FPGA Beamforming Final Report

Patrick Haertel
Department of EECS

Carlos Villa
Department of EECS

Olivia Stoner
Department of EECS

Massachusetts Institute of Technology Massachusetts Institute of Technology — Massachusetts Institute of Technology
Cambridge, Massachusetts
ostoner @mit.edu

Cambridge, Massachusetts
phaertel @mit.edu

Abstract—We present the final design of an acoustic
beamforming implementation on an FPGA. Beamforming is a
signal interference mitigation technique which spatially filters
audio sources using a linear microphone array. We accomplish
this objective in three stages: (1) audio sampling, (2) modifying
sampled audio using the delay-and-sum algorithm, and (3)
outputting the modified audio samples. In doing so, we are able
to efficiently amplify a signal coming from a chosen integer
direction in an 180 degree space while suppressing audio signals
coming from other directions.

Index Terms—field programmable gate array, digital systems,
acoustic beamforming, delay-and-sum algorithm

I. AUDIO SAMPLING

In order to capture and transmit audio, we use an array
of ICS-52000 MEMS Microphones on a self-designed carrier
board. The microphone array comprises four microphones
separated by 35 cm each. These microphones daisy-chain
together as specified by the TDM protocol detailed below. The
construction of our board can be seen in Fig. 1. Using the 100
MHz clock, we sample the audio at the frequency nearest 40
kHz that is easily created with clock dividers. We chose a
sample rate of 39.0625kHz formed by dividing the 100 MHz
clock by 2560. Critically, this divisor is easily divisible by 32,
which is key to the TDM communication protocol.

Fig. 1: Physical design of the linear microphone array

A. ICS-52000 MEMS Microphones

We chose to use ICS-52000 MEMS Microphones for our
microphone array because they perform signal processing for
us by doing the analog-to-digital conversion and filtering the
output, and more importantly can sample audio synchronously.
Since the microphones do signal processing for us, we can
communicate just by following the microphones’ communica-
tion protocol as defined by the data sheet. The microphones are
only available in a surface mount package, so we developed
a carrier board to connect with the microphones and arrange
them more easily.

Cambridge, Massachusetts
villac@mit.edu

B. Microphone Carrier Board

Fig. 2: 3D rendering of the carrier board and PCB layout

The carrier board for the ICS-52000 microphone allows
for easy testing and development of our physical microphone
array on a breadboard. The carrier board has two 3-pin headers
separated by 0.5”. This means it fits into a breadboard similar
to a DIP IC. The layout, as shown in Figure 2, connects
the MEMS microphone to the headers, a bypass capacitor,
and an impedance matching resistor. The bypass capacitor
(0.15 uF) stabilizes the supply voltage to the microphone. The
impedance matching resistor (15 Ohm) attempts to match the
output resistance of the data port to that of the transmission
line.

C. TDM Communication Protocol

In our system, our FPGA operates as the controller and our
microphones act as the peripheral. We implement the Time Di-
vision Multiplexing communication protocol to communicate
with the ICS-52000 microphones. Time Division Multiplexing,
hereby referred to as TDM, is a communication protocol that
allows for synchronous sampling and sequential output of
these samples defined by a Word Select (WS) selection signal.

We sample audio at 39.0625 kHz which allows us to capture
audio well beyond the Nyquist rate of human speech, assuming
human speech ranges up to about 8§ kHz. To effectively
implement beamforming, a sample rate well above the Nyquist
rate allows for better signal resolution. This frequency also
serves as our system’s (WS) frequency, indicating the start
of the transmission of audio samples for the microphone
array. We chose this sample rate because it covers most
human speech and is easily generated by a simple clock

divider, allowing us to stay within the same clock domain.
Our controller drives this signal. The microphone array runs
on a Serial Clock (SCK), provided by our controller, that
follows the formula n x 32 x 39.0625kHz = SCK, where
n = power of two equal or greater than # of microphones.
Our TDM protocol is parameterized to support different num-
bers of microphones to facilitate expansion and debugging. For
simplicity, our WS and SCK signals are generated via clock
dividers.

To receive our samples, the controller raises WS signal
high for a full SCK cycle to indicate to the first microphone
that it should begin transmitting data for 32 bits. The current
microphone then raises the Word Select Out (WSO) flag to
indicate to the next microphone that it is their turn to send
data. This process continues for the number of microphones
in the system. We only sample the first 24 bits of each 32
bit transmission, because the microphones only send 24 bit
two’s complement audio in MSB format. Our samples are then
processed by our beamforming logic before output.

