
Water Works
Final Report

Shonell Rowell
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

shonell@mit.edu

Isaac Taylor
Department of EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

iataylor@mit.edu

Abstract—We propose a 3D fluid simulation engine, which

utilizes Smoothed Particle Hydrodynamics to produce visually

realistic fluid simulations in real time. We aim to demonstrate

that high-fidelity simulation can be accomplished by utilizing

hardware’s inherent capabilities for high-bandwidth paralleliza-

tion, which can achieve greater performance than naive processor

implementations.

Index Terms—Digital Systems, Field-Programmable Gate Ar-

rays, Computer Graphics, Smoothed Particle Hydrodynamics

I. INTRODUCTION & MOTIVATION

Smoothed Particle Hydrodynamics (SPH) is a computational
method used for simulating the mechanics of continuum
media, such as fluid flow. The method works by dividing the
fluid into discrete particles, and the ensemble of these particles
emulates a continuous volume through interactions with each
other. A scalar quantity A is interpolated at location r by a
weighted sum of contributions from all particles [1]:

AS(r) =
∑

j

mj
Aj

ωj
W (r→ rj , h), (1)

where j iterates over all particles, and mj , rj , ωj , and Aj

represent the mass, position, density, and specific property
of the given particle. The function W (r, h) is a smoothing
kernel with radius h, interpolating interaction strength with
the distance between particles.

We simulate many particles and utilize this formulation to
calculate essential quantities of the Navier-Stokes equations to
produce pressure force vectors that cause the movement of our
particles to evolve over time, exhibiting fluid-like properties.
We then use our rendering engine to take the updated positions
and produce an HDMI output to display them.

This process incorporates a lot of floating-point computation
that is expensive on CPUs capable of only arbitrary bit
manipulation, making it such that these operations are often
performed on dedicated hardware modules. We aim to demon-
strate how a dedicated design could efficiently implement the
process.

II. SIMULATION ENGINE

The simulation engine sequentially computes all required
terms for each SPH equation and then accumulates these
density and force terms to update each particle’s position and

velocity properties by a single time-step. This is done for each
frame as demanded by our rendering module’s HDMI signal
generator.

A. Binary16 Format

Our system utilizes the half-precision 16-bit floating-point
format for computation. We chose to use floats for their
expressivity over integers and the 16-bit variety to reduce
memory footprint and avoid bandwidth limitations. This was
done at the expense of the precision provided by full-width
32-bit floats, which later became apparent in the accuracy
of the simulation. These modules serve as the foundation for
the system’s entire behavior, and their individual optimization
contributes to the overall performance.

All arithmetic operations are performed through
a suite of modules: binary16 adder, binary16 div,
binary16 div pipelined, binary16 multi, and binary16 sqrt.
Each of these modules, excluding the singular ‘div‘, is
capable of receiving a new input on each cycle, making it
possible to chain modules directly to one another to efficiently
execute expressions containing multiple binary operators.
The multiple versions of ‘div‘ were constructed for scenarios
where it is unnecessary to pipeline the computation and
where utilization should be conserved. The modules were
all individually tested by simulation on suites of random
numbers to validate their accuracy.

Testing showed positive results for the modules. However,
given that the binary16 format has reduced precision, errors
over multiple operations can accumulate and drive our simula-
tion further astray. Our implementation follows the IEEE 754-
2008 standard in terms of the representation of the floats and
their operations, but they lack specific rounding procedures
that would help circumvent these issues. This would be a
point of focus for future work. The multiplication module
utilizes a single DSP48E1 to compute the multiplication of two
mantissas in a single cycle. Care is taken to conserve resources
by not unnecessarily instantiating these modules throughout
the system.

The adder and multiplier each take 4 cycles, the dividers 24
cycles, and the square root, 13 cycles.



B. Particle Buffer
The Particle Buffer is an inferred BRAM module that

holds position and velocity data for particles and serves as
an interface between the simulation and rendering portions of
the system. The BRAM module is inferred from an arbitrary
maximum limit that we set on the number of particles that can
be simulated at build time. At runtime, the number of particles
the system should initialize and simulate is configurable, so
we allocate enough space to allow for a range of options.

For each particle, we allocate 4 16-bit floats for its position
and velocity in 2 dimensions, in a single address space. We
chose to utilize a full 64-bit data width so that modules like
the scheduler could access both properties of a single particle
in a single cycle, enabling us to achieve maximum throughput
on our term calculation pipeline. This comes at the cost of
increasing register and BRAM usage, however.

