Frequency Perfect Generated Audio: Final Report

Shruti Siva

Felix Prasanna

Aarush Gupta

Massachusetts Institute of Technology Massachusetts Institute of Technology Massachusetts Institute of Technology

Cambridge, MA, USA
shrutsiv@mit.edu

Abstract—This paper presents Frequency Perfect Generated
Audio (FPGA), a real-time autotuning system for the human
voice. The system consumes 16-bit, 44.1KHz audio and produces
autotuned audio of the same resolution after a delay of roughly
0.1 seconds. Popular autotune implementations involve compu-
tationally expensive signal processing algorithms — this work
focuses on optimizing these algorithms onto an FPGA.

The FPGA system contains several key stages of processing:
I2S reception from an INMP441 [] I2S microphone, pitch de-
tection, pitch correction, and output of processed audio (through
FPGA speakers or over UART via USB). Each stage processes
a 2048-sample “window” of audio. For maximal efficiency, the
system pipelines computations across stages on a per-window
basis. For efficient pitch detection and correction, we implement
hardware-optimized versions of the Yin autocorrelation and time-
domain PSOLA algorithms, respectively.

The code (HDL, testbenches, simulations, etc.) for the entire
system can be found here.

Index Terms—audio, real-time, signal processing

I. SAFETY

Our project revolves around generated audio, which some-
times sound harsh or unpleasant. We have taken care to
reduce artifacts, pops, and static in our audio, however we
still recommend general caution and the use of over-ear rather
than earbuds headphones while testing.

II. INTRODUCTION

Autotune systems are a form of audio processing that
receive audio samples and “tune” them. This involves shifting
each note in the input to the closest note in a quantized scale,
whether that be a standard Western scale corresponding to
some key or any arbitrary ascending sequence of pitches. Such
systems are frequently used to enhance audio recordings of
human singing, either live or through post-processing [2]].

Autotune systems, as audio processing systems, necessarily
include computationally expensive signal processing algo-
rithms such as Fourier transforms [3]. Many current state-
of-the-art autotune systems perform two key steps to correct
pitches: pitch detection and subsequent pitch correction.

The Yin autocorrelation algorithm (hereafter simply referred
to as “Yin”) is frequently used for pitch detection. Yin analyzes
the periodicity of an audio signal using a modified autocor-
relation approach [4]. The algorithm computes a difference
function d(7) for each possible time lag 7, quantifying how
similar the signal is to a shifted version of itself. To enhance
accuracy, Yin applies the cumulative mean normalized differ-
ence function (CMNDF), which highlights the true periodicity

Cambridge, MA, USA
fpx @mit.edu

Cambridge, MA, USA
aarushg @mit.edu

by normalizing d(7) with the accumulation of previous values
[S]. The true period of the signal is then estimated as the lag
7 that minimizes this CMNDF, meaning shifting the signal by
this period leads to minimal change in the signal.

A popularly used algorithm to preserve signal timbre while
shifting pitch is the Time-Domain Pitch Synchronous Add
and Overlap algorithm (hereafter referred to as “PSOLA”).
PSOLA computes representative pitch periods for the signal,
in a manner similar to the Yin autocorrelation algorithm [6].
Then, the spacing between the centers of these pitch periods is
stretched or shrunk depending on the desired pitch shift. This
adjustment is achieved through a sophisticated interpolation
scheme, which is described in detail later in this paper. At
a high level, this approach compresses or stretches the input
signal to change its frequency while preserving its waveform
shape.

This project focuses on taking these existing algorithms and
signal processing techniques and efficiently optimizing them
on an FPGA. Both Yin and PSOLA involve a high number of
mathematical operations including additions, multiplications,
divisions: just 1 second sampled at 44.1 kHz requires millions
of operations to autotune! This problem is thus well-suited for
an FPGA: through our efficient high-level system design as
well as micro-optimizations, we build a low-latency autotune
system performing these algorithms.

