
Flap Through the Gap
Preliminary Report

Andrew Lee
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
andrewl2@mit.edu

Selena Qiao
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
scq@mit.edu

Magdalena Slowikowski
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, MA
maggislo@mit.edu

Abstract—Flap Through the Gap is a first-person flight simu-
lator, where the player navigates through a tunnel containing a
series of walls with holes. The objective of the game is simply to fly
through as many of these obstacles as possible without colliding
with the walls. The player controls movement with a physical
controller, which uses a gyroscope and an accelerometer sensor
to detect tilting for directional control. The game is rendered
from the perspective of the player with a rasterization engine
optimized to handle the specific layout of the game. The output
of the graphics engine is then displayed on an external monitor
via HDMI.

I. INTRODUCTION

In this paper, we detail our design and implementation of
Flap Through the Gap, a first-person flight simulator game
where the player encounters a series of walls with holes while
flying through a tunnel. Using a 3D-printed game controller,
the player is able to control their position in the game with
the objective of passing through holes without colliding with
any walls in the tunnel. In our system, we interface with an
accelerometer and gyroscope sensor using an SPI communi-
cation protocol to detect tilting of the game controller, render
the layout of the game from the changing perspective of the
player with a rasterization engine, write game logic to detect
player-wall collisions, and display the output of the graphics
engine onto an external monitor via HDMI. As in the proposed
project checklist, we aimed to create a game with color, where
the player’s tilt movements are smooth and not erratic,

II. CALCULATIONS

A. Integer Arithmetic

In our system, we work mainly with integers to avoid
floating-point arithmetic. When multiplying integers by frac-
tional values, we multiply by the numerator and then shift to
divide by the denominator.

B. Trigonometric Functions

Many parts of our system require the use of trigono-
metric functions. This includes arctangent in the gyro-
scope/accelerometer input handler’s calculations, and sine and
cosine when handling rotations and perspective transforma-
tions in the game logic and the rasterization engine. To ap-
proximate these functions, we compute the values in advance

Fig. 1. A mockup of a singular frame from the final game. The lines dividing
each wall into an 8x8 grid are purely illustrative and will likely not be included
in the final render.

using a Python script and store them in lookup tables stored in
BRAM. For example, our sine lookup table has a depth of 256
and a width of 8 bits, and the ith index stores 256·sin(i

256 ·
π
2).

When using a value retrieved from this BRAM, we eventually
shift the result by 8 bits to scale it back to the original range.

C. Combinational Logic

Many of our complex calculations in all parts of our system
are implemented combinationally. However, these calculations
cannot be completed within a single clock cycle. Instead of
pipelining these computations, we empirically determine an
upper bound for the number of cycles required for the com-
binational logic to stabilize. Only after we wait the computed
number of cycles do we pass the results to the next stage.

III. PERIPHERAL HARDWARE

In our system, player movement is determined by a con-
troller with an MPU-9250 sensor attached. The sensor records
gyroscope and accelerometer data, which are combined to
calculate the player’s perspective and acceleration in the game
logic module.

A. SPI Controller

To interface with the MPU-9250, our system uses an
SPI module. To initiate a read operation, the SPI controller
transmits the relevant register address. The MPU-9250 then
responds with the respective register data, read linearly starting

Fig. 2. Block diagram for the system.

Fig. 3. Format of SPI communications with the MPU-9250

at the given address. Each measurement register contains 16
bits, however, because our system does not require the high
sensitivity provided by all 16 bits, we utilize only the first
byte of data. Therefore, our SPI controller writes 8 bits of the
register address and then reads 8 bits of measurement data.

The SPI controller iterates through all of the sensor’s out-
put registers and constructs the accelerometer and gyroscope
measurements for each axis. These measurements are then
forwarded to the input handler module where they are used
to calculate the output roll, pitch, and yaw.

B. Input Handler

It has been found that the raw accelerometer data read
from the sensor often exhibits high-frequency noise, while the
gyroscope data contains low-frequency noise. To reduce the
noise in the input measurements, the input handler module
implements a complementary filter to merge accelerometer and
gyroscope signals:

θy[n] = β (θy[n− 1] + Tgy[n− 1])+

(1− β) tan−1

(
az[n− 1]

ax[n− 1]

)
where β is the filter coefficient, T is one time step, gy

is a measurement of the gyroscope in the y-axis, and ax, az
are accelerometer measurements in x- and z-axes respectively.
Doing so, we are able to better model the player’s direction
of movement.

Fig. 4. SolidWorks Game Controller

In order to perform these calculations, we utilize a divider
module to divide accelerometer measurements, and look up
arctangent values in BRAM, as stated previously.

The filter operates on each axis in parallel, and the output
roll, pitch, and yaw from each respective instantiation are
forwarded to the game logic module.

C. Game Controller

For player ease and enjoyment, we designed a custom game
controller using the SolidWorks CAD software. The controller
design is inspired by a yoke, or airplane ”steering wheel”. The
MPU-9250 sensor fits inside the game controller, allowing for
ease of direction and tilt control.

