
6.205 DIGITAL SYSTEMS LAB 1 1

FPGA Plausible Gameboy Accelerator
Final Report

Reng Zheng (rengz@mit.edu), Colin Clark (colclark@mit.edu)

Abstract—This paper describes Gameboy hardware behavior
that the community has reverse engineered, our choices in
emulating said hardware, and the motivations behind those
choices. We hope this serves as a centralized repository of
knowledge for future attempts to emulate the Gameboy in FPGA-
space, which is useful if one wanted a portable Gameboy emulator
that did not involve expensive microcontrollers.

Index Terms—Digital systems, Emulation, Field programmable
gate arrays, Archival systems

I. INTRODUCTION

GAMEBOY emulation is one of the beginnings of a long
tradition of game emulation; with the level of complexity

present in a first-generation ROM-swappable gaming device
being interesting enough to pose a challenge, but simplistic
and more importantly well-documented enough to not pose
issues of the more esoteric consoles like the Atari 2600 [1].
Additionally, the field of emulation as a whole is taking off due
to the desire to preserve old games and other software running
on now defunct software. Thus, we are pursuing emulating a
Gameboy in FPGA to both get better at FPGAs while also
providing a way to preserve Gameboy software in hardware.
Below is our write-up to centralize knowledge of how the
Gameboy works along with some implementation choices we
made.

II. COMPONENTS

The Gameboy architecture is a chimera of three compo-
nents: the CPU, Pixel Processing Unit (PPU), and the Memory
Bus. The CPU handles macro instructions, such as loading and
unloading states from the ROM into the VRAM and processing
the game’s physics and non-playable character interactions.
The PPU handles rendering the game, and communicates to the
CPU through a series of memory-mapped status and control
registers, known as LCD Control (LCDC) and LCD Status
(STAT). Finally, the Memory Bus connects the CPU, PPU,
and I/O like the buttons, game cartridge, and Link Cable [2].

A. The Central Processing Unit

The Central Processing Unit (CPU), compared to the up-
coming PPU, has a relatively simple structure due to its
lowered clock speed (evaluating instructions after each 1Mhz
M-Cycle versus the PPU’s reliance on 4Mhz T-Cycles) and its
lack of Direct Memory Access (DMA). For this reason, it can
be abstracted into a lookup table and a set of registers, along
with one input and three outputs.

1) Instruction Lookup Table: The ”DMG” CPU used to
power the Gameboy uses an instruction set derived from both
the Intel 8080 and Zerilog z80, comprising of 512 (2 · 162)
instructions or ”opcodes”.[3] As the Opcode needs to be able
to be referenced in only eight bits, the width of a standard
location in memory, a second set of 256 commands is locked
behind the prefix $CB. For example, in order to set the
5th bit of register E to 0, otherwise referred to with the
mnemonic BIT 5,E, the code $CB is followed by $6B.
This command is just one of many, with other Opcodes
ranging from basic arithmatic between registers (eg. ADD,
SUB, MOD) to bit shifting a value in VRAM to the right
(ie. $38). Furthermore, Opcodes can be followed by one or
more additional bytes signifying parameters such as literals
(both 8-bit and 16-bit) as well as memory locations (16-bit).
As the instruction length grows longer, however, the need
for optimization becomes apparent. The most straightforward
of these includes overlapping the execution of commands, as
otherwise a cycle would be wasted fetching the next command,
when this could be done simultaneously with the final step of
the previous command.

2) Registers: Many of the instructions supported by the
CPU expect to have ready-access to data within the same
clock-cycle, warranting the need for certain parts of memory to
be held within the CPU as latch-based ”registers” as compared
to the Block RAM-based memory used elsewhere. In practice,
these are implemented as six 8-bit registers (B, C, D, E, H, and
L) and three 16-bit registers (AF, SP, and PC). The former
may be accessed individually or together by instructions,
while the latter serve specific purposes requiring 16 bits. AF
holds various flags used to modify how data is accessed and
processed. SP holds the stack pointer, needed to keep track of
state during jumps. PC holds the stack pointer, which directly
points to areas in memory holding both read-only instructions
as well as working RAM (WRAM).

