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Abstract—Motion Sentry: A Real-Time 3D Object Tracking 
System Using FPGA

The Motion Sentry is an advanced tracking system that is 
made up of camera-based motion detection, servo motor 
control, and laser sensing to allow for real-time 3D object 
tracking. The full system utilizes an FPGA to run a 
pipelined background subtraction algorithm to identify 
motion in the x-y plane. With this data, the FPGA relays the 
position to a servo motor which translates the position into 
motion using pulse-width modulation (PWM). The servo 
adjusts the orientation of a LiDAR sensor to capture z-axis 
depth information about the detected object and sends that 
back to the FPGA through a UART interface.

The system will take the depth information and display the 
results via 8-bit numerical images that represent key 
parameters such as object distance or velocity, providing 
clear and concise monitoring of the object and the systems 
performance.

The Motion Sentry effectively uses the FPGAs ability to 
handle high-bandwidth, computationally intensive tasks 
such as video processing and real-time pixel classification to 
create a tracking system. By combining parallel processing, 
external DRAM for memory management, and integrated 
control of servo and LiDAR systems, the Motion Sentry 
demonstrates a sophisticated design optimized for digital 
systems and advanced motion tracking applications.

I.​ INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have long been 
used with advanced sensor technology to track objects in a 
variety of scenarios. Due to the FPGAs parallel processing 
capabilities and reconfigurability, they are ideal for 
applications requiring high-speed data processing and low 
latency. When combined with Light Detection and Ranging 
(LiDAR) sensors, to provide precise depth information, the 
combined system of FPGA, servo, and LiDAR is capable of 
achieving a comprehensive understanding of a multitude of 
environments.

In 2012, a study demonstrated the implementation of 
real-time background subtraction on an FPGA using the 
Horprasert model, achieving effective motion detection for 
video surveillance applications. The authors noted that “the 
proposed hardware-friendly model achieved robust 
segmentation and shadow detection in real time, with a low 
hardware cost” [1]. This work highlights the capability of 
FPGAs to efficiently execute a complex mathematical 
algorithm, such as background subtraction, while 
maintaining real-time performance.

Additionally, the defense sector has extensively adopted 
FPGA technology for object tracking and detection. Since 
an FPGA can handle large data streams and perform 
complex algorithms in real-time, they are ideal tools for 
usage in radar and signal processing applications. This 
allows for precise target detection, tracking, and 
discrimination capabilities in aerospace surveillance and 
defense systems [2].

Building and borrowing from these ideas, the Motion 
Sentry project aims to develop a small-scale real-time 3D 
object-tracking system. By using an FPGA-based 
background subtraction for x-y plane motion detection and 
integrating servo-controlled LiDAR for z-axis depth 
information, this system attempts to achieve efficient and 
accurate tracking in most environments.

II.​ PARTS OF SYSTEM

A.​ Background Subtraction (Ezekiel)
 Background subtraction aims to identify moving objects 

in a static scene by comparing each pixel in incoming 
frames to a reference background model. The process of 
creating this requires mathematical modeling, efficient 
memory management, and pipelining to meet the FPGAs 
restraints in timing and resources. To create a background 
subtraction algorithm for the FPGA is a complicated task 
and requires meticulous design and coordination between 
modules. The algorithm used in this implementation is 
adapted from Horprasert et al.’s work, which introduces a 
robust approach for background modeling and shadow 
detection by incorporating metrics like brightness distortion 
and chromaticity distortion [3]. This algorithm is well-suited 
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for FPGA implementation because can be parallelized in 
hardware, making it efficient for real-time applications.

 To classify the pixels as foreground, background, 
shadow, or highlight each pixel is compared against a 
statistical background model, and a set of two other metrics 
are calculated using the data from the background model – 
brightness distortion (𝛼) and chromaticity distortion (CD). 
With all of this information, the system can tell which 
objects are moving in the static frame. This stage is pivotal 
for achieving accurate foreground extraction to track 
objects.

1.​ Pixel Classification Logic:​
The pixel classification module uses the 
calculations of brightness ( )  and chromaticity α
(CD) distortions for each pixel using the following 
equations:
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○​ Thresholds are applied to α and CD to 
classify pixels:

■​ If 𝛼 and CD fall within certain 
thresholds, the pixel is classified 
as part of the static background.