The module has a simple two-port, two-cycle read interface.
Our system began development with this choice in order to
avoid complications with meeting timing before completion,
and through pipelining, we are able to effectively nullify its
waste. The buffer has its reads from port A output from the
simulation module as it is used to transport information to the
rendering module.

C. Scheduler
The scheduler is a simple FSM that iterates through particle

pairs i, j, and assembles ‘packets‘ containing the required
variables for computing each of the terms in Equation 2 and
4. The scheduler utilizes the particle’s current velocity and
position from the buffer to predict its next position, and it uses
that predicted position for further computation. This results
in a more stable simulation, enabling greater stability than a
standard forward Euler step.

The received data from the buffer is pipelined into a
sequence of multiplication and addition binary16 modules, one
for each dimension, that evaluate this predicted position. The
scheduler sequentially reads from the buffer, issuing a different
read every cycle, in order to achieve the maximum throughput
for the subsequent computation module.

For density calculation, only the predicted positions are
needed. But for force calculation, where pressure and density
are required, the scheduler interfaces with the Accumulation
module, which also contains another two-port, two-cycle read
BRAM module serving 2 16-bit floats for a given particles
pressure and density reciprocal. The scheduler thus synchro-
nizes these reads so that the required information arrives at
the same time, and a valid packet is sent downstream.

Once the scheduler has sent all the terms for the calculation
of a single value, it stalls until it receives a signal from the
accumulator expressing its completion, and then proceeds to
update particle i+ 1.

ωi =
∑

j

mjW (ri → rj , h), (2)

pi = k(ωi → ω0) (3)

f pressure
i = →m

∑

j

pi + pj
2ωj

↑W (ri → rj , h). (4)

D. Term Computation

The Term Computation module calculates both density and
force terms, determining which to compute based on an indi-
cator from the scheduler. It takes inputs of width 16↓7 = 112
bits. The input is made up of 7 16-bit floats that each refer to
a different scalar value, in this format:

{ri, rj , pressurei, pressurej ,
1

ωj
}

We choose to compute the reciprocal of the density and
store that as opposed to the base value as it allows us to simply
multiply this scalar value later on instead of divide by it, which
is much less expensive. This would be wasteful in a scenario
where one must divide each element of the force vector, vastly
increasing utilization and delay. The module contains chains
of arithmetic modules and buffers that enable it to achieve
maximum throughput. It executes a computational graph of
binary operations and comparisons that produces a scalar value
or vector to be output to the accumulator.

This function of the module was originally planned to be
exhibited by a suite of independent and unpipelined workers
that would have inputs dispatched to them by a module which
would observe their availability. We realized that not only
would this be spatially inefficient, creating more expensive
modules, but it would also be more complex to design an
efficient arbitrator and protocol. This led us to fully pipeline
each arithmetic module in order to achieve the simplest and
optimal implementation in terms of cycle count.

E. Accumulation & Storage

The Accumulation & Storage module receives terms from
the computation module and sums them. Upon completing
the calculation of a density property, its reciprocal and the
converted pressure values, as performed in Equation 3, are
stored within BRAM. Here k refers to a configured pressure
coefficient constant, and ω0, the target density of the fluid.
We chose to instantiate a separate 2-port interface in this
module, rather than adding it to the Particle Buffer, because
it enables the Scheduler to access all necessary properties at
once, without needing to expand the data width even further.
It also avoids the need to design complex arbitration logic
to decide which of the Updater, Update Buffer, or Scheduler
modules gets to access any port at any specific time. However,
it results in more memory being inferred than what might be
strictly necessary for the module.

That covers the storage portion. The accumulation portion
is handled by a suite of individual element accumulators, one
for each dimension, that will continuously sum values they
receive until signaled that no more are being generated by
the computation module. Upon successful accumulation, the
module signals the scheduler to resume calculation and move
to the next main particle index i+ 1.



Internally, each accumulator has a queue of length 3 for
float values. Every cycle, when it holds at least 2 floats, it
sends the pair to its single binary16 adder module. Every cycle
during operation, the module can receive a new term from
the computation module or a newly generated sum from the
adder module, and there is logic in place to properly serve
and store these values to ensure that no more than 3 values
ever exist within the queue. Since you can serve as many
terms as you receive each cycle, this is ensured. If there are
no more terms in flight and the queue has only 1 element, the
accumulator outputs its value to either be assembled into a
force vector, undergo further processing, or be sent off to the
Particle Updater.