3) Operation: As the driver of the emulator as a whole,
the CPU is hard-coded to read the instruction at 0x0000,
execute the instruction, and increment the program counter
(PC) to move onto the next. To enable this functionality, the
CPU module has an output wire memory_address which
informs the Memory Controller what part of memory it needs
to be access, routing the request to either a BROM or latch.
The controller then returns this value in the next cycle via
the 8-bitdata_in. Oftentimes data will simply be moved
between internal registers, but when the CPU needs to modify
data in memory, it sets the is_writing wire high and sets
data_out wire to the corresponding value needing to be

6.205 DIGITAL SYSTEMS LAB 1 2

written.

B. The Pixel Processing Unit

The Pixel Processing Unit (PPU) is the dedicated hardware
renderer of the GameBoy, and it interfaces with the rest of
the Gameboy components through its VRAM and exposed
registers [4]. These registers control the functionality of the
PPU’s rendering, which are described in further detail in
section II-B4. Due to the constraining nature of emulation,
the paper will first describe the intended behavior that is being
emulated, before diving into how that emulation is achieved.

1) LCD Specifications: The PPU renders to a 160 wide by
144 tall monochromatic LCD. Due to a relic of the way CRTs
work, the PPU communicates to the LCD using scanlines [5].

2) The Tile and Palette: The PPU’s primary building block
is the tile: an 8 by 8 pixel representation, which means the
viewport is 20 tiles by 18 tiles. This representation is used to
compress the amount of VRAM needed to render each frame
[5], leveraging the repetition present in certain game elements.
Each tile consists of 16 bytes, as each row of 8 pixels is
encoded as 2 bytes, with the nth pixel’s value corresponding
to the nth pixel in the first and second bytes, with the first
byte being the LSB. This creates 4 possible states the pixel can
be in, which is interpreted by one of two specified palettes,
OBP0 and OBP1, as some monochromatic value for the LCD
to take. The specific palette used is determined by the source
the pixel came from, described in II-B3.

Additionally, the tiles are stored together in memory at
$8000 to $97FF and referenced later by the logical layers
comprising the PPU, explained in II-B3. There are two ways to
find a tile in this space, the 8000 method, which uses $8000
as the base pointer and an unsigned 8-bit integer representing
the tile number to fetch a given tile through 8000+tile num,
or the 8800 method, which is the same as the 8000 method
but uses $8800 as the base pointer and a signed 8-bit integer
to represent the tile number. Whichever mode is chosen is
defined by bit 4 of the LCDC register, explained in II-B4.

3) Layers: The PPU primarily consists of three logical
rendering layers, the Background, Window, and Sprite layers.
The Background layer is a wrapping 32 tile by 32 tile. There
can be two backgrounds loaded at any given time, denoted in
memory locations $9800 to $9BFF and $9C00 to $9FFF.
Each background map has a byte pointing to a specific tile
number, in the order of left-to-right, top-to-bottom, meaning
the first byte corresponds to the top-left tile, and the 33rd byte
corresponds to the tile below it. Which background is used
is defined by bit 3 of the LCDC register, explained in II-B4.
The palette associated with a background is defined through
register BGP , mapped to $FF47. Every two bits forms a
palette entry, with the lowest corresponding to Palette ID 0.
Each entry maps that Palette ID to one of four colors: White,
Light Grey, Dark Grey, and Black, in that order.

The Window layer is also a 32-tile by 32-tile grid like the
background. However, the Window is non-wrapping, unlike
the background, and if a Window pixel and Background pixel
want to display at the same location on the screen, the Window
pixel takes precedence. If a Window layer is to be displayed,

as determined by bit 5 of the LCDC register, it exists in
one of the aforementioned memory locations allocated to
the background. The PPU knows which background memory
location corresponds to the Window through bit 6 of the LCDC
register. The top-left pixel of the window is placed in the
global coordinate system according to the memory-mapped
WY and WX registers. These registers are explained further in
II-B4.