II. BEAMFORMING LOGIC

A. Delay-and-sum Algorithm

We implement the delay-and-sum algorithm in our beam-
forming logic [!]. This equation calculates the time delay
necessary to shift each microphone’s audio signals to isolate
the sound from the intended direction. The following equation
models this approach:

n * d * cos(0)
c

Ar, = (D
o Ar,: time delay

e n: microphone index

e d: distance between microphones

e 6: angle to focus beam at

o c: speed of sound

We use zero-indexing for the microphone index. The distance
between microphones is measured in meters, and the angle of
focus is entered in degrees. We use 343 m/s for the speed of
sound. This equation can be used in conjunction with clock
frequency to determine the number of samples delay to wait
before sending audio stored in mic BRAMSs, which is the
approach we used in our system.

o)

Fig. 3: Block diagram of beamforming implementation

B. Implementation

Fig. 3 provides a high level overview of the implementation
of the beamformer. The TDM input and audio outputs of been
trimmed from this diagram.

o Python LUT Generator: Using the user-defined audio
sampling frequency and distance between mics, we use a
Python script to generate an 180-degree LUT. The values
in this table correlate each angle € [0, 180] to the number
of samples delay necessary to wait before sending audio
signals from a second mic.

o Angle Delay LUT: We make use of the FPGA’s switch
array, specifically sw[7:0], to implement the selection of
the beam focus angle. The base-10 value of this angle is
then displayed on the FPGA’s seven segment display. We
use the selected angle, in conjunction with the previously-
generated LUT, to generate the respective delay for each
mic in the linear array.

o Delay, Sum, and Shift: Using the mic data from the
TDM module, along with the delays generated from the
angle delay LUT, we create a BRAM for each mic’s
received audio data in this module. We keep address
pointers such that we only add in the received data from
that particular mic to the output signal if the proper
number of samples delay has been reached. Because
our active BRAM depth corresponds to the number of
samples delay, we can keep the memory demands for
this module relatively conservative. More specifically,
for our 4-microphone linear array, the maximum time
delay possible is for the microphone at index 3 with an
input angle of 0 degrees, in which case the time delay
Aty = 3%0.35%c0s(0)/343 = 0.0030612s, which, at our
sample rate of 39062.5 Hz., corresponds to 119 samples
of delay, or an active BRAM depth of 119. Considering
we have four of these BRAMSs, each at a lower active
depth than this, and each BRAM stores 24-bit audio, the
memory usage is minimal.

ITII. Aupio OUTPUT
A. Saving to Audio File

o UART: In order to rapidly test and preview the results of
our beamformer, we utilize UART to transmit audio data
from the FPGA to a computer. Although the microphones
capture 24 bits of audio, to remain within the capabilities
of UART at standard baud rates, the audio samples must
be truncated. In addition, to properly reconstruct the audio
stream at the UART receiver, each transmission must
send an alignment bit. Fig. 4 illustrates the difference in
audio with and without this alignment bit. Just before 0.5
seconds in the top waveform, the receiver loses alignment
and the audio becomes loud nonsense. After adding the
alignment, the full audio stream is received without issue.
Finding a fix to this issue was critical to developing
a working system, but it also set new requirements for
our UART transmission. These requirements constrained
our system to sending 14 audio bits and two alignment

Recieved Waveform without UART Alignment

3 1.000
2
g
S -1.000 |

0 0.5 1 1.5 2 2.5 3

Time (s)
Recieved Waveform with UART Alignment

€ 0.005
3 PO
g
= -0.0054

0 0.5 1 1.5 2 2.5 3

Time (s)

Fig. 4: Audio waveforms before and after UART Alignment

bits across two UART transmissions. Sampling audio at
39.0625kHz requires a baud rate of at least 625,000, so
we utilize the nearest standard baud rate, 921,600. Fig.
5 shows the structure of the data bytes for each UART
transmission (start and stop bits are ignored in this figure).

UART Data High UART Data Low
1’b1 [audio[13:7] 1’b0 [audio[6:0]

Fig. 5: UART Audio Sample Structure

o Python Audio Visualization and Saving: We save the
received audio in a wavefile on the user’s computer for
playback. We also plot the audio samples received for
inspection. During our design process, we also used these
scripts to save and plot the audio samples from each
microphone to perform Python-simulated beamforming
and verify that our time-delay approach was viable.

B. Generating Real-time Audio

e PDM Our FPGA is designed to accommodate square
waves or PWM/PDM signals passed to the audio out port,
so we chose to use PDM for the best audio quality [2].
Pulse Density Modulation (PDM) [3] adjusts our audio
sample to more accurately represent an analog signal as
a stream of bits. Usally, PDM uses a low pass filter, but
the bandpass filter built into the board at the audio out
port also performs the job of integrating our signal. In
order to accurately represent our audio signal we need
to perform PDM at an oversampled rate. We choose an
oversampled frequency of 128 x 39.0625kHz = 5MHz
because it aligns with a standard of oversampling either
by a factor of 64 or 128 and is conveniently the same
frequency as our SCK. At this clock, our audio signal is
broken down into a 128 bit bitstream that when averaged
by the boards bandpass filter produces high fidelity audio
outputs. In simulation we found that our produced output
has a < .01 difference in density as compared to the
original input signal. Fig. 6 shows the transformation of
our 24 bit audio samples into their 128 bit bitstream form.