F. Particle Updater & Buffer
The Particle Updater takes the complete force vector for a

particle, reads out its position and velocity information, and
computes the simulation step. It updates the velocity according
to the acceleration dictated by the force and the particle’s
density, and then updates the position. Logic is written such
that if a particle’s new position places it outside the bounds
of the simulation (as configured), it will negate the velocity
in that direction. This ensures that particles remain within the
simulation space and exhibit the container-filling property of
fluids.

After these values are computed, they are sent to another
buffer before going to the main particle buffer. This is to
avoid overwriting the previous frame’s data before all the
computation is done. This buffer holds data until it is signaled
by the scheduler that the frame is complete, at which point it
overwrites the data within the Particle Buffer. We now realize
that instead of instantiating new memory, the Particle Buffer
could be used, and the scheduler could be configured to access
a different address space every other frame, effectively double-
buffering the simulation.

This completes the cycle of computation for a single frame
of simulation. Depending on the number of particles present
in the simulation, calculation of one frame will take different
numbers of cycles. 16 particles takes 380 cycles per frame,
64 takes 22,000 cycles per frame, and 128 takes upwards
of 1,000,000 cycles. When a frame doesn’t complete in the
allotted time for a single frame for a 30 fps output, the
simulation will continue to work until it eventually completes,
and frames may be skipped in the output. There is much room
to further push timing on arithmetic operations, and try to de-
synchronize processes within the system to gain some more
speed up.

III. RENDERING ENGINE

The rendering engine consists of multiple rendering in-
stances that draw the pixels of particles in parallel. These
pixels are then accumulated in a frame buffer and rendered
to HDMI 720p. The rendering pipeline includes a few com-
ponents:

• Perspective Projection. The particle positions are moved
from their world position into the screen space.

Fig. 1. Example frame of fluid simulation. Note the rendering is in 2D and
does not include depth occlusion

Fig. 2. Particles being rendered to HDMI output display

• Coordinate Normalization. The screen space center
positions are scaled to their pixel coordinates.

• Rasterization. The rendering engine draws each pixel
of each spherical particle (which becomes a circle when
projected onto the 2D screen).

• Data movement. The particle and pixel data need to be
moved in and out of the parallel modules.

A. Particle Buffer Interface
The rendering engine is responsible for drawing each parti-

cle to the screen on each frame. To ensure that particles can be
sent continuously, particle positions (x, y, z) from the particle
buffer are first placed on a queue. The queue is attached to
the module bus driver.sv, which cycles the queue output to
the parallel rendering instances. The cycling is controlled by
a counter, which increments each time a new particle is sent
through. The design currently uses 4 rendering instances. Each
rendering instance draws the pixels for a single particle at a
time.

B. Projector
The projector module is the beginning of the system’s

rendering pipeline. The projector transforms the particle center
coordinates from world space to screen space to be used
later by the rasterizer to fill in pixels that are covered by
the particle. The projection is described by a Model-View-
Projection (MVP) matrix, which allows one to specify world
space transformations (model), world to camera space (view),
and perspective projection in one 4x4 matrix. We choose
this particular paradigm which is implemented by OpenGL,
because it is standard and allows for intuitive normalization
using homogenous coordinates.

The projector is an FSM with two stages (idle, projecting).
The rasterizers follow a similar scheme. Even though the
projection math is fully pipelined, because the downstream
rasterization modules cannot be pipelined and take many
cycles to complete, there would be unnecessary buildup. The



Fig. 3. Rasterization Visualization

projector waits for the rasterizer to be ready before it moves
into the idle state to be ready for new inputs.

For the projection itself, the position is multiplied by the 4x4
MVP matrix represented by 16 16-bit float parameters. The
matrix multiplication and subsequent normalization occurs in
stages which allows the computation to essentially vectorized
over the four dimensions. First each column of the MVP
matrix is multiplied by the position vector. Then two of the
columns are added, and the vectors resulting from the addition
are added together. The resulting homogenous coordinates are
converted to normalized device coordinates (where all values
lie between -1, 1) by dividing by the w coordinate. This
now three-dimensional position (x,y + z depth) is scaled and
rounded to screen coordinates. Each of these stages make use
of the binary16 adder, multiplier and divider modules. At the
end of the pipeline, the center screen coordinates and depth
are available for the rasterizer.