III. DESIGN CHOICES
A. Parameter Selection

1) Audio Parameters: We process 16-bit 44.1KHz audio
as this is a common encoding for high-quality audio that
is also not extremely resource intensive to process. Firstly,
at 44.1KHz, we have 441’% ~ 2267 cycles to process one
sample of audio and roughly 2267 - 2048 =~ 4.64 - 10° cycles
to process a full window of audio. Based on our calculations
(see the following sections), this is an ample number of cycles
to autotune one window. Secondly, because samples are 16
bits wide, we can sign/zero-extend samples and add fractional
precision, while still keeping our bitdwith small enough for
DSPs to do multiplications in one cycle.

2) Window Size: Audio is processed in windows — choos-
ing this window size effectively is crucial for system design
and performance. The first constraint imposed on our window
size is due to the high number of arithmetic operations
(especially multiplications and divisions) required by Yin. On

a window of n samples, Yin requires "("T_l) multiplications


https://github.com/frequency-perfected-generated-audio/autotune

and O(n) divisions. Using a window size of 2048, Yin requires
roughly 2.1 million multiplications and at most 2048 divisions
per window. Due to this quadratic growth, our window size is
bounded by the rate at which we can perform multiplications.
In addition, our window size must also be small enough that
the delay to receive and autotune one window is not disruptive,
as our system is real-time.

Despite the constraints that Yin and our real-time character-
istic impose, we also require a window size large enough for
low frequency pitches to oscillate multiple times, which allows
Yin to find local minima corresponding to those pitches in the
d(7) function. The lowest note in the classical bass range, E2
(=~ 82Hz), has a period of 4481200 ~ 538 samples. Allowing this
pitch to oscillate twice thus requires at least 1000 samples in
our window.

After testing Yin in software, we found that a window
size of 2048 produced sufficient pitch detection capabilities
to detect low notes, while being feasible to implement on the
FPGA. Furthermore, the delay in auto-tuning one window of

o 20482
this size is at most o0 ~ 0.09s.

B. Choice of Algorithms

A naive approach to pitch detection involves performing
a Fast Fourier Transform (FFT) on the signal and taking
the highest peak. However, taking the strongest FFT peak is
not sufficient to detect the “heard” pitch of a signal due to
intricacies of the human voice; subharmonics and overtones
can often be stronger than the fundamental frequency.

A similarly motivated naive approach to correct the signal
pitch would involve performing an inverse Fast Fourier Trans-
form (IFFT), adjusting all frequencies to align with the quan-
tized scale, and then transforming back to the time-domain
using a FFT. While this method achieves pitch correction, it
does not preserve the timbre of the input signal (i.e., its specific
waveform shape) [7]].

In addition to being algorithmically superior to FFT based
approaches for our particular problem, Yin and PSOLA both
operate completely in the time domain, making them more
natural to implement on the FPGA.

IV. HIGH-LEVEL SYSTEM DESIGN

A system diagram is included in the appendix, which
makes clear how all modules and I/0 systems interact.

A I/O0

We use the INMP441 I2S microphone to capture audio data.
The microphone specification mandates an I°S sequence using
64 cycles of sclk to read one sample from the microphone.
At an audio rate of 44.1KHz, 2268 FPGA cycles (at 100MHz)
pass between samples. Therefore, we use 36 FPGA cycles per
sclk cycle, resulting in one sample every 2304 FPGA cycles,
for an actual sampling rate of 43.4KHz.

To play back pitch-corrected audio directly from the FPGA,
we use a PDM, which supports a frequency range large enough
to convey the human voice. We chose this scheme rather than

a PWM because the PWM’s frequency range was severely
limited to lower frequencies.

Finally, we also support transmitting autotuned audio from
the FPGA via UART over USB. This allows us to play back
autotuned audio as .wav files and collect results for testing.
Because pyserial does not suport transmission of values
larger than 8 bits, we use a module called uart_turbo_tx
that takes a wider value (generallly 16-bit) as input, and sends
it over several distinct UART transmissions. The receiver then
reassembles the bytes into values. This allows us to stream
16-bit audio or pitch data over UART via USB.