Finally, the Sprite layer exists outside of the grid system
the Background and Window layer share, along with the two
sections of memory. The Gameboy stores actively used sprites
in the Object Attribute Memory (OAM), which is assigned to
addresses $FE00 to $FE9F. Each sprite is represented by 4
bytes, meaning the OAM can hold 40 sprites simultaneously.
The sprites are stored as follows: byte 0 is the Y-Position of
the sprite, but to support on-screen scrolling, 0 on the global
y-axis is 16 for the sprite. Byte 1 is the X-Position; similarly,
0 on the global x-axis is 8 for the sprite. Byte 2 is the tile
number corresponding to the sprite, and sprites always use
the 8000 addressing method. The final byte corresponds to
flag sprites, with the least significant 4 bits corresponding to
Gameboy Color functions, Bit 4 corresponding to the palette
used (0 for OBP0, 1 for OBP1), Bit 5 (X-Flip) corresponding
to rendering the sprite horizontally flipped if set to 1, Bit 6 (Y-
Flip) corresponding to rendering the sprite vertically flipped,
and Bit 7 (OBJ-to-BG Priority) determining whether the sprite
is rendered above the background. For Bit 7, if it is set to 0,
the sprite is always rendered above the background, but if it
is set to 1, Background colors 1-3 supersede the sprite, while
the sprite supersedes Background color 0 [4].

Additionally, the sprite layer has ”Tall Sprite Mode,” where
each sprite consists of two tiles on top of each other rather
than one. The tile number of the top tile is the tile number in
the OAM entry with the LSB set to 0. The tile number of the
bottom tile is the tile number in the OAM entry with LSB set
to 1. This mode is enabled by Bit 2 of the LCDC, described
in II-B4.

4) Memory-Mapped Items: The PPU interfaces with the
rest of the Gameboy through its memory-mapped components.
Noted above, VRAM and OAM memory is already mapped
to spots in the memory, allowing the CPU to access and
thus command what the PPU displays. Additionally, the PPU
contains registers the CPU can modify through a memory
mapping to control the behavior of the PPU. As mentioned in
the section on layers, some of these exposed registers are the
WY and WX registers, mapped to the memory address $FF4A
and $FF4B, respectively, which control where the top-left of
the Window layer is. The WX register is strange, as to place
the window at the far left border of the screen, the value 7
must be written to the register, so the effective position of the
Window layer on the x-axis is WX→ 7. It is noted that strange
hardware bugs occur when WX takes on values less than 7
and 166, specifically [6]. However, they are inconsequential
for most games.

Additionally, the OBP0 and OBP1 palette registers for
objects are also mapped to memory locations $FF48 and
$FF49, which works exactly like the BGP register, except that
the lowest 2 bits are ignored, since Palette ID 0 on a sprite

6.205 DIGITAL SYSTEMS LAB 1 3

corresponds to that pixel in the sprite being transparent. The
last of the PPU rendering-related registers are SCYand SCXat
$FF42 and $FF43 respectively, which controls the top-left
position of the viewport with which to render.

The PPU is also controlled through the LCDC register,
mapped to $FF40. The 0th bit is the Background/Window
Enable Bit. If this bit is 0, no background nor window is
drawn and all pixels are set to white (Color 0) except for the
sprite pixels, which are unaffected. The 1st bit is the Sprite
Enable Bit, if it is set to 0, all sprites are hidden, otherwise
they are rendered as normal. The 2nd bit is the Sprite Size Bit,
where setting it to 1 enables ”Tall Sprite Mode.” The 3rd bit
is the BG Tile Map Select bit, where 0 sets the Background
layer to use the section starting at $9800 and 1 the section
at $9C00. The 4th bit is the Tile Data Select bit, where 1
corresponds to using the 8000 method of reading tiles, and
0 8800 . Bit 5 is the Window Display Enable bit, where 0
disables Window rendering, ignoring the layer entirely. Bit 6
is the Window Tile Map Select, which corresponds to which
memory section the Window layer uses in the same fashion as
the BG Tile Map Select bit. Finally, Bit 7 is the LCD Display
Enable bit, if it is 1, the PPU runs as normal, but if it drops
to 0, the screen goes blank, the PPU immediately stops all
operation, and then the PPU resets itself.

Finally, the PPU’s internal state and interpretations of that
state is controlled through the STAT register, mapped to
$FF41. Bits 0 and 1 encode which mode the PPU is in: H-
Blank, V-Blank, OAM-Search, and Drawing in that order. Bit
2 corresponds to whether the LY register internal to the PPU,
tracking which scanline the PPU is on, equals LYC, a register
mapped to $FF45. Bit 3 controls ”Mode 0” STAT interrupts,
or an interrupt when the PPU enters H-Blank when Bit 3 is set
to 1. Like Bit 3, Bit 4 and 5 control ”Mode 1” and ”Mode 2”
STAT interrupts, respectively, which corresponds to V-Blank
and OAM-Search. Bit 6 controls LY=LYC STAT interrupts,
which is an interrupt when LY=LYC, when Bit 6 is set to 1.
Bit 7 is unused and always set to 1.

