
How Does It Feel to Be Mario?

1st Ana Camba Gomes

Department of Electrical

Engineering and Computer

Science

Massachusetts Institute of

Technology

anacamba@mit.edu

2nd Fabiana Gonzalez

Department of Electrical

Engineering and Computer

Science

Massachusetts Institute of

Technology

fabianag@mit.edu

Abstract— Our project aims to create an interactive video

game inspired by the mechanics of a classic game, Super Mario

Bros level 1. In this game, the player controls Mario using the

buttons on the FPGA to move, jump, and interact with elements

in the game world, such as coins, blocks, and enemies like

Goombas. We implemented logic for enemy behavior, ensuring

they appear in specific locations. Depending on the player’s

interaction with each enemy, Mario can defeat them or be

defeated. Additionally, blocks in the background, such as bricks

and question mark blocks, dynamically change their format when

Mario collides with them, reflecting interactions like breaking a

brick or revealing a coin. Boundaries have also been added to

prevent Mario from walking through certain objects in the

background, such as pipes, while still allowing him to walk on top

of them. This ensures realistic and immersive navigation through

the game world, maintaining the classic feel of the original

gameplay. The system processes player inputs and interactions in

real-time, providing a responsive and interactive experience.

I. MARIO’S LOGIC (ANA & FABIANA)

The Mario logic simulates the behavior and movement of
our Mario sprite character in our 2D game environment. It
handles Mario's position updates, animations, interactions with
the environment (pipes, bricks), and collision detection with
enemies.

For left and right movement, the Mario module checks if the
corresponding left (btn[3]) or right button (btn[2]) is active on
the FPGA. If so, Mario’s x-coordinate (x_array_location) is
incremented or decremented accordingly. At the same time, the
module toggles between two Mario sprites to create a walking
animation, providing a smooth visual effect. Also, if mario
collides with a solid block (pipes, bricks, question blocks) when
he tries to move to the left or right his x and y location will not
change.

The jumping and falling logic incorporate a maximum jump
height, a jump speed, and a gravity speed. When Mario is
jumping (pressing btn[1] on the FPGA), his y-coordinate
increases by the jump speed until reaching the maximum height
or colliding with a solid block above him. If a collision occurs,
the module triggers the falling flag, causing Mario to descend at
the gravity speed. When falling, Mario updates his ground
position to the first solid block detected below him, ensuring
realistic interactions with the environment.

Collision detection with enemies is handled through a
combinational logic block that iterates over the positions of all
active enemies. Mario’s position is compared with the
boundaries of each enemy to detect overlaps. If an overlap is
found and the enemy is still alive, a collision is flagged. The
results of these individual checks are aggregated into a single
signal to determine whether Mario has died.

Fig. 1 Mario Sprite

If a collision with an enemy is detected, Mario transitions to
a "death" state (mario_died). In this state, Mario’s vertical
position (y_array_location) gradually increases, simulating him
being knocked off the screen until he disappears completely,
signaling the end of the game.

The before_mario module calculates the image data needed
to render Mario on the screen based on his center position in the
game world. It takes as inputs Mario's x and y coordinates
(relative to his center of mass) constantly updated by the Mario
module, the current horizontal and vertical display counts, and
the index of the specific image that we want to display. It also
accounts for the background offset to ensure precise alignment.
It computes the corresponding address data for the sprite image
stored. This address is passed to the mario_sprite module, which
uses it to render the correct portion of Mario's sprite (fig.1) on
the display, ensuring accurate positioning and seamless
interaction with the game environment.

The mario_sprite module takes the image address generated
by the before_mario module, along with the current horizontal
and vertical counts (hcount and vcount). It accesses BRAMs that
store two files: image_mario.mem, containing concatenated
sprite data for Mario, and palette_mario.mem, which defines the
corresponding color palette. These files were generated using
the img_to_mem.py script from Lab 5. Using the provided

address, the module retrieves the pixel data and determines the
appropriate color from the palette. It then outputs the pixel color
to be displayed at the specified position defined by hcount and
vcount, ensuring that Mario’s sprite is rendered accurately on
the screen

II. DISPLAY AND GAME LOGIC (ANA & FABIANA)

A. General Background (Ana & Fabiana)

The background of the world consists of a large image with
dimensions of 3376 pixels (width) x 240 pixels (height).
However, each displayed frame is limited to 576 pixels (width)
x 240 pixels (height) (fig.2), corresponding to the visible section
of the background at any given moment.

Fig. 2 Mario World 1-1

To render the background via HDMI, the project uses:

• Two main modules: before_sprite and image_sprite2.

• Three key files: guide.mem, image.mem, and
palette.mem.

The entire background is composed of 36 unique images
representing various elements such as bricks, clouds, pipes, and
bushes (fig. 3). A Python script was used to identify and extract
these unique images from the full background. These images
were concatenated into a single image and synthesized into the
image.mem and palette.mem files.