PDM Output Overlayed with Audio Input

Amplitude

—— Interpolated Normalized Sine Wave
~1.00 Raw PDM Output

0.0000 0.0002 0.0004

Time (s)

0.0006 0.0008 0.0010

Fig. 6: The Raw PDM output has the same density as the
original signal, but doesn’t accurately convey how high fidelity
the representation is.

When convoluted to simulate a low pass filter, we gener-
ate a graph displaying a nearly identically shaped signal
although with a smaller amplitude, as displayed in Fig.7.

PDM Output Overlayed with Audio Input

— Interpolated Normalized Sine Wave
Filtered PDM Output

Amplitude

-0.25

-0.50

-0.75

-1.00

0.00000 0.00025 0.00050 0.00075 0.00100

Time (s)

0.00125 0.00150 0.00175 0.00200

Fig. 7: Simulated convolution of PDM signal to visibly demon-
strate likeness to original signal.

On the FPGA we qualitatively judged our output audio.
We found the output audio to be audibly clear, although
at a lower amplitude, as the simulated figure suggested,
but it did have a constant noise. As of now, we believe
this noise may be due to some misalignment between our
PDM implementation and the FPGA band-pass filter.

C. Audio Playback

o Off-chip Audio Storage: A final goal for our system is
to implement long-term off-chip audio storage to enable
on-button-press recording playback. We intend to imple-
ment a modified traffic generator module to write to DDR
memory and read from it upon a button-press trigger.
We will then use the PDM module to play this audio
via line out. Unfortunately, due to time constraints, we
were unable to accurately implement our audio playback
feature.

IV. DESIGN EVALUATION
A. Preliminary Evaluation

Before building the full system, we tested beamforming on
a smaller two-microphone array. We simulated beamforming
by applying delays in Python to audio streams from each

microphone. These tests showed a slight attenuation of the
audio when the simulated beam was not directed at the angle
the audio source was positioned from the array. These results
gave us confidence to move forward with the project and led
to the results of the full system detailed below.

B. Audio Sweep at Fixed Beam Angle

To test that the beamformer amplifies audio at the specified
beam angle, we performed a sweep with a constant audio
source from around 90 degrees to O degrees at a constant
distance. We set the beam angle to O degrees. Fig. 8 shows
the audio waveform that resulted from the sweep. There is
clear amplification of the signal at the end of the waveform
as it enters the beam formed by the beamformer at 0 degrees.
There are other smaller amplifications throughout the sweep
which are consistent with side lobes. Side lobes are an
expected artifact in delay-and-sum beamformers, which are
caused by aliasing. Thus, qualitatively, we see the beamformer
successfully amplifies audio at the desired beam angle.

Fixed Frequency Audio Sweep with Beam Angle 0°
0.04

Audio 90°

Audio 0° |
'

0.03 4

0.02 A

0.01 4

0.00 A

Audio Magnitude

—0.01 1

—-0.02 A

—0.03 1

-0.04 T T T T T T T 1
0 1.5 3 4.5 6 7.5 9 10 12

Time (s)
Fig. 8: Audio waveform of fixed frequency audio swept from
90 deg to 0 deg across 12 seconds with the beam angle set to
0 degrees for the duration of the sweep.

C. Human Speech and Fixed Frequency Audio Filtering

Our primary goal in building an acoustic beamformer was
to spatially filter audio; in particular, we aimed to attenuate a
fixed frequency “noise” signal which was spatially separated
from human speech. To setup for this test, we positioned a
speaker playing a 1kHz signal at 90 deg and about 8.5 ft
from the microphone array. We then had a subject speak 10
deg from the microphone at the same distance. There are two
evaluations here, first qualitatively that the subject’s speech is
clearer than the noise signal. Second, quantitatively, changing
the beam angle towards the subject (away from the noise)
attenuates the noise signal. This test was then replicated by
swapping the position of the subject and the noise signal to
show the system works in multiple orientations.

1e6 Frequency Spectrum 90°

Amplitude

W

Frequency (Hz)

1e6 Frequency Spectrum 10°

Amplitude
N

e

T
0 1000

T T T
2000 3000 4000

Frequency (Hz)

5000

(b) 1e6 Frequency Spectrum 90°
4
331
2
3 2
E
o
0_
Frequency (Hz)
1e6 Frequency Spectrum 10°
4_
< 31
2
3 24
£
<]
N .