5) Modes: The PPU has 4 modes, associated with an enum,
associated with H-Sync, V-Sync, OAM-Scan and Draw. H-
Sync and V-Sync serve the same function as in CRT pixel-
drawing: to sync the frame drawing with other states. H-Sync
pads each scanline to 456 T-Cycles (see II-B6) and V-Sync
provides 10 additional scanlines for the CPU to interact with
VRAM and OAM, for reasons we describe later in . The OAM-
Scan consists of 80 T-Cycles, where it spends 2 T-Cycles per
sprite seeing if it is going to be drawn on the current scanline.
It can note up to 10 sprites to be drawn per scanline, and puts
them into a buffer.

The drawing phase is the most complex of the modes. Every
T-Cycle, it must push a pixel to the LCD. Every M-Cycle (see
II-B6) a new tile is ingested for this scanline. The ingested
tile is pushed into the Pixel FIFO, which is used to buffer
the LCD from the tile ingester. Here, in the Pixel FIFO, there
is a Sprite FIFO and a Background FIFO. The Sprite FIFO
ingests its data from the corresponding sprite that will be
immediately drawn, while the Background FIFO loads from
either the Background or the Window layer, depending on if
the Window is being displayed and overlays the Background

at a given point. Finally, the Pixel FIFO decides from which
underlying FIFO it wraps to output from by determining first
if sprites are being drawn (see II-B4), and then determining
if a Sprite is in the foreground or background. If it’s in
the foreground, the sprite FIFO output always trumps the
background FIFO output, except when it maps to Palette
ID 0, where it is transparent. Otherwise the sprite is in the
background, only trumping the Background FIFO in places
where the Background FIFO is transparent.

6) Achieving Emulation: Notice how above, a lot of
the commands assume sub-cycle/instantaneous memory read
speeds, which is impossible to achieve on our given architec-
ture, with BRAM reads occurring every 2 cycles and register
updates taking one cycle. However, we can start leveraging
the fact that our FPGA runs at a whopping 100MHz clock
cycle, 25x faster than the 4MHz time cycles (T-Cycles) that
serve as the functional quantized amount of time, or the 1MHz
machine cycles (M-Cycles) which serve as the time it takes
for an internal CPU state update to occur. This notation is a
carry-over from the Z80 the Gameboy CPU is based on [7],
and is due to the multi-T-Cycle spanning memory reads the
Z80 needs to perform for certain opcodes.

This means that even though our FPGA cannot achieve 1-
cycle reads from BRAM in its clock domain, when we start
downscaling the clock output, we can do sub-T-Cycle memory
reads and pretend that we are doing it instantaneously as the
Gameboy software expects. While one may expect us to forgo
clock accuracy together, this is infeasible as it both controls
the rate at which games run but also because certain games
rely on cycle-accurate interrupt states to function correctly [8],
which makes it easier to support a wide array of games without
issue if cycle-accurate emulation was done.

Also note that the palette outputs written to the LCD are
still monochromatic, making them incompatible with modern
HDMI monitors. Luckily, Gameboy pixel outputs can still
be stored in DRAM and then later upsampled for HDMI
consumption, bypassing this compatibility issue. This should
now give us a fully functional transformation of the hardware
PPU to our FPGA-emulated PPU.

C. The Memory Controller

The Memory Controller in the Gameboy is essentially a
series of lookup tables that routes data to and from the game
cartridge (ROM), I/O, and various RAMs. In the I/O section,
there exists control registers the CPU issues to the PPU and
output registers the PPU emits so the CPU knows its status.
Figure 1 shows the associated memory addresses at a high
level, with the specific memory mappings for the PPU controls
mentioned in II-B4. The I/O also includes the button states
mapped to registers at $FF00.

The Memory Controller further serves as the gateway be-
tween the CPU and VRAM and OAM: due to weird hard-
ware destruction issues from simultaneous access capabilities
between the VRAM and OAM [2], the Memory Controller
blocks CPU’s access to the VRAM during the PPU’s Draw
mode is technically disabled. Similarly, the OAM is disabled
in both the Draw and OAM Search modes. Technically, this

6.205 DIGITAL SYSTEMS LAB 1 4

Fig. 1. A diagram of the memory-mapped structure of a Gameboy, courtesy
of [9].

behavior seems to be not relied upon except for memory
destruction reasons from hobbyist emulation forums [10], and
it’s recommended to start development without it due to the
emulation completely breaking from the PPU blocking CPU
inputs to VRAM.

Outside of that, the Memory Controller is responsible for
its multi-delivery capabilities: its able to deliver PPU data in
1 T-Cycle and the CPU in 1 M-Cycle (4 T-Cylces), and needs
to be able to do so simultaneously. In the actual Gameboy,
this occurred flawlessly with multiple memory blocks, but in
our Xilinx, we only have 2 BRAM blocks. Luckily, due to
the blocking behavior that resulted from OAMs and VRAMs
breaking, we can have one BRAM block dedicated solely to
VRAM and OAM while the other is dedicated to General
Purpose RAM the CPU uses. Then, we can leverage the
100MHz operating frequency of our FPGA to emulate 1
T-Cycle reads to achieve the desired characteristics of our
memory controller. As the Urbana boards have 4.2 Megabits
of storage, and the Gameboy can only address 216 bytes, we
well exceed our ability to do this by a factor of safety of 8x.

As a final note, other FPGAs may choose to do this
differently due to different memory architectures, but as a
MVP this will work for our boards specifically, with more
modularization to come if we have time.

D. Miscellany

1) Joypad Input: The goal of emulation is to preserve not
only the software and/or game itself, but also the experience of
playing it. To this end, we determined that a novel addition to
the project was a physical controller input, specifically using
the faceplate of an original Gameboy. To accomplish this, the
device’s casing was fully removed, and while consulting a
schematic of the Gameboy motherboard [11], the eight buttons
comprising the ”Joypad,” as well as the device’s ground, were

Fig. 2. A picture of a the button pads on a Gameboy motherboard being
connected to an Ethernet cable.

tapped. These eight inputs lent themselves well to the use of
an Ethernet cable for establishing the connection, as well as a
separate red grounding cable, as seen in 2. The other end of
the cable was connected and processed by the FPGA board via
the built-in PMOD ports. By connecting the ground cable to
the 3V source, a pressed button would cause a voltage offset in
one or more of the eight input ports. A simple wrapper module
reads from each of these, converting it to a 2x4 matrix that is
fed to the Memory Controller II-C, and is finally mapped to
the address $FF00 to be read by the CPU when needed.

III. CONCLUSION

Emulation is an important part in preserving the utility of
software that runs on specialized, now-defunct hardware. It
often involves large-scale reverse-engineering efforts as the
original documentation is lost. Because of this, hardware
emulation should be done as quickly as possible once it is
established a hardware is defunct, if emulation is desired, as
otherwise working models to reverse engineer slowly disap-
pear, as well as the original creators and potential release of
the source code [2]. Efforts like these to emulate and document
efforts to emulate the Gameboy serve as important references
for the longevity of the software reliant on this emulation, as
they provide an open, centralized repository of knowledge and
its providence where it is often lacking.

IV. QUALITATIVE SELF-EVALUATION

The pursuit of a Gameboy is mostly a binary success-failure
proposition. According to the metric of having a working
Gameboy, FPGABoy abysmally failed. Hardware issues were
abundant due to parallelism and the fact clock cycles are not
abstracted away: features just not found in software emula-
tion and therefore were poorly documented in comparison.
However, reverse engineering software solutions for intended
behavior was still helpful for testbenching in that regard.

Likewise, our first attempt at trying to integrate in test-
bench effectively exploded immediately, we were not even
able to reach this stage in any meaningful way due to the
CPU imploding and effectively needing a rewrite. Most of
the literature surrounding CPU timing fails to mention the
need for overlapping executions, as described in II-A3, a
feature that many programs will fail without, as it adds an

6.205 DIGITAL SYSTEMS LAB 1 5

unexpected clock cycle otherwise. With this and other pitfalls
associated with the lack of official documentation, along with
the 500+ opcodes needing to be implemented, each uncovered
”quirk” of the system added hours and days to the CPU’s
development cycle. Eventually, the need for Python to generate
SystemVerilog clauses became apparent, but by that point there
was not sufficient time. A future implementation would greatly
benefit from acknowledging the power of generators early on
in the process, as it would have greatly shortened the iteratition
delay.