The background is divided into 16x16 pixel blocks, each
represented by one of the 36 unique images. Another Python
script was used to process the full background and map each
16x16 block to its corresponding unique image, resulting in a
guide.mem file. This file contains:

• 211 blocks in width (16x16 blocks) by 15 blocks in
height, totaling 3165 blocks.

The before_sprite module reads the current horizontal and
vertical values and uses the guide.mem file stored in BRAM to
determine which unique image should be drawn at that specific
position.

It outputs a unique_image_index, which corresponds to one
of the 36 unique images.

The image_sprite2 module receives the
unique_image_index from the before_sprite module, along with
the current horizontal and vertical count.

This module accesses BRAMs containing the image.mem
and palette.mem files, which were generated using the
concatenated unique images and processed with the
"img_to_mem.py" script from Lab 5. These files contain the
pixel data and color palette for the unique images.

Based on the unique_image_index and information from the
image.mem and palette.mem files, the module determines the
appropriate pixel color and outputs it to be displayed at the
specified horizontal and vertical location.

B. Collisions (Ana & Fabiana)

The display_logic module will determine which object to

draw at each horizontal count and vertical count by using the

before_sprite module. If the object at the given horizontal count

and vertical count is a brick, a question mark or a block and a

range of Mario’s pixels (identified by Mario’s center of mass

location) overlaps with these objects, the module will output a

collision signal equal to 1.

The collision_check module will include a BRAM

initialized to zero (based on the size of guide.mem, as no

collisions are present at the start of the game. When the

display_logic detects a collision, it updates the corresponding

entry in the BRAM to 1 at the specific horizontal count and

vertical count of the collision. The output of the collision_check

module will reflect whether a collision has occurred, returning

1 if the BRAM contains a collision entry or if the display_logic

reports a new collision.

The before_sprite module uses this collision information

from the collision_check to adjust the displayed sprite. If a

collision is detected:

• For bricks, the sprite will be replaced with the sky.

• For question mark blocks, the sprite will be replaced
with an "off" block.

If no collision is detected, the original object (brick or
question mark block) is drawn as usual. This mechanism ensures
the display dynamically updates based on gameplay, integrating
seamlessly with the other modules responsible for background
and sprite management.

C. Enemies (Ana & Fabiana)

The starting locations (x and y) of all enemies are stored in
an array. The enemies_logic module functions similarly to the
image_sprite module, drawing each enemy based on its initial
coordinates from the array. Enemies are free to move within
specified boundaries as long as their coordinates remain within
the display's visible area. Each enemy is restricted to a

Fig. 3 unique images from background

predefined movement range, typically moving left and right
within its designated area.

To enhance animation, the enemies use a sprite set consisting
of three images (fig.4). When an enemy is walking, the images
alternate between the first two frames, creating the illusion of a
walking Goomba. The third image is reserved for the "squashed"
version of the Goomba after a collision. To render enemies on
the screen, an alpha channel is utilized. This method enables
enemy pixels to overlay background pixels seamlessly. If a pixel
from the enemy sprite matches a specific alpha value (#9290FF),
the background will be drawn at that position, creating a
transparency effect. Otherwise, the pixel from the enemy sprite
is rendered as usual.

The module continuously updates each Goomba's location,
allowing it to be compared with Mario's position in real-time. If
Mario’s feet touch the Goomba's top y-coordinate and mario is
within the ranges of the Goomba’s x coordinate, the Goomba
will be replaced by its "squashed" version. After being squashed,
the Goomba disappears, leaving only the background displayed
at that location, and it will not reappear. This dynamic
interaction ensures realistic gameplay and adds a satisfying level
of interactivity.

Fig. 4 Image sprite for Goombas

D. Coins (Ana & Fabiana)

The starting locations (x and y) of all coins are stored in an
array. The coin's logic operates similarly to the enemies logic,
drawing each coin based on its initial coordinates from the array.
When Mario collides with a brick located at the same position
as a coin's initial location, a flag is activated, triggering the coin
to be drawn. The coin sprite consists of 4 unique 16x16 pixel
images (fig.5). Each image is displayed in sequence, creating an
animation effect that simulates the coin rotating. This enhances
the visual dynamics of the game.

The before_coin module calculates the address data where
the coin should be drawn on the screen based on its current
position. Once triggered, the coin module updates the coin's y-
coordinate, making it move upward and then downward within
a defined range, simulating a bouncing effect. This movement
continues until the animation is complete. At that point, the coin
disappears, and the background is redrawn in its place.

The coin_sprite module takes the calculated address and
retrieves the specific image frame to render it on the screen. Like
the enemies, the coins use an alpha channel for seamless
integration with the background. Pixels outside the sprite
boundaries or with a specific alpha value (purple, #9290FF) will
display the background instead. This ensures that the coins

appear and interact seamlessly with the game environment while
maintaining a clean and visually appealing design.

 Fig. 5 Image sprite for Coins

E. Game Logic (Ana & Fabiana)

The Game Logic is found in different modules of our
project. When the player dies due to a Goomba collision the
game over state will begin. These actions are handled by the
Mario module and the game over module. Lastly, the reset of the
game happens in each individual module when the system reset
flag is triggered by btn[0].