B. Window Pipelining and Timing

In order to efficiently stream data through our system,
we pipeline our algorithm on a per-window basis. The main
modules are the I12S receiver, Yin module, and pitch correction
module. These modules are perfect for pipelining as they
shared limited hardware and operate in a sequential order on a
given window. For reasons mentioned below, we also wait an
extra window before actually outputting the signal produced
by PSOLA.

C. BRAM Usage for Signal I/0

Due to the large window size of 2048, we use BRAMs
to store all input signals as well as output signals produced
by modules. An especially important aspect of this is how
the PSOLA signal is outputted: PSOLA can actually produce
windows with less than 2048 samples, which can cause issues
with outputting a continuous stream of audio in real-time. To
fix this, we store the PSOLA output in a BRAM, effectively
used as a FIFO buffer, and wait an extra period at first before
outputting signal so that the buffer always contains roughly
2048 samples. Note that PSOLA’s output length can never be
less than 2~(1/12)/2 2048 ~ 1990 nor more than 2(1/12)/2 .
2048 ~ 2109 since the maximum shift in period will be half
a semitone. Along with the assumption that the distribution
of output lengths across many periods will randomly vary and
thus even out, we can reasonably assume that a fixed-size FIFO
will neither overflow nor have much less than 2048 samples.

V. PITCH DETECTION: YIN AUTOCORRELATION
A. Algorithm

In addition to computing the difference functions for each
possible value of tau, YIN minimizes the cumulative difference
(obtained by dividing this difference over the prefix sum
of all previous differences up to and including the current
difference), to mitigate the effect of resonance at the first
formant. The fundamental period is either the period that
minimizes this cumulative difference, or period that represents
the first local minimum underneath a cumulative difference
value of 0.1, to avoid subharmonic (octave) error from higher
periods.

We adapted Yin for hardware by splitting it into two phases:
difference function calculatation and CMNDF mininum find-
ing.



B. Difference Function Calculation

We make use of two BRAMs: one to hold samples, the other
to hold the intermediate difference calculations. The first phase
occurs as the window is being streamed in. There are 2304
cycles before the next sample to compute the current sample’s
contribution to every difference function. This involves reading
back a prior sample from BRAM (2 cycles), subtracting the
two values (1 cycle), squaring the result (1 cycle with DSP),
reading the current difference value for that 7 from BRAM
(2 cycles, started concurrently with subtraction), adding the
squared value to the current difference (1 cycle), and writing
back the result (1 cycle). In the worst case, with a period of
2048, this calculation will happen 2048 times. We pipelined
this calculation over 2-cycle stages, so the total number of
cycles required for n serial computations is 2n + 4. We chose
n = 512 to safely remain under the cycle count of 2304. This
requires four computations to be done in parallel. We sharded
sample data across 2 BRAMS to use all four read ports on
the same cycle, and used 4 DSPs. We chose to process 4
consecutive sample values in parallel, to take advantage of
the fact that each sample would be unique mod 4 and the
period value (the difference between the current sample index
and that sample index) would be a different, but still unique,
number mod 4. This allows for an intuitive addressing scheme
for both the sample and diff BRAMs and an consistent way
to mux between them.

C. Cumulative Difference/Minimum Finding

The next phase occurs after the current window has been
streamed in and calculates the cumulative difference and
minimum tau in a single loop. Because it uses the previous
window’s diff values as the next window is being streamed
in, we require two more diff BRAMs, and will alternate
reading and writing from each BRAM every window so the
previous window’s diffs are preserved for the duration of
another window.

We first read the diff value from BRAM (2 cycles), add
it to an accumulating prefix sum register (1 cycle), divide
the diff value by this prefix sum (8 cycles), and compute
one iteration of the min-finding algorithm (comparing this
value to the previous minimum and updating the minimum
tau if it is lower, with the early exit conditions specified in
the algorithm). Since we have four ports available from these
diff BRAMS, we perform these four calculations in parallel.
Because the critical path is in the min-finding phase, we split
it up into two cycles (one for the first two diffs, the other for
the next two diffs). This requires 12 cycles per computation,
for a total of 6144 cycles for 512 serial computations, which
leaves. about 4.7 million cycles in the current window for the
PSOLA algorithm to operate.

The bottleneck of this computation is the division. We wrote
a fixed-point divider that utilizes a truncated version of the
shift-and-subtract algorithm, taking advantage of the fact that
the dividend will always be less than or equal to the divisor
to improve division latency.

VI. PITCH CORRECTION: PSOLA

We implement PSOLA in its standard form while also mak-
ing a number of optimizations and simplifications, considering
the trade-off between output quality and computational effi-
ciency. A key optimization is that we omit the autocorrelation
analysis generally required in PSOLA through a non-standard
reuse of the Yin output.

A. Algorithm

The first step of performing pitch correction is to ac-
tually find the desired frequency shift; note that for au-
totuning, we quantize at the semifone granularity. Assum-
ing a reference note of A4 at 440 Hz, corresponding to
1/(440 Hz) x 44.1 kHz ~ 110 samples, we find the closest
value 110 x (21/12)Z for i € Z to the period Py inferred by
YIN for the current window. (Note that 2!/12 corresponds to
the ratio in periods of adjacent semitones.) We refer to this
shifted period as Pg.

After calculating the shifted period Ps, PSOLA computes
the shifted signal using the following algorithm. Note that this
is for a single window, i.e. the pitch period is assumed to
be constant. We denote the window length as W, which we
choose as 2048.

1) Initialized processed as array of zeroes with length
Wf;—i. signal is the original signal for the window of
length W.

2) 10, 5+ 0.

3) While ¢ < W — Py:

a) processed[j—Py : j+Py| + signalli—Py :
i+ Py] *window
b) i< i1+ Py, j<+ j+ Ps.

Note that window is the window function used for interpo-
lation — for this implementation, we choose to use the Barlett
window of length 2Py

if 0 <i< Py,

i
windowparen (i) = { o if Py <n<2P
0% ~ Y,

2= 7
which peaks at index Py and linearly decays to zero on either
side (i.e. a triangular window).

This implementation of PSOLA is heavily inspired by [8]],

with two key changes.

o We start processing windows centered at Py rather than
at Py /2 as in [8], so we do not have to access a previous
window of data. We found no significant differences in
audio quality from this change.

o Some samples at the beginning and end of the output do
not have peaks on both sides of them in the given window
— the original PSOLA algorithm multiplies all original
signal values by the interpolation window before adding
them to the processed signal, but we only perform this
multiplication when there are indeed peaks on both sides
of a sample (i.e. corresponding to interpolation). This has
the effect of not decreasing the amplitude of the samples
at the beginings and ends of windows, which improved
audio quality.



B. Hardware Implementation, Algorithm

PSOLA on the hardware level operates in two main phases.

1) Initial Computations: Compute the shifted period Psg,
used as mentioned above in the PSOLA algorithm, and the
inverse of the original period 1/Py, which is repeatedly used
for computing the Barlett window values (e.g. value at index
i < Py is i/Py. To find Ps we use a searcher module which
iterates through ROM lookup table of “correct” periods until
the closest one to Py is found and outputted. In parallel to
this searcher, we use a fixed point divider to compute 1/Py
over multiple cycles.

2) PSOLA Algorithm: After the initial computations are
complete, we run the previously described PSOLA algorithm.
We iterate over ¢ and j, and then iterate over the signal values
in each window of length 2Py-. The algorithm pseudocode
describes multiplying the window array by the corresponding
slice of the signal. In reality, we iterate over each index in the
window, multiply the signal value at that index by the Barlett
window function value, and add to the processed signal. We
perform nearly all intensive operations sequentially due to the
high number of cycles (roughly 5 million) available to us.