However, with our resources, we think that this was an aca-
demic exploration of SystemVerilog and project management,
and we did have some success. We conducted independent
research on the target at hand and sketch design requirements,
which, although proved incomplete as we delved deeper into
the project, led us in the right direction. While our test
benching leaves much to be desired, the fact our code was
modular enough that it is possible to testbench each component
separately is a big win. We believe knowing what we know
now, had we had an opportunity to start from the top at
week 4, we could have completed this project by avoiding
the knowledge pitfalls that caused significant setbacks in the
forms of redoing relations between modules, accompanying
refactoring, and general chaos and confusion that hinders
progress. Starting the CPU from scratch, for example, in the
form of our rewrite, would allow us to efficiently add and test
everything we have if we were to have enough time.

We also learned a great deal about reverse engineering a
product to specification. Unlike many other projects, emulation
is one where you have limited latitude in your design choices
- you do not control the high-level behavior, nor can you
ensure that the user does not use features in a particular way
because the real hardware promises them they can do that.
Thus, you must use your resources to provide these features
as best as possible, of which knowledge is often incomplete
[12]. Unfortunately, because of the one-month time horizon,
this became rather infeasible. Many Reddit [13] and blog posts
[?] suggest an experienced dev at the matter takes anywhere
from 150 hours to implement a software solution to 2 years
on-and-off for a hardware one. Assuming they put only 2
hours per week on that, it is still over 200 hours of work
from someone with more experience.

The fact that we were willing to tackle the project, despite
the unsuccessful result, have something that could work if we
just had more time seems like as much of a success as is
possible given the circumstances and time constraints.

V. WORK BREAKDOWN

A. Reng

Reng worked on the PPU in both research and implemen-
tation and attempted to maintain timing synchronicity. He
wishes to credit Pandocs, The Ultimate Gameboy Talk, the
SameBoy emulator, the r/EmuDev community, and Colin for
being willing to work on a project that we knew from the
outset would be difficult and being an interlocutor for working
out the Z80’s antiquated multi-clock system. Much of the work
was only possible due to the thorough research of all these

people, although as much of the information was contradictory,
some reverse engineering of working emulators was required.
He wishes to also credit funnyplaying’s Gameboy for inspiring
the project and Eli Lipsitz’s blog, which, in retrospect, we
should have looked for before, as it would have told us an
FPGA Gameboy emulator would take an experienced dev over
two years of on-and-off work to complete and testbench.

B. Colin

Colin researched and developed the CPU and the Memory
Mapper, trying to develop scalable Python generation code
for the former to mixed results while having completing
much of the Memory Mapper. He wishes to thank Reng
first and foremost for being able to put up with various
delays and failings due to unforeseen intricacies, all the while
remaining a ready source of information and expertise. He’d
also like to thank Stephen Kandeh for the personalized advice
concerning OpCodes and their timing. Finally, he’d like to
thank the PanDocs project for providing much of the structure
of the modules, the RGBDS linker forums for direction on
implementing OpCodes, and Joonas Javanainen for the verbose
wiring schematics enabling the use of the physical JoyPad.

REFERENCES

[1] T. Jacobs, “Why you should write a gameboy emu-
lator,” Jun 2022. [Online]. Available: https://media.ccc.de/v/
emf2022-200-why-you-should-write-a-gameboy-emulator

[2] media.ccc.de, “The ultimate game boy talk (33c3),” Dec 2016. [Online].
Available: https://www.youtube.com/watch?v=HyzD8pNlpwI

[3] GBDev, “gbz80(7) — cpu opcode reference — rgbds,” Jun 2018.
[Online]. Available: https://rgbds.gbdev.io/docs/v0.8.0/gbz80.7#ADD
SP

[4] A. Hacktix and B. Jia, “The ppu,” Apr 2021. [Online]. Available:
https://hacktix.github.io/GBEDG/ppu/

