

Fig. 6 Image sprite for Game Over 



III. BLOCK DIAGRAM (ANA & FABIANA)



IV. EVALUATION 

We utilized a total of 11 BRAMs in our design. Of these, 10 
were allocated to store the palette and image memory for 
different game elements, including Mario, enemies, 
background, coins, and game-over sprites. The remaining 
BRAM was dedicated to collision detection. Although we 
instantiated 11 BRAMs in our design, the FPGA synthesized 
them into 12.5 RAMB36 blocks, utilizing 16% of the 75 
available blocks on the FPGA. 

We created the BRAMs incrementally, starting with the 
background BRAM and adding more as we integrated Mario, 
enemies, and coins into the game. This approach proved to be 
an effective decision since having separate BRAMs for each 
element allowed simultaneous access and rendering of game 
components, ensuring efficient drawing of all elements 
independently. 

Another key decision was to store only the unique images 
for each game element in the BRAMs. This avoided redundancy 
and significantly reduced memory usage compared to storing 
repeated images within the sprites. This optimization helped 
conserve memory and maintain an efficient design. 

Our design implemented an 11-stage pipeline to ensure 
smooth operation. Each pipeline stage was carefully configured 
with the minimum number of cycles required for the modules to 
complete their tasks. This ensured that data was delivered on 
time while allowing additional cycles for modules that needed 
more processing time. 

The design successfully met the timing requirements. In the 
Post-Routing Timing analysis, we achieved a Worst Negative 
Slack (WNS) of 0.510 ns, a positive value confirming that the 
design operated within the required timing constraints. The 
FPGA executed the design in Phase 12, demonstrating that the 
implementation was relatively straightforward and efficient for 
the hardware. 

V. RESULTS

For the results, we initially planned to use a camera to 
represent Mario, were instead of drawing Mario's sprite, he 
would be depicted through the video feed from the camera. 
However, we decided to change our plans for two main reasons: 
the camera logic was very similar to what we implemented in 
Lab 5, and having Mario represented by a video would give him 
too much freedom on the screen, making it difficult to impose 
boundaries and structure. 

Instead, we chose to draw Mario as a sprite with defined 
movements and interactions, incorporating boundaries for solid 
objects like pipes and bricks. This allowed us to challenge 
ourselves by implementing complex logic for Mario’s 
interactions, such as determining whether Mario defeats an 
enemy by jumping on it or is defeated by touching the enemy. 

We successfully achieved our initial goals of implementing 
the logic for enemies and coins and went beyond by adding 
Mario’s sprite, which was not originally planned. We also 
accomplished the goal of dynamically changing the background 
and objects based on Mario's interactions and position. 
Additionally, we created the game logic for losing, where a 

"Game Over" screen is displayed when Mario is defeated, 
fulfilling the expected gameplay mechanics. 

If we had more time, we would have loved to include a 
scoring system that tracks and draws the number of how many 
coins Mario collects during the game, adding an extra layer of 
challenge and engagement. 
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