
RSA Keychain Final Report
1st David Choi

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Cambridge, MA, USA
dcchoi@mit.edu

2nd Joseph Hobbs
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Cambridge, MA
jrhobbs@mit.edu

Abstract—We present our design for Keychain, a hardware
accelerator for an RSA cryptosystem that allows for asymmetric
encryption in real-time applications, particularly a messaging
service between two users. We display the block diagram and
implementation for a baseline RSA algorithm, then show the
various optimizations that we used to handle larger numbers
while maintaining efficiency for secure communication. Specifi-
cally, we focus on the modular exponentiation portion of the RSA
algorithm, which we approach through bit manipulation schemes
and other optimizations to allow Keychain to function.

Index Terms—cryptography, field-programmable gate arrays,
digital systems, hardware acceleration.

I. INTRODUCTION

Asymmetric encryption is a unique method of secure
communication between two parties without the need for
a shared secret key, allowing users to encrypt and decrypt
data with each other without prior introduction. However,
asymmetric encryption is mainly used for sharing a secret
key for symmetric encryption, which requires shared keys
but is more efficient. We wish to test the efficiency of
asymmetric encryption, particularly the RSA algorithm, with
our Keychain project. We use hardware optimizations such
as bit manipulations for our implementation, allowing for
quick and secure communication in a server-client model. In
this report, we display our progress in the implementation of
Keychain, particularly the optimizations we have made for
scaling and efficiency in our encryptor and decryptor. We
detail how plaintext and ciphertext data is transferred between
personal computers and an external FPGA, and we show how
it compares to other implementations in security, efficiency,
and size. Finally, we provide some limitations of our design
and how we could further improve performance in future
iterations of Keychain.

A. System Overview

Our RSA Keychain encrypts and decrypts 256-bit messages
by means of either a public key provided by external hardware
or a secret key stored in Keychain, which is 512 bits long.
The secret key is stored in an internal BRAM block and is
not accessible to external hardware for maximum security.
Although we were able to get this working in simulation and
surpassed our minimally viable product goal of 256-bit keys
for 32-character messages, we could not achieve this as Vivado
was unable to synthesize our design for unknown reasons. As

a result, we were forced to cut down our product to meet
timing on hardware with 16-bit messages and 32-bit keys.

B. Operating Modes

As described further below, Keychain operates in one of two
modes: Encryption Mode and Decryption Mode. These modes
are provided by a bit pattern over UART from hardware,
which is sent alongside an action message for encryption or
decryption.

1) Encryption Mode: In Encryption Mode, external hard-
ware provides a plaintext message, a public modulus, and a
public key over UART. A deserializer prepares the data for
encryption, and an encryptor/decryptor module performs the
necessary computation to produce the output ciphertext. Fi-
nally, a serializer then prepares the ciphertext for transmission
back to the external hardware via UART.

2) Decryption Mode: In Decryption Mode, external hard-
ware provides a ciphertext message and a public modulus over
UART. A deserializer prepares the data for encryption and
accesses an integrated BRAM block to retrieve the secret key.
The encryptor/decryptor module then performs the necessary
computation to produce the output plaintext. Finally, a serial-
izer prepares the plaintext for transmission back to the external
hardware via UART.

II. BACKGROUND

In this section, we discuss the high-level algorithm and
system architecture of our RSA Keychain.

A. RSA Overview

In this section, we will demonstrate the asymmetric key
encryption/decryption algorithm provided by RSA. The core
principle underlying the RSA algorithm is the Fermat-Euler

Theorem. It states that, for two coprime integers m and N ,

m
ω(N) → 1 mod N (1)

Here, we will define N = p1p2, where p1 and p2 are large
primes, and we use ω(N) to denote Euler’s totient function.
We can generalize this formula by introducing integer k and
modifying the exponent slightly so that the result is congruent
to m, like so.

m
kω(N)+1 → m mod N (2)



We then select integer k such that kω(N) + 1 = ps, where
p and s are integers. We define p to be the public key and s

to be the secret key. Therefore, we can see that

m
ps = (mp)s → m mod N (3)

In (3), m is the plaintext and N is the public modulus.
This equation reveals a powerful insight: the modular expo-
nentiation function, applied to the input plaintext m twice,
is sufficient to perform full RSA encryption. Specifically, the
function is

ME(m, e,N) := m
e mod N (4)

By this definition, we can rewrite (3) as

ME(ME(m, p,N), s,N) = m (5)

Therefore, we focus our efforts on constructing a hardware
module that can perform the function ME(m, e,N) efficiently
while meeting hardware timing, as this function is sufficient
for both RSA encryption and decryption.

B. Block Diagram

We now show visuals of our project, which displays the
advancement of data through our encryptor, as well as our
various optimizations.

Fig. 1. A top-level block diagram of Keychain.

Figure 1 shows a top-level block diagram for the RSA
keychain. Omitted from this block diagram for brevity are the
following:

• Clocking. All modules run on a 100 MHz clock. Although
this remained constant throughout the development of
Keychain, we would like to explore changing the fre-
quency of our clock in future iterations and balance
the advantages and disadvantages of higher/lower clock
speeds with respect to the amount of pipelining required
for performing operations on large numbers.

• Reset. All modules use a common active-high RESET
signal that is asserted before Keychain’s first use.

• READY and VALID signals. The deserializer, the en-
cryptor/decryptor, and the serializer are connected with

READY and VALID signals in accordance with the AXI-
Stream specification to ensure the modules are commu-
nicating effectively.

The bulk of our project lies in the RSA Encryptor/Decryptor
block itself, as its design is what determines both the message
size and system efficiency for Keychain. We display a more
detailed version of this block in Figure 2. We use a modulo
calculator that sends and receives data from both BRAM
and a multiplier module for efficient computations. We detail
these optimizations and their considerations in the following
sections.

Fig. 2. A close-up of the RSA Encryptor/Decryptor block.

We have designed an implementation on hardware with 16-
bit messages and 32-bit keys, which we have extensively tested
through simulations on the UART bus. Although we were
unable to scale this further, we were able to get to 256-bit
messages and 512-bit keys in simulation.

III. COMMUNICATION

Although an efficient RSA algorithm is the main focus of
our Keychain project, our design would not be able to function
without robust communication channels for both computer-
computer and computer-FPGA communication. We describe
both the techniques we used and their reliability below.

A. Overview

To allow our computers to communicate with each other,
we use the Python websockets library to create a simple
server-client model through a WebSocket server. One user sets
up the server, while the other user connects through the first
user’s public IP address. Once both users have established a
connection, they can both input messages that are encoded and
decoded by Keychain. When the user inputs a message into
their terminal, our Python script converts the message into a
bytestring and pads it to a fixed length. The script then adds the
public modulus and an 8-bit ”action” identifier to the message.
If the action is for encryption, the script adds the public key
to the message. Otherwise, the FPGA needs to decrypt the
message using a secret key that is stored in its BRAM, so the
computer just adds more padding to the message. We show an
example of this in Figure 3.

Once our extended message has all the information it needs
for processing, the computer sends it to the FPGA over UART.



Fig. 3. Communication packet structure. The deserializer must pull the user’s
secret key from BRAM when it is in decrypt mode.

The FPGA deserializes this data for its RSA calculation, then
serializes its data output and sends it back to the computer over
UART. This design provides complete confidentiality between
users, as all data sent between the WebSocket is encrypted
through Keychain.

B. UART

Although we have already designed a UART transmitter
and receiver earlier this semester, there was still a significant
amount of development and testing that we had to implement
for our product. Particularly, we needed to make sure that
all data received from the computer was properly transmitted
for resilient deserialization. As we note throughout our report,
our Keychain design is only effective if it always produces the
correct calculations for RSA. As such, successfully deserial-
izing and serializing UART data is a major focus that requires
significant testing to ensure its resilience against bugs and edge
cases.

IV. MULTIPLICATION

For Keychain to properly function, we required a module
for efficient multiplication that can both deal with large num-
bers and meet clock timing. Since the built-in multiplication
function in SystemVerilog is not suited for this performance,
we document our various approaches to this problem as well
as our final product for Keychain’s design.