[5] R. Engineering, “The insane engineering of the gameboy,”
Mar 2024. [Online]. Available: https://www.youtube.com/watch?v=
BKm45Az02YE

[6] PanDocs, “Lcd position and scrolling,” Dec 2023. [Online]. Available:
https://gbdev.io/pandocs/Scrolling.html

[7] A. Weissflog, “Getting into way too much detail with the z80 netlist
simulation,” Dec 2021. [Online]. Available: https://floooh.github.io/
2021/12/06/z80-instruction-timing.html#m-cycles-and-t-states

[8] endrift, “Revisiting “holy grail” bugs in emulation -
mgba,” Mar 2018. [Online]. Available: https://mgba.io/2018/03/09/
holy-grail-bugs-revisited/#the-phantom-of-pinball-fantasies

[9] R. Stäbler, “Memory and memory-mapped i/o of
the gameboy — part 3 of a series,” Jan 2020.
[Online]. Available: https://raphaelstaebler.medium.com/
memory-and-memory-mapped-i-o-of-the-gameboy-part-3-of-a-series-37025b40d89b

[10] Aug 2021. [Online]. Available: https://www.reddit.com/r/EmuDev/
comments/oxn2pf/is this how the gameboy cpu and ppu works/

[11]
[12] J. Javanainen, “Github - gekkio/mooneye-test-suite: Mooneye test suite

is a suite of game boy test roms,” Oct 2021. [Online]. Available:
https://github.com/Gekkio/mooneye-test-suite/tree/main

[13] r/EmuDev, “Emulation project “gameboy” - where/how to start?”
Mar 2020. [Online]. Available: https://www.reddit.com/r/EmuDev/
comments/fbuwxa/emulation project gameboy wherehow to start/

https://media.ccc.de/v/emf2022-200-why-you-should-write-a-gameboy-emulator
https://media.ccc.de/v/emf2022-200-why-you-should-write-a-gameboy-emulator
https://www.youtube.com/watch?v=HyzD8pNlpwI
https://rgbds.gbdev.io/docs/v0.8.0/gbz80.7#ADD_SP
https://rgbds.gbdev.io/docs/v0.8.0/gbz80.7#ADD_SP
https://hacktix.github.io/GBEDG/ppu/
https://www.youtube.com/watch?v=BKm45Az02YE
https://www.youtube.com/watch?v=BKm45Az02YE
https://gbdev.io/pandocs/Scrolling.html
https://floooh.github.io/2021/12/06/z80-instruction-timing.html#m-cycles-and-t-states
https://floooh.github.io/2021/12/06/z80-instruction-timing.html#m-cycles-and-t-states
https://mgba.io/2018/03/09/holy-grail-bugs-revisited/#the-phantom-of-pinball-fantasies
https://mgba.io/2018/03/09/holy-grail-bugs-revisited/#the-phantom-of-pinball-fantasies
https://raphaelstaebler.medium.com/memory-and-memory-mapped-i-o-of-the-gameboy-part-3-of-a-series-37025b40d89b
https://raphaelstaebler.medium.com/memory-and-memory-mapped-i-o-of-the-gameboy-part-3-of-a-series-37025b40d89b
https://www.reddit.com/r/EmuDev/comments/oxn2pf/is_this_how_the_gameboy_cpu_and_ppu_works/
https://www.reddit.com/r/EmuDev/comments/oxn2pf/is_this_how_the_gameboy_cpu_and_ppu_works/
https://github.com/Gekkio/mooneye-test-suite/tree/main
https://www.reddit.com/r/EmuDev/comments/fbuwxa/emulation_project_gameboy_wherehow_to_start/
https://www.reddit.com/r/EmuDev/comments/fbuwxa/emulation_project_gameboy_wherehow_to_start/

6.205 DIGITAL SYSTEMS LAB 1 6

APPENDIX

Block Diagrams

	Introduction
	Components
	The Central Processing Unit
	Instruction Lookup Table
	Registers
	Operation

	The Pixel Processing Unit
	LCD Specifications
	The Tile and Palette
	Layers
	Memory-Mapped Items
	Modes
	Achieving Emulation

	The Memory Controller
	Miscellany
	Joypad Input

	Conclusion
	Qualitative Self-Evaluation
	Work Breakdown
	Reng
	Colin

	References
	Appendix