C. Rasterizer

Similarly to the projector, the rasterizer is represented by a
FSM with two states (idle, painting). When the projector sends
a new particle center to the rasterizer, the painter FSM enters
paint mode. The bounding box of the particle is calculated,
and the painter loops through the pixels within that bounding
box. Each pixel is checked against the circle formula (x2 +
y2 < radius2) to determine if it should be filled (currently
the design uses a constant radius size regardless of depth).
If the pixel is not within the circle, the painter moves to the
next pixel in the bounding box. Each time a pixel is filled, the
depth value and buffer address (based on pixel position) are
sent to the frame buffer.

D. Pixel Manager

After rasterization, the pixel manager is receiving pixel
positions that should be rendered on the screen. The pixel
manager determines the color of the pixel which is solid blue
then sends the color data to the frame buffer.

Fig. 4. Example Test Simulation for Rendering

E. Arbitration

At this stage in the rendering pipeline, each of the parallel
rendering instances are trying to write to the frame buffer.
However, the frame buffer can only write one pixel at a time. In
order to manage the multiple outputs of the parallel modules,
we choose to create a module called arbiter.sv, which writes
to the frame buffer one pixel at a time. The arbiter, similarly
to the bus driver, is controlled by a counter, which cycles
through the multiple inputs and pushes the data through if it is
available. However, because rasterization can potentially have
multiple rendering instances output at the same time, or have
new pixels come in before the cycle wraps around (a problem
which worsens when adding more parallel instances), we need
queues to accumulate outputs from the rendering instances so
that pixels are not dropped.

F. Frame Buffer

In order to accumulate the pixels to be read into HDMI
later, we need a frame buffer to store pixel color data. In
order to not write to a frame buffer being read, we use two
frame buffers, one which is being read from and one to be
written to. Once the global new frame signal is sent, the frame
buffer roles switch. To keep buffer sizes low, we confine our
screen coordinates to 320x180, and then upscale to 720p. With
this size, we choose to use BRAM to store the data, which
provides adequate space while minimizing the amount of data
management required of a more complex memory like DRAM.

IV. EVALUATION

We evaluate our design based on its qualitative performance:
stability, fluidity; along with its utilization. Upon observation,
the simulation currently exhibits rather unstable execution. If
too many particles are being simulated and create too many
interactions, the simulation tends to explode as energy is
continuously added to it. We assume that this is because of
the errors that accumulate with more arithmetic operations,
and because the modules lack proper rounding, this effect
is exacerbated. We also believe that further tinkering of
simulation parameters could improve stability as well.



Our final design demonstrated in our project video only
achieved 30.31% slice utilization and 79.33% BRAM utiliza-
tion. For further work, more logic could be dedicated to adding
more computation modules to increasing throughput that way,
effectively halving execution regardless of particle count. We
used only 23 DSP48E1 modules, only being consumed by
binary16 multiplier’s.

Our minimum viable product was to be our 2-D simu-
lation, and our system was able to produce something in
its likeness, but it lacks the quality and robustness that was
sought. Complications in the simulation’s development due to
redesigns and bugs within float arithmetic led to delays. The
overall complexity of this mvp was underestimated, a more
succinct initial design would have made things easier later
on, but many optimizations where invisible until they were
encountered directly.

We were not able to fully incorporate the 3-D rendering
pipeline into our system, as it wasn’t completely polished on
its own and there were complications in integration. If things
were to be done over, we would have set more checkpoints
for dual progress between our two parts. We thought that it
would be easier to have things be separated and worked on in
parallel, but in order for that strategy to be effective, ironically,
more collaboration must be done.

V. AUTHOR CONTRIBUTIONS

Shonell Rowell handled all of the float arithmetic and
simulation pipeline while Isaac Taylor handled the rendering.
We both worked on the preliminary report, presentation, final
report, and project video.

REFERENCES

[1] Müller, Matthias & Charypar, David & Gross, Markus. (2003). Particle-
Based Fluid Simulation for Interactive Applications. Fluid Dynamics.
2003. 154-159.

[2]



Fig. 5. Block Diagram for Simulation Engine



Fig. 6. Block Diagram for Rendering Engine