C. Hardware Implementation, I/O and BRAM Interfacing

Note that the above implementation is complicated by the
fact that signal and output values are stored in BRAMs. To
handle read and writes efficiently, we created a BRAM wrap-
per module around the PSOLA module: this module contains
one BRAM which stores signal values and one BRAM for
storing PSOLA output. We pipeline the interface between
the signal and output BRAMs and PSOLA, as well as the
logic within PSOLA, to avoid the two-cycle delay associated
with BRAM reads and writes. As a result, the number of
cycles this pipelined and optimized PSOLA implementation
takes is roughly 2W, where W is the window size: this is
extremely low compared to the millions of cycles allowed for
the computation!

Additionally, as mentioned earlier, we pipeline windows in
our higher-level system, i.e. PSOLA will run on window %
while window 7 + 1 is being streamed in. Thus, the signal
BRAM in the wrapper module is actually of depth 2W/,
where W is the window size: each input window is read
into an alternating half of the BRAM while the other half
(corresponding to the previous input window) is used as input
to PSOLA. Reading in the signal values occurs fully in parallel
with the PSOLA-related operations in the wrapper module to
avoid high cycle delays. For PSOLA-related operations, there
are two main phases: the core PSOLA module first runs until
completion, after which the processed signal values stored in
the output BRAM are iteratively outputted from a port in the
BRAM wrapper module.

1) On-Board Optimizations: Several system components
were added to the design to tackle the unique complications of
PSOLA “on the board”. First, audio data is read out from the
serialization buffer 2048 times per window, which will start
pulling garbage if fewer than 2048 samples are written back
from PSOLA. This results in several audio discontinuities,

or pops, which makes the output unpleasant to listen to.
Instead of incrementing the read pointer at this point, we
modify the buffer to play back a cache of previous audio
values to smooth over the difference in window size until the
write pointer catches up. In addition, we add a postprocessing
step that replaces all audio output values less than a certain
threshold (0x00008000) with the median possible audio
value (0x80000000, for 32 bits) to remove any remaining
discontinuities.

D. Additional Modules

Additional modules not covered in detail include an I%S
receiver, a 16-bit UART transmitter, a pipelined fixed-point
divider, a specialized ring buffer for improving PSOLA output,
and a “searcher” for finding the closest semitone to a given
pitch.

VII. EVALUATION
A. Software Simulations

The preliminary evaluation of our system design was
through our software simulations. As mentioned previously,
we wrote a full software simulation of our system before
writing any RTL: this process allowed us to evaluate the
correctness of our algorithms through the generated, autotuned
audio.

B. Testbenching

One key component of evaluating our actual design written
in System Verilog was testbench output. For instance, Yin and
PSOLA were both testbenched in detail to ensure correctness.
Yin values were compared to the software implementation. For
PSOLA, the waveform produced by the hardware algorithm
was plotted and compared to the original signal. This plot
was also compared to that of the software implementation.

Original Signal

s0000 — orgna sl
w000
s0000
4 000
2 30000
25000
20000

15000

o 20000 40000 60000 80000 100000
sample

Processed Signal

20000 Processed signal

10000

Amplitude

20000

30000

o 20000 40000 60000 80000 100000
sample

Fig. 1. Plots of a sample input waveform and the resulting output waveform
produced by the PSOLA algorithm. The output is offset by one window —
the first 2048 samples in the output audio are dummy placeholder values.
Aside from one irregular spike, PSOLA clearly preserves the timbre of the
input signal. Pitch-shifting is hard to observe from the waveform, but was
clearly noticeable when the saved .wav file was played.

Generated plots such as the ones above allowed us to verify
that the hardware PSOLA implementation preserved the timbre
of input audio while also not producing any artifacts. Similar
testbenching for wrapper modules and the fully integrated



system also allowed us to confidently evaluate our end-to-
end pipeline as producing autotuned, timbre-preserving output
audio.