IV. GAME LOGIC

A. Position and Angle Updates

Given roll, pitch, and yaw data from the gyroscope input
handler, the game logic computes the new position and angle
of the player. Additionally, the game logic only accepts input
and begins computations only when the image writer has
finished writing the results from the previous calculations to
the double frame buffer. To smooth out sudden changes in
angle, we compute a weighted sum of the current angle and
the new angle. The direction of movement is determined using
values derived from the rotation matrix (described later). Then,

Fig. 5. Printed Game Controller

the game logic adds the product of the speed and this unit
vector to the current position. Positions are stored as 16-bit
fixed point values, where the top 8 bits represent the integer
game units and the bottom 8 bits represent the fractional part.
Only the top 8 bits will be sent to the rasterization engine,
and the fractional parts are only used to achieve more accurate
movement.

B. Collision Detection

Detection of collisions is relatively straightforward. The new
position is checked to see whether it is within the tunnel
boundaries. Additionally, it is checked that the player does
not collide with the nearest wall. These checks are performed
using simple inequalities.

C. Wall Management

The game logic maintains a set of the next five upcoming
walls, each of of which is described by a subset of the 64
blocks (32 by 32 by 32 game units) that fill a 256 by 256
by 32 game unit area. The walls are spaced by 256 game
units and whenever the player’s position advances 256 game
units into the tunnel, a new wall is generated. Walls are
randomly selected from a predefined set of configurations
using randomness derived from the video signal generator.

V. RASTERIZATION ENGINE

To render the game’s graphics, we implemented a version
of the rasterization engine optimized for our specific input.
The graphics pipeline is largely split into two sections: the
rasterizer, and the image writer. The main functionality of the
rasterizer is to break the game map down into its constituent
triangles and compute their projection and color. Because the
layout of the game’s map is largely cubical, we were able
to make some simplifications in some steps of the algorithm,
which we will detail later. The output of this is then passed to
the image writer, which identifies which pixels on the screen
each triangle occupies and writes their color to an image
buffer. Once a buffer is complete, it is then sent to an external
monitor with HDMI.

A. Rasterizer
The rasterizer’s first step is to generate the triangles that

make up the game map. The game logic module passes a
wall configuration to the rasterizer, consisting of a packed
array of bits representing whether each cell in an 8 × 8 wall
grid contains a wall or a hole. Given this configuration, the
rasterizer iterates through each cell in the wall, starting from
the wall in farthest back. It splits each face of the 32×32×32
cube down a diagonal into two right triangles. The same is
done for the walls of the tunnels, which are of roughly fixed
position in the game world.

Typically, rasterization algorithms make use of a z-buffer
to keep track of the depth of triangles in world space in
order to determine which triangles are positioned in front of
others, and therefore which colors to write to the final image.
However, because the configuration of the walls in this game
is very well-defined, we were able to optimize the rasterizer by
removing the z-buffer. Instead, in order to guarantee that the
correct triangles are written to the image buffer, our algorithm
processes the triangles in a very specific ordering:

1) Tunnel walls are divided into six segments. Divisions are
drawn where obstacle walls are placed. Each segment
of the tunnel wall must be processed before the obstacle
wall that it is behind.

2) Obstacle walls are processed from back to front, in
between the tunnel segments that it divides.

3) The non-forward-facing sides of all blocks in a singular
obstacle wall are processed first.

4) Then, the forward-facing sides of an obstacle wall are
processed.

By generating and processing triangles in this order, we hoped
to guarantee that the triangles in the back are processed before
any triangles that are positioned in front of them in world
space. If successful, the need for a z-buffer is removed. This
is a huge optimization for memory usage – a z-buffer would
have needed to use as much memory as our image buffer itself,
which would have approximately doubled the memory usage
for the rasterizer.

However, we realized after implementing this algorithm that
it sometimes did not properly account for how sides of a
cube are viewed relative to each other. For example, it is not
guaranteed whether the top of the cube or the left side; the
order in which the sides are seen depend on the perspective
of the player. The top of a cube may appear on top of the left
side if the player is viewing the cube from higher up, but if
viewed from another perspective the left side will need to be
rendered first. The result of this is some visible artifacts on
the walls in the game, where some interior sides are visible,
like an x-ray effect.

The rasterizer then computes the color for each of these
triangles by computing the dot product between a global
directional light vector and the normal vector of each triangle:

color = ntriangle · d
The configuration of the game map again allowed for

significant optimizations in the light calculation – because

there are only five possible normals, instead of computing the
normal of each triangle by taking the cross product of two
vectors, we simply select the correct normal when generating
the triangle itself.

Additionally, we add some fog, make further objects appear
darker by darkening a triangle’s color by a constant multiple
of it’s depth. The resulting color is then manipulated to give
the game a wash of blue.

Finally, the rasterizer converts the coordinates of the trian-
gles from world space into camera space based on the rotation
and position of the player passed from the game logic module,
and projects these triangles onto a 2D image plane.