■​ If 𝛼 is low but CD is within the 
range, the pixel is categorized as 
a shadow.

■​ Pixels with high 𝛼 may be 
classified as highlights.

■​ High 𝛼 and CD indicate a 
foreground object.

○​ This module outputs the classification 
result for each pixel, which can be used to 
generate a foreground mask.

For example: 

if (alpha < THRESH_ALPHA && cd < THRESH_CD) 
begin
    classification <= BACKGROUND;
end 

2.​ Statistical Background Modeling :
○​ Mean (E) and SD (𝜎) are computed for 

each pixel channel (Red, Green, Blue) 
over multiple frames. These metrics are 
calculated before tracking can begin and 
are stored in the DRAM.

3.​ Newton-Raphson Square Root Module:
○​ The square root operation, critical for 

computing and CD, uses the σ 
Newton-Raphson method for iterative 
approximation.​
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4.​ DRAM Storage and Access:
○​ All intermediate values, such as sums (∑ 

I), squared sums (∑ ), and statistical 𝐼2

results (mean, variance), are stored in 
DRAM for every pixel. These values are 
accessed and updated for each new frame.

5.​ Pipeline and Synchronization:
○​ The system is pipelined to ensure that 

accumulation, model update, 
classification, and output occur 
concurrently. Proper synchronization 
between stages is critical to avoid timing 
conflicts and data overwrites.​

Memory Considerations for FPGA-Based Background 
Subtraction

Implementing a background subtraction algorithm for 720p 
video resolution on an FPGA requires extensive memory 
resources to store and manage pixel-level data efficiently. 
Each frame at 720p resolution consists of 921,600 pixels, 
and the algorithm demands both intermediate and final 
values to be stored for every pixel. The memory 
requirements stem from the need to maintain running sums, 
sums of squares, and distortion values for chromaticity and 
brightness, which are critical for real-time 
foreground-background classification.

Background Model Memory Analysis

The memory requirements for each pixel in the background 
model include:

1.​ Running Values (Stored Temporarily for 
Ongoing Calculations):

○​ Running Sums (sum_R, sum_G, 
sum_B):

■​ Each channel (R, G, B) uses 48 
bits per pixel.

■​ Total memory for running sums:​
48 bits/pixel/channel × 3 
channels × 921,600 pixels ≈ 
132.7 Mb.

○​ Sums of Squares (sum_sq_R, 
sum_sq_G, sum_sq_B):

■​ Each channel (R, G, B) uses 64 
bits per pixel.

■​ Total memory for sums of 
squares:​
64 bits/pixel/channel × 3 
channels × 921,600 pixels ≈ 
176.9 Mb.

○​ Distortion Metrics (sum_CD, sum_BD, 
sum_sq_CD, sum_sq_BD):

■​ Distortion sums (sum_CD, 
sum_BD) use 48 bits each, and 
sums of squares of distortions 



(sum_sq_CD, sum_sq_BD) 
use 64 bits each.

■​ Total memory for distortion 
metrics:​
(48 bits + 64 bits)/pixel × 2 
metrics × 921,600 pixels ≈ 103.7 
Mb.

2.​ Total Memory for Running Values:​
132.7 Mb + 176.9 Mb + 103.7 Mb ≈ 413.3 Mb.

3.​ Final Stored Values (Mean, Standard Deviation, 
Square Root Outputs):

○​ Means (mean_R, mean_G, mean_B):
■​ Each channel (R, G, B) uses 32 

bits per pixel.
■​ Total memory for means:​

32 bits/pixel/channel × 3 
channels × 921,600 pixels ≈ 88.4 
Mb.

○​ Standard Deviations (SD_alpha, 
SD_CD):

■​ Total memory for square root 
outputs:​
32 bits × 2 metrics × 921,600 
pixels ≈ 7.4 Mb.

4.​ Total Memory for Final Stored Values:​
88.4 Mb + 7.4 Mb ≈ 95.8 Mb.