C. Utilization

Our design uses 10 DSP blocks (8.33% of maximum),
6 18KB BRAM tiles, and 18 36KB BRAM tiles (28% of
maximum). Aggressive pipelining allows us to minimize DSP
utilization while achieving the compute density needed for
Yin. Meanwhile, we use BRAM more heavily to duplicate
signal values, allowing different modules to access windows
concurrently. We also use BRAM to “smooth” over PSOLA
output via a specialized FIFO. By rewriting PSOLA to output
values at a consistent rate, we could eliminate this buffer.
However, attempts at this made PSOLA much more difficult
to test, as outputting samples at a slower rate dramatically
increased simulation time.

D. Physical Evaluation

The most important aspect of our evaluation was in the
actual physical system, which was especially important for
I/O — previous evaluation used audio not recorded through a
mic.

While some static was present, we were able to read high-
quality audio signals from the microphone. The static present
did not significantly interfere with the operations of the Yin
or PSOLA algorithms.

Our system also produces relatively clean, autotuned audio,
as is demonstrated in our final video. There are some minor
artifacts such as “humming” in the produced audio, but the
overall timbre of sound is quite similar to that of a human
voice (individuals can be distinguished by their autotuned
output). Additionally, the system clearly “snaps” each window
of audio to the closest semitone, which is especially apparent
when a pitch slide is sung into the microphone.

However, there were a few key limitations that our on-device
system has.

1) Popping: There are occasional “popping” sounds, which
manifest themselves especially prominently after sudden
volume changes. The measures taken to cover these up
produce metallic artifacts. We like these effects, because
they sounds like T-Pain, but it is far from seamless.

2) Filtration: We attempted to process out noise and pops
with a band-pass filter over the range of frequencies
that Yin measures, using the Butterworth polynomial to
determine the pole locations. This removed the popping,
but filtered out a band of overtones that made the
resulting audio partially lose its human timbre.

3) System Robustness: Our system is very sensitive to the
exact amplitude and location of recording, and some-
times produces inconsistent results on input samples
recorded in different ways (e.g. different microphone
location or angle). This likely has to do with limitations
in the clipping, filtering, and communication protocols
which were used to optimize the on-device system.

Conclusion: While there are some artifacts and audio
quality issues, Frequency Perfected Generated Audio (FPGA)
works as intended in software, hardware simulation, and on the
actual FPGA, autotuning input vocals in a timbre-preserving
manner!

VIII. IMPLEMENTATION INSIGHTS AND REFLECTION

Measure Twice, Cut Once: very early on in the project, we
worked for several weeks writing software simulations of our
algorithms. Firstly, this served to confirm that we understood
the algorithms and were getting the expected results. Second,
it is much faster to iterate in software versus hardware.
Therefore, when we found algorithmic issues or had make
algorithmic changes, we were able to to so easily. When it
came time to writing RTL, we had a very clear idea of timing
specifications, connections between modules, and exactly what
calculations each module needed to perform.

Leverage cocotb: We heavily leveraged the fact that
cocotb testbenches allow for full use of python function-
ality. An extremely useful aspect of this was saving testbench
output as .wav files and playing it back to identify errors.
Additionally, plotting produced waveforms was extremely
useful in debugging PSOLA.

Write Software Simulations in a Hardware Friendly
Way: While software simulations confirmed our algorithmic
design, many implicit operations were not hardware-friendly.
For example, using a single numpy function often translated
to a nontrivial module and integration task in hardware. We
found that writing very simple, clear simulations involving
only basic operations, such as arithmetic and list indexing,
allowed us to translate simulations to RTL more smoothly.

IX. CONCLUSION

A. Summary

In summary, Frequency Perfected Generated Audio is a
real-time autotune system consisting of hardware-optimized
versions of the Yin and PSOLA algorithms, using the 12S
and UART protocols for communication with an INMP441
microphone and an external audio sink, respectively. Key
design choices include pipelining computations at a window
level, choice of window and audio parameters, as well as
BRAM design for signal storage. At a lower level, extensive
pipelining, fixed-point representations, and other algorithm
optimizations allowed Yin, PSOLA, and integration modules
to run within the cycle limit for one audio window.

As thoroughly shown in our evaluation section, our system
works as desired, producing a relatively clean, autotuned
stream of audio based on the microphone input. Modules
were also shown to work in software and cocotb simulation.
As discussed in the evaluation section, our on-device system
did have limitations in audio quality as well as produced
audio artifacts in the output: future work could look to add
further filtering and artifact-correction mechanisms to produce
a cleaner output signal.



X. CONTRIBUTIONS

All team members worked on high-level system design.
Shruti worked on the Yin modules, Felix worked on I/O han-
dling and end-to-end module integration, and Aarush worked
on the PSOLA modules.

XI. ACKNOWLEDGMENTS

We sincerely thank the course staff for their support in office
hours and feedback on project deliverables. We also found
Terry Kong’s description of TD-PSOLA [8] particularly useful
for deriving a hardware friendly implementation.

REFERENCES

[1] InvenSense. Omnidirectional Microphone with Bottom
Port and 12§ Digital Output, 10 2014. Rev. 1.1.

[2] Charles Dodge and Thomas A. Jerse. Computer mu-
sic: Synthesis, composition, and performance. Schirmer
Books, 1997.

[3] Alan V. Oppenheim and Ronald W. Schafer. Discrete-time
signal processing. Pearson, 2009.

[4] Alain de Cheveigné and Hideki Kawahara. Yin, a fun-
damental frequency estimator for speech and music. In
Journal of the Acoustical Society of America, pages 1917—
1930, 2002.

[5] Alain Cheveigné and Hideki Kawahara. Cumulative mean
normalized difference function in yin algorithm. JASA,
2002.

[6] F. Charpentier and M. Stella. Pitch synchronous overlap
and add method for pitch modification of speech. ICASSP,
pages 19-24, 1986.

[7] Julius O. Smith. The inverse fft for audio pitch correction.
In AES Convention Paper, pages 101-108, 2003.

[8] Terry Kong. Phase vocoder implementation with filwt and
td-psola. https://web.stanford.edu/class/ee264/projects/
EE264_w2015_final_project_kong.pdf, 2015.

XII. APPENDIX: SYSTEM DIAGRAM

® Yin
INMP441 saata
s i2s_receiver sample
(Peripheral) selk ]
fp_div
WS sample_valid
11
taumin taumin_valid
bufferizer
bram_wrapper
32
— pdm audio_valid out_val PSOLA searcher | fp div
spk_out 2 13

ring_buffer

audio out_addr_piped

13 32
write_val valid_write read_addr out_val

valid_out_piped
Output BRAM Signal BRAM

~— uart_turbo_tx
uart_txd

*clk_in and rst_in signals omitted


https://web.stanford.edu/class/ee264/projects/EE264_w2015_final_project_kong.pdf
https://web.stanford.edu/class/ee264/projects/EE264_w2015_final_project_kong.pdf

	Safety
	Introduction
	Design Choices
	Parameter Selection
	Audio Parameters
	Window Size

	Choice of Algorithms

	High-Level System Design
	I/O
	Window Pipelining and Timing
	BRAM Usage for Signal I/O

	Pitch Detection: Yin Autocorrelation
	Algorithm
	Difference Function Calculation
	Cumulative Difference/Minimum Finding

	Pitch Correction: PSOLA
	Algorithm
	Hardware Implementation, Algorithm
	Initial Computations
	PSOLA Algorithm

	Hardware Implementation, I/O and BRAM Interfacing
	On-Board Optimizations

	Additional Modules

	Evaluation
	Software Simulations
	Testbenching
	Utilization
	Physical Evaluation

	Implementation Insights and Reflection
	Conclusion
	Summary

	Contributions
	Acknowledgments
	Appendix: System Diagram