To convert the coordinates from world space to camera
space, the rasterizer first translates the triangle’s coordinates by
the current player’s position coordinates. Then, the rasterizer
computes a rotation matrix from the roll, pitch, and yaw
received from the game logic module by taking the product
of the corresponding matrices, where roll is ϕ, pitch is θ, and
yaw is ψ.

Combining this translation and rotation, we get the trans-
formation: xy

z

 → R

x− xpos
y − ypos
z − zpos


After transformation, the coordinates are projected down to

the xz-plane by dividing both the x and z coordinates by y
and then multiplying by 320 and 180, respectively. In the case
of a negative y value, we approximate the result by having
the division x

y return a large number with the same sign as x
and having the division z

y return a large number with the same
sign as z. This just represents a point way off screen in the
approximate direction of (x, z). Lastly, we translate by (160,
90) to set (0,0) to be the bottom left of the screen.

These computations require use of the integer division and
trigonometric LUTs described earlier. After all computations
for one triangle are complete, the triangle is forwarded to the
image writer module.

B. Image Writer

The image writer takes the projected triangles that the raster-
izer inputs into the system and determines the corresponding
pixels to color in. To store the pixels, the module makes use of
a double buffer. One buffer is used to store the pixels as they
are being colored, and the other buffer is read by the HDMI
module (and cleared in the process); once both buffers have
completed their function, they swap functions.

To determine the pixels that correspond to a triangle, the
module first computes the bounding box for the triangle,
then iterates through all the pixels within that box. For a
triangle with coordinate vectors p1,p2, and p3 and edges
e1, e2, and e3, A pixel p is within the triangle if

(p− p1)× e1 < 0

(p− p2)× e2 < 0

(p− p3)× e3 < 0

The color from the rasterizer is written to the pixel if it is
determined to be within the triangle.

VI. EVALUATION

A. BRAM Usage

The majority of our memory usage comes from the double
buffer – each half-buffer has a width of 8 bits and a depth
of 320×180. Additional BRAM usage comes from numerous
trigonometric LUTs that are duplicated across different mod-
ules where they are needed for parallel accesses; each of these
LUTs have a width of 8 bits and a depth of 256 and are hence
relatively small in comparison to the buffers. In total, these
add up to approximately 1 Mb of block memory usage, which
is less than half of the total BRAM availability on the board.

B. Frame Rate

Our frame rate is directly correlated to the number of cycles
it between receiving an input to the game logic and updating
the double frame buffer with the corresponding result. The
step that takes the most cycles by far is the image writer. It
processes around 3200 triangles each of which has a bounding
box of between 500 on average. On a 100MHz clock, our
frame rate is about 60 frames per second.

C. Project Checklist

For this project, our minimum goals were to create a usable
flight simulator game. This minimal game was to be all black
and white, and follow the controller real-time movements. Sur-
passing these minimal goals, we were able to incorporate color
into our game by adjusting the hue of the base gray shades
and smoothed the tilt input of the game controller to prevent
erratic game movements, creating a smoother gameplay. We
also limited the range of motion of the player to prevent them
from flying off the screen.

VII. RETROSPECTIVE

We learned a lot from this project, both about hardware
itself and working with computer graphics.

On the graphics side, it was interesting to learn about how
3D objects are rendered and the mathematics behind it, as well
as how certain optimizations may be made to the standard
algorithm to increase the efficiency of certain calculations. It
was quite surprising how we could simplify some parts of the
graphics simply because some parts of our generated world
was predetermined.

A significant portion of the time was spent on debugging
the rasterizer. Tackling the production of triangles, translations,
rotations, projections, and shading all with integers can be very
difficult to debug, especially with dealing with signedness and
varying bit widths. We did use simulations a lot to debug,
but we did many calculations by hand in order to compare.
In hindsight, a more efficient method to writing correct code
would be to split the code into smaller subtasks and writing
simulations with expected output. This, we it would be easier

to detect which sections have correct functionality and identify
where the bugs might be faster.

Overall, we gained a lot of experience working with graph-
ics and incorporating hardware with computer graphics, mak-
ing for a fun, interactive project. We believe that the process
of debugging such a complex system was a highly valuable
learning experience, especially where debugging output is very
limited.

VIII. AUTHOR CONTRIBUTION

All authors contributed equally to the development of this
project and the writing of this final paper. Maggie Slowikowski
implemented the peripheral hardware components of the
project including SPI communication with the MPU-9250
sensor, complimentary filtering of sensor data, along with
some contributions to game logic and graphics. Andrew Lee
made significant contributions to game logic and graphics
implementation. Specifically, he produced and confirmed cor-
rectness for much of the complex math involved in the game
logic, the rasterizer, and the image writer. Selena Qiao made
significant contributions to graphics implementation.

ACKNOWLEDGMENT

The authors would like to thank their instructor and project
advisor Joe Steinmeyer for his continued guidance and sup-
port, as well as the rest of the 6.205 staff.

APPENDIX

Our repository can be found at:
https://github.com/snonk/flap-gap

R =

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ


Rotation matrix for world-to-camera computation.