Summary

●​ Memory for Running Values: ≈ 413.3 Mb
●​ Memory for Final Stored Values: ≈ 95.8 Mb
●​ Total Memory Usage: ≈ 509.1 Mb

DRAM Integration

The FPGA interfaces with DDR3 DRAM using a memory 
controller to handle the large data volume. The traffic 
generator, stacker, and unstacker modules manage read and 
write operations to and from DRAM. For each frame, these 
modules coordinate the retrieval of pre-computed 
background model values (e.g., mean and standard 
deviation) and store updated values for subsequent frames.

Module Latency Analysis

Timing and pipelining are critical for operation of the 
background subtraction algorithm on FPGA hardware. This 
section summarizes the latency of key modules involved in 
the design.
1. Newton-Raphson Square Root (Sqrt)​

The Sqrt module utilizes the Newton-Raphson method to 
calculate square roots for fixed-point values in Q16.16 

format. The iterative algorithm requires 16 iterations to 
converge for this precision level. In simulation division 
happens in one cycle so the latency is only 18 cycles but 
given division takes ~ 16 cycles the total latency is:

16 *( Initialize (1) + Division (16) + Finalize (1)) = 288 
Cycles

2. Chromaticity Distortion

The ChromaticityDistortion module calculates 
chromaticity distortion (CD) by determining deltas for the 
red, green, and blue channels, squaring them, summing 
them, and computing the square root. The operations 
include:

●​ Delta and Delta-Squared Calculation: These 
involve additions, multiplications, and divisions for 
each channel. The division latency for each 
channel contributes 16 clock cycles, totaling 48 
clock cycles.

●​ Summing the Deltas: Adding three delta-squared 
values contributes to 1 clock cycle.

●​ Total Latency: 48 (channel-wise delta calculation) 
+1 (summing) +288 (square root)= 337 clock 

3. Brightness Distortion

The BrightnessDistortion module calculates 
brightness distortion (α) by normalizing the input pixel 
values and performing a division to determine the brightness 
distortion ratio. Key operations include:

●​ Numerator and Denominator Calculation: 
These involve multiplications and divisions for 
each channel. The division latency for each 
channel is estimated to be 16 clock cycles, 
resulting in 48 clock cycles for all three channels.

●​ Final Division: The calculation of α=N/D involves 
one more division, taking 16 clock cycles.

●​ Total Latency: 48 (channel-wise division) +16 
(final division)=64 clock cycles

4. Pixel Classification

The PixelClassification module determines 
whether a pixel belongs to the background, foreground, 
shadow, or highlight. The operations include:

●​ Buffering input values (1 cycle)
●​ Threshold calculation for α and CD (2 cycle)
●​ Classification logic based on thresholds (1 cycle)
●​ Output classification and validation (1 cycle)

The total latency is: 5 cycles



5. Background Model Latency

Since the background model calculations are performed 
prior to real-time operations, its latency does not directly 
impact the system's performance during tracking. The 
module can take as many clock cycles as needed to 
complete its operations without imposing strict timing 
constraints. This design decision allows for a more 
comprehensive and resource-efficient calculation of the 
background statistics, leveraging the available memory and 
computational bandwidth without compromising the 
real-time aspects of the overall system.

B.​ Servo-Control (Ryan)
The servo control subsystem is responsible for the 

dynamic orienting of the LiDAR sensor to track the detected 
object in real-time. This involves processing the center of 
mass (CoM) coordinates from the background subtraction 
module, converting these coordinates into precise PWM 
signals, and ensuring accurate servo actuation to keep the 
LiDAR aligned with the detected object.

1. CoM to PWM Mapping logic
The CoM to PWM mapping module serves as the 

bridge between the 2D pixel coordinates of the CoM in the 
video frame and the corresponding angular positions 
required to reorient the servo motors. This process ensures 
the LiDAR remains focused on the moving object while 
accounting for the camera’s field of view (FoV) and the 
mechanical constraints of the servos. 

The mapping process translates the pixel range of 
the CoM, : 0 to 1280 and y: 0 to 720, to the calibrated 𝑥
servo angles ranges [ ] and . The 𝑚𝑖𝑛
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linear transformation ensures predictable servo motion 
across the entire camera FoV.
The Linear mapping equations are defined as:
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2. PWM Signal Generation
The servo control module generates PWM signals 

to drive the motors based on the computed  and  𝑥
𝑝𝑤𝑚

𝑦
𝑝𝑤𝑚

values. A high-resolution counter ensures precise timing for 
PWM signals.