A. Wallace Tree Multiplier

Our initial design used a Wallace Tree Multiplier (WTM) for
our multiplication, which is a hardware-based multiplier that
adds partial products to significantly decrease the time it takes
to multiply two numbers compared to a standard design. From
our research, we concluded that our WTM would produce
results in O(N1.5) time, compared to a simple multiplier delay
of O(N2) [1]. We show an example of multiplying two 4-
bit numbers with our WTM in Figure 4. When given two
inputs, the WTM organizes the partial products by digit, then
continuously uses both half-adders and full-adders to reduce
the partial products into sum and carry bits. Due to the small
computation time of these two-to-three bit adders, the WTM
can do many of these operations at once, which is where
the optimization takes place. Once there are only one or two
bits at each digit, the WTM simply stores these bits into two
bitvectors and sums them to get the overall product of the
original 4-bit numbers.

We began by creating a simple 4-bit WTM in SystemVerilog
for a conceptual understanding of its intricacies, which we
attempted to scale up to a 128-bit version. However, each

Fig. 4. A 4-bit Wallace Tree Multiplier. The partial products of the numbers
are reduced in stages of full adders and half adders until there are only one
or two bits in each digit.

WTM has a specific configuration based on its number of bits,
which consists of thousands of full adders and half adders that
we had to calculate individually. Due to this specificity, we also
realized that the design for an N-bit WTM would not provide
much usefulness for the design of a 2*N-bit WTM. Although
we developed a Python script to help configure all of these
adders, there were still many issues we needed to deal with,
such as adding pipelining to meet timing and keeping track of
all the adders. We include the initial attempt for our 128-bit
WTM multiplier in our codebase, which has more than 2,000
lines of code for the first stage of partial product reduction.

B. Karatsuba Multiplier

Although the WTM’s efficient design seemed promising,
we soon realized that most of our project’s focus would be on
manually testing and debugging the thousands of adders for its
partial product optimizations, which would be infeasible in our
project timeline. Because of this, we changed our multiplica-
tion design into a Karatsuba multiplier, which is a divide-and-
conquer algorithm that recursively reduces the multiplication
of two N-digit numbers into three multiplications of N/2-
digit numbers. These reductions allow Karatsuba to work in
O(N log2 3) time, while requiring much less code from its
recursive design. We show an example of Karatsuba in action
in Figure 5, which breaks down the numbers 1234 and 567 to
get the product 699678.

We created a parameterized design of the Karatsuba algo-
rithm, and we were able to get our design working for numbers
up to thousands of bits in our logic simulators. However,
we were unable to get this new implementation working in
Keychain, as Karatsuba’s reliance on the built-in multiplication
module became an issue for timing when key sizes became
too large. We suspect that this could be fixed through better
pipelining of our intermediate values, but we did not have time
to implement this and resorted to a different multiplication
method.



Fig. 5. A Karatsuba Multiplier. Both operands are reduced into smaller pieces.

C. Final Design

Although both the WTM and Karatsuba seemed like promis-
ing optimized multipliers that would significantly reduce the
number of cycles for a calculation, we ran into setup time
violations and struggled to pipeline their internal logic suffi-
ciently to meet timing requirements. Because of this, we have
designed a bit-shift multiplier that adds up partial products at
each cycle until it reaches the full product. We provide a visual
of this multiplier in action in Figure 6. Although this is less
efficient than WTM and Karatsuba, it still implements some
optimizations without violating setup time constraints, such
as doing many of these shifts and additions in parallel. Still,
future iterations of this design would use a well-established
and efficient hardware multiplication module, as we discuss
in the Evaluation section.

Fig. 6. A Bit-Shift Multiplier. This module creates partial products by shifting
the first input based on the bits of the second input, then adds them all up
for a product.

V. MODULAR EXPONENTIATION

Once we have our output from our exponentiation oper-
ation, we want to compute a

b mod c in an efficient way
in hardware. We will express b as its binary equivalent
b0 +2b1 +4b2 + · · ·+2nbn. We will then rewrite our desired
calculation as

a
(b0+2b1+4b2+···+2nbn) mod c (6)

Because bi ↑ {0, 1}, we have simplified the problem to
computing a

2n mod c for integers n ↓ 0. Once we have
the value of each, we may selectively multiply them together
based on the values of bi to determine our final answer. We
may perform the binary modular exponentiation as follows.
First, compute a

0 mod c → 1. Then, using the following rule,
generate successive powers of a modulo c.

a
2n mod c = (an mod c)2 mod c (7)

The multiplication and squaring operations are performed
by our bit-shift multiplier, and we have a pipelined modulo
calculator that uses multiple subtractions to work with large
numbers.