2000 3000 4000

Frequency (Hz)

(I) 10I00 5000
Fig. 9: Frequency spectrum of captured audio at beam angles

of 90 deg and 10 deg. Plot a) shows results when noise at 90
deg. Plot b) shows results when noise at 10 deg.

Fig. 9 shows the frequency response of the audio captured
by our beamforming system. When the beam angle is set to
the angle of the speaker, there is a clear attenuation of the
1kHz noise signal in comparison to when the beam angle is
set towards the noise source. The attenuation in Fig. 9a. is
over 50%. The attenuation in Fig. 9b. is over 25%.

V. RETROSPECTIVE

In developing this system we had to make implementation
decisions about whether we wanted to operate in the time
domain or the frequency domain, how to maintain algorithmic
assumptions with hardware constraints, and what aspects of
the system were necessary to demonstrate the functionality of
our system.

We decided to perform our beamforming using the delay
and sum algorithm which operates in the time domain. This
decision was motivated by a desire to avoid moving between
the time and frequency domain, such that we could focus more

on the concept of beamforming itself. While we were able to
develop our system to meet the goals we had set, operating
in the frequency domain to perform beamforming may have
shown better results. Additionally, in inspecting our results
we wondered if we may have been neglecting differences
that may have been caused by changes in frequency. To this
end, experimentation using a frequency based beamforming
algorithm would be interesting to see.

With the delay and sum algorithm, we were operating
under the assumption that our signal would be hitting each
microphone roughly in parallel. This is a fair assumption when
signals come from a farther distance, as would happen in most
real-world beamforming use cases. However, our microphones
weren’t especially sensitive to picking up an audio signal
from such long distances, and so we had to balance staying
a far enough distance from the microphones to maintain our
assumption and staying a close enough distance to actually
capture audio signals. We iterated on the physical design of
our system, initially using a single breadboard and phone audio
to capture audio data, and then finally landing upon a larger
board with mics spaced 35 cm. apart to capture audio data
from speakers 1-2 meters away from the microphones. The
larger distance between microphones made our delays more
substantial allowing for greater differences in the output audio
when applying the delay and sum algorithm.

In addition, we used speakers to try to create more evenly
distributed noise signals when performing the tests. Additional
hardware constraints included our PDM being bounded by the
onboard filter provided by the FPGA and potential parasitic
introduced by long wires in our final linear microphone array.

To reliably test our system we had to develop lots of
infrastructure to output our signals. Much of our time was
dedicated to creating a reliable connection between our FPGA
and our computer to run tests and perform visualizations of
our output signals. For our real time output, we didn’t have
long connections to our audio out port, so we had to become
creative in ways to listen to our output audio without also
listening to our input audio. Due to work in these areas
we ultimately did not have time to implement other desired
features like on board recording and playback, but those would
be our intended next steps.

VI. CODE

Our_team’s_code NTTSTSTOTOTOTOTOTOTOTOTOIeN

VII. CONTRIBUTIONS

« Patrick: Designed the PCB and physical setup. Wrote
the top-level system and the UART module and module
tests. Wrote sections of report for these as well as the
Design Evaluation section. Also contributed to Python
visualization scrips.

o Carlos: Wrote modules and tests for TDM and PDM. Did
significant research on both protocols. Wrote the report
for these modules as well.

[1]
[2]
[3]

Olivia: Wrote the Delay, Sum, Shift module. Simulated
time-domain beamforming and scripts to help visualize
results in Python. Edited the final video. Wrote sections
of the paper as well.

Thank you to Joe for all the help during this project. The
idea for the UART alignment bit significantly helped our
performance.

REFERENCES

AudioLabsErlangen, “A Gentle Introduction to Beamforming.” Oct. 05,
2021. Available: https://www.youtube.com/watch?v=etTcru7CrWU
“Welcome to Real Digital,” Realdigital.org, 2024. https://www.
realdigital.org/doc/822e17a669a05f748c80af2274478bb5

Kite, T. "Understanding PDM Digital Audio”. Available at: Utexas.edu,
2024. https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10
Data Conversion/AP Understanding PDM Digital Audio.pdf

Realdigital.org
https://www.realdigital.org/doc/822e17a669a05f748c80af2274478bb5
https://www.realdigital.org/doc/822e17a669a05f748c80af2274478bb5
https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf
https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf

	Audio Sampling
	ICS-52000 MEMS Microphones
	Microphone Carrier Board
	TDM Communication Protocol

	Beamforming Logic
	Delay-and-sum Algorithm
	Implementation

	Audio Output
	Saving to Audio File
	Generating Real-time Audio
	Audio Playback

	Design Evaluation
	Preliminary Evaluation
	Audio Sweep at Fixed Beam Angle
	Human Speech and Fixed Frequency Audio Filtering

	Retrospective
	Code
	Contributions
	References