The before_game_over module calculates the image data
needed to render the game over sprite (fig.6) on the screen based
on the center position of the display. It takes as inputs the
display’s x and y coordinates (relative to the center of our 576
by 240 display), the current horizontal and vertical display
counts, and the index of the specific image that we want to
display (in this case is only one image of 73x9 pixels). It also
accounts for the background offset to ensure precise alignment.
It computes the corresponding memory address for the sprite
image stored. This address is passed to the game_over_sprite
module, which uses it to render the correct portion of the game
over sprite on the display.

The game_over_sprite module takes the image address
generated by the before_game_over module, along with the
current horizontal and vertical counts (hcount and vcount). It
accesses BRAMs that store two files: image_gameover.mem,
containing the sprite corresponding to the game over image, and
palette_gameover.mem, which defines the corresponding color
palette. These files were generated using the img_to_mem.py
script from Lab 5. Using the provided address, the module
retrieves the pixel data and determines the appropriate color
from the palette. It then outputs the pixel color to be displayed
at the specified position defined by horizontal count and vertical
count.

Fig. 6 Image sprite for Game Over

III. BLOCK DIAGRAM (ANA & FABIANA)

IV. EVALUATION

We utilized a total of 11 BRAMs in our design. Of these, 10
were allocated to store the palette and image memory for
different game elements, including Mario, enemies,
background, coins, and game-over sprites. The remaining
BRAM was dedicated to collision detection. Although we
instantiated 11 BRAMs in our design, the FPGA synthesized
them into 12.5 RAMB36 blocks, utilizing 16% of the 75
available blocks on the FPGA.

We created the BRAMs incrementally, starting with the
background BRAM and adding more as we integrated Mario,
enemies, and coins into the game. This approach proved to be
an effective decision since having separate BRAMs for each
element allowed simultaneous access and rendering of game
components, ensuring efficient drawing of all elements
independently.

Another key decision was to store only the unique images
for each game element in the BRAMs. This avoided redundancy
and significantly reduced memory usage compared to storing
repeated images within the sprites. This optimization helped
conserve memory and maintain an efficient design.

Our design implemented an 11-stage pipeline to ensure
smooth operation. Each pipeline stage was carefully configured
with the minimum number of cycles required for the modules to
complete their tasks. This ensured that data was delivered on
time while allowing additional cycles for modules that needed
more processing time.

The design successfully met the timing requirements. In the
Post-Routing Timing analysis, we achieved a Worst Negative
Slack (WNS) of 0.510 ns, a positive value confirming that the
design operated within the required timing constraints. The
FPGA executed the design in Phase 12, demonstrating that the
implementation was relatively straightforward and efficient for
the hardware.

V. RESULTS

For the results, we initially planned to use a camera to
represent Mario, were instead of drawing Mario's sprite, he
would be depicted through the video feed from the camera.
However, we decided to change our plans for two main reasons:
the camera logic was very similar to what we implemented in
Lab 5, and having Mario represented by a video would give him
too much freedom on the screen, making it difficult to impose
boundaries and structure.

Instead, we chose to draw Mario as a sprite with defined
movements and interactions, incorporating boundaries for solid
objects like pipes and bricks. This allowed us to challenge
ourselves by implementing complex logic for Mario’s
interactions, such as determining whether Mario defeats an
enemy by jumping on it or is defeated by touching the enemy.

We successfully achieved our initial goals of implementing
the logic for enemies and coins and went beyond by adding
Mario’s sprite, which was not originally planned. We also
accomplished the goal of dynamically changing the background
and objects based on Mario's interactions and position.
Additionally, we created the game logic for losing, where a

"Game Over" screen is displayed when Mario is defeated,
fulfilling the expected gameplay mechanics.

If we had more time, we would have loved to include a
scoring system that tracks and draws the number of how many
coins Mario collects during the game, adding an extra layer of
challenge and engagement.

ACKNOWLEDGMENT

We would like to thank Professor Joe Steinmeyer, Stephen

Kandeh, Kiran Vuksanaj and Kailas Kahler for their support and

guidance throughout this semester and with the project.

REFERENCES

[1] “Super Mario Bros. - World 1-1.” The Spriters Resource, www.spriters-
resource.com/nes/supermariobros/sheet/20592/. Accessed 26 Nov. 2024.

	I. Mario’s Logic (Ana & Fabiana)
	II. Display and Game Logic (Ana & Fabiana)
	A. General Background (Ana & Fabiana)
	B. Collisions (Ana & Fabiana)
	C. Enemies (Ana & Fabiana)
	D. Coins (Ana & Fabiana)
	E. Game Logic (Ana & Fabiana)

	III. Block Diagram (Ana & Fabiana)
	IV. Evaluation
	V. Results
	Acknowledgment
	We would like to thank Professor Joe Steinmeyer, Stephen Kandeh, Kiran Vuksanaj and Kailas Kahler for their support and guidance throughout this semester and with the project.
	References