Key specs:
●​ Frequency: 50Hz (20 ms period)
●​ Duty Cycle Range: 1 ms to 2 ms pulse width 

(5-10% duty cycle)
●​ FPGA Clock frequency: 200 MHz

○​ Using 100 MHz to create this frequency 
for the camera limits our further use of it

●​ Angular precision: Achieves accuracy within 
0.001°, leveraging high clock resolution for duty 
cycle adjustments.

Pseudocode:

always_ff @(posedge clk_camera) begin
    if (counter+1 == (20_000_000)) begin
        counter <= 0; // Reset after 20ms
    end else begin
        counter <= counter + 1;
    end
end
assign signal_out = counter < pwm_signal;

Calibration Process:
The calibration process ensures that the servo motors 
accurately align with the camera’s field of view and track 
moving objects effectively. This was achieved through a 
systematic approach:

1.​ Midpoint Alignment: Identifying the PWM values 
that positioned the servos to point at the exact 
center of the camera’s frame. This served as the 
baseline for calibration.

2.​ Boundary Identification: The PWM values 
corresponding to the topmost, bottommost, 
leftmost, and rightmost points of the camera’s field 
of view were determined. These boundary values 
were carefully selected to ensure they were 
symmetrically spaced from the midpoint values.

3.​ Validation: Multiple iterative tests were conducted 
to verify that the mapped PWM values consistently 
directed the servos to track moving objects across 
the entire range of the camera’s field of view. 
Adjustments were made to fine-tune the calibration 
and ensure robust tracking performance.

3. Synchronization with LiDAR
Synchronization between the servo control subsystem and 
the LiDAR sensor is crucial for maintaining accurate 
tracking and depth measurement of the moving object. The 
system operates in real-time, requiring seamless 
coordination to ensure the LiDAR sensor is always correctly 
oriented toward the target as it moves within the camera’s 
field of view.
Importance of Synchronization:

●​ Accurate Depth Data Acquisition: The LiDAR 
must focus directly on the tracked object. 
Misalignment can result in incorrect distance 
measurements or failure to track an object.



●​ System Efficiency: Proper synchronization 
ensures that every depth measurement is 
meaningful, helping to optimize the overall 
performance of the system.

4. Pipeline Integration
The servo control subsystem is seamlessly integrated into 
the FPGA’s processing pipeline, ensuring real-time 
performance and efficient operation by overlapping tasks 
across multiple stages. Data from the background 
subtraction module is continuously processed to identify 
moving objects and determine their center of mass (CoM) 
coordinates, which are then translated into servo angles and 
synchronized with the LiDAR system for depth 
measurements. Each component operates in parallel, 
minimizing delays and enabling precise tracking in a 3D 
space.

C.​ Lidar and Display (Makar)

To establish communication between the LiDAR and 
FPGA, the UART protocol was employed with a baud rate 
of 115200, 8 data bits, and 1 stop bit. Each data frame 
transmitted by the LiDAR consists of 9 bytes, containing 
information such as the distance value, signal strength, chip 
temperature, and a checksum for error detection.
For this project, the TFmini-S LiDAR module from 
Benewake (Beijing) Co., Ltd. was selected due to its 
excellent tracking precision, wide range, and 
cost-effectiveness. The module uses a straightforward 
interface with two signal wires and two power wires. The 
wiring configuration is as follows:

•​ Black wire: Ground, connected to the GND pin on 
the PMOD-B row.

•​ Red wire: Power, connected to the +5V on the 
FPGA.

•​ Green wire: Data transmission from FPGA to 
LiDAR or clock signal, depending on the mode.

•​ White wire: Data transmission from LiDAR to 
FPGA.

The TFmini-S supports three operational modes:

1.​ UART mode: Data is transmitted as a 
string.

2.​ I²C mode: Suitable for lower pin count 
requirements.

3.​ Custom output settings.
Experimental analysis revealed that the UART mode 
consistently transmitted frames in a little-endian format, 

with each frame