VI. MEMORY

Because Keychain is designed for secure communication
between devices through RSA, it encourages security by stor-
ing the user’s secret key in BRAM. This key is not available
outside of the FPGA and is only pulled from BRAM when
the user is decrypting a message, which sends a ”decrypt”
message through UART. When the deserializer receives this
message, it pulls the secret key from BRAM and continues
with the modular exponentiation calculation. Otherwise, the
deserializer is in ”decrypt” mode and simply extracts the
public key over the UART data. We provide a visual of this
in Figure 7.

Fig. 7. The deserializer must pull the user’s secret key from BRAM when it
is in decrypt mode.

Because our hardware only supports up to 32-bit public
and secret keys, we were able to fit our secret key in just
one entry of our BRAM, preventing the need for address
indexing for a full key. This allowed our deserializer to only
stall for a few cycles while waiting for an output from BRAM.
However, we assume that this may not work as our key size
expands to thousands of bits in length, forcing the key to be
split into chunks across the BRAM for a secure transfer that
meets timing. This would be something to implement in future
iterations of our design.

There are definitely some more optimizations that we could
implement in our design through additional BRAM usage,
especially for our large number subtraction in our modulus



module. However, this would likely not decrease the timing
requirements for the modulus calculations, and would be
more focused on reducing the resource usage of our prod-
uct. Because timing was a bigger focus than resource usage
throughout the development of Keychain, we did not see this
as a large priority for our design. Still, we discuss this in
further detail in our Evaluation section.

VII. PERFORMANCE

In this section, we evaluate our Keychain product based on
performance metrics and hardware resource utilization.

A. Size

Our physical hardware implementation could only accept
32-bit keys and 16-bit messages, as Vivado proved incapable
of synthesizing designs with larger key and message widths.
However, we demonstrated in simulation that our design could
be scaled to accept 512-bit keys and 256-bit messages.

B. Resources

Table I provides a breakdown of the resources utilized on
our FPGA. We assume a 32-bit key and a 16-bit message due
to the limitations mentioned above.

TABLE I
RESOURCE UTILIZATION OF KEYCHAIN

Resource Used Percentage
Slice LUT 2651 8.13%
Flip-Flop 6029 9.25%
F7 MUX 645 3.96%
BRAM 0 0.00%

Clearly, as we are using less than 10% of our FPGA’s
resources, we are capable of scaling up our project. Currently,
our only limitation is Vivado’s synthesis engine. We did
not implement BRAM to store intermediate values; however,
doing so would reduce flip-flop utilization as we increase key
size.

C. Timing

Table II summarizes the timing characteristics of our design.
In order to meet timing requirements, we had to reduce our
clock speed to 10 MHz from the initial 100 MHz. However,
based on the WNS value shown, we are capable of increasing
our clock speed to approximately 33 MHz without risking
timing violations. Further logic optimizations would permit
higher clock speeds of 100 MHz or greater.

TABLE II
TIMING ANALYSIS OF KEYCHAIN

Variable Value
Clock Frequency 10 MHz
Worst Negative Slack 70.100 ns
Worst Hold Slack 0.054 ns
Maximum Clock Skew -0.296 ns

Our timing analysis also shows a WHS of 54 picoseconds.
This value is very low, but we are not concerned about this
causing timing violations as we scale because hold slack
becomes more positive as contamination delays increase. For
larger key sizes, we expect contamination delays to increase,
so we expect the WHS to only increase. However, because
setup slack decreases with larger propagation delays, we
expect the need to conduct further optimizations in order to
meet timing as our project scales to 1024-bit or larger keys.

D. Efficiency Comparison

Table III summarizes the results of a comparison study
analyzing the relative performance of our Keychain imple-
mented on a Spartan 7 FPGA and a Python 3 script. The
Keychain results were computed using the cocotb simulation
tool assuming a 10 MHz clock, and the Python 3 results
were computed by computing the average duration of 100,000
encryption operations run in CPython on an AMD Ryzen 5
64-bit processor core.

TABLE III
COMPARISON OF RSA IMPLEMENTATION EFFICIENCIES

Method Key Width Cycles Clock Time
FPGA 32 4296 10 MHz 429.60 µs
Python 32 12576 2.95 GHz 4.27 µs
FPGA 256 248222 10 MHz 24822.00 µs
Python 256 291543 3.17 GHz 92.00 µs

It is easy to see that our application-specific hardware imple-
mentation can consistently complete in fewer operations than
the Python implementation, as the AMD Ryzen 5 processor
core is a general-purpose computing device. However, Python
consistently performs faster as the Ryzen 5 operates at a clock
speed of approximately 3 GHz, 300 times faster than our 10
MHz clock. A hypothetical ASIC using our architecture could
therefore outperform general-purpose computer hardware at
comparable clock speeds. Additionally, as discussed below,
more advanced hardware arithmetic logic would decrease the
number of clock cycles required even further.

VIII. EVALUATION

Regarding the success of our product, we specifically look
into our design test strategies that led to complete confidence
in Keychain’s ability to parse UART data and calculate modu-
lar exponentiation for large numbers. We also look into some
of the additional optimizations that we could add into future
iterations of Keychain, assuming that we had more time to test
and implement these changes.

A. Testing

One of the highlights of our project is the extensive test-
ing we have done on our modules, particularly the UART
TX/RX, serializer/deserializer, and modular exponentiation
blocks. Because our project deals with secure communication,
it is integral that we always generate the correct ciphertext
and plaintext messages through our cryptosystem. Therefore,



we had to conduct rigorous verification on our system to
eliminate any possible edge cases, and both unit testing on
each module as well as integration tests on the entire hardware
implementation verified this. We display an example of one
of our integration tests in Figure 8.

Fig. 8. Simulation output for 256-bit Keychain (MVP). The encryption
completes correctly in 248K clock cycles.

B. Future Works

Although Keychain is functional and can successfully en-
crypt and decrypt messages, there are still many additional
features and optimizations that we could implement into our
design in future iterations. First of all, we were unable to
get Keychain working for large key sizes with 100 MHz
clock speeds, and we had to lower this frequency to 10 MHz
to perform large operations and meet timing. This could be
solved by further pipelining some of these operations, such as
the large subtractions in our modulus block. We could also
decrease the resource usage in our FPGA by utilizing BRAM
to store intermediate values during our calculations.

Additionally, it would be good to replace our bit-shift mul-
tiplier with one of our previously tested hardware multipliers,
such as WTM or Karatsuba. Either of these multipliers could
significantly reduce the amount of time spent in the modular
exponentiation phase if implemented correctly.

Overall, we were able to achieve our minimally viable
product in simulation, but we did not have time to expand
our cryptosystem further to handle larger keys in hardware.
This was largely due to certain modules such as our UART
deserializer requiring more focus than we had originally ex-
pected, as well as our various attempts for a working hardware
multiplier that could tailor to our needs.

IX. CONCLUSION

Our design, as specified in this report, is an implementation
of an optimized external RSA algorithm to transfer secure
data between two users. Our hardware accelerator, Keychain,
both encrypts and decrypts 16-bit messages using 32-bit public
and secret keys. Although this was the farthest we were able
to successfully test in hardware, we were able to simulate
our minimum viable product of 128-bit messages with 256-
bit keys and produce correct results. Much of our work was on
extensive testing for our modular exponentiation function, so
we are confident that we will always get expected results from
our hardware calculations, even when sending and receiving
data over UART. We are very proud with our design, as it has
given us a much deeper understanding of both digital system
development and secure cryptography, and we are excited to
show the work that we have done this semester.

X. SOURCE CODE

REFERENCES

[1] MIT, “6.111 Lecture 13: Arithmetic: Multiplication” 2011, [Online].
Available: https://courses.csail.mit.edu/6.111/f2007/handouts/L13.pdf


	Introduction
	System Overview
	Operating Modes
	Encryption Mode
	Decryption Mode


	Background
	RSA Overview
	Block Diagram

	Communication
	Overview
	UART

	Multiplication
	Wallace Tree Multiplier
	Karatsuba Multiplier
	Final Design

	Modular Exponentiation
	Memory
	Performance
	Size
	Resources
	Timing
	Efficiency Comparison

	Evaluation
	Testing
	Future Works

	Conclusion
	Source Code
	References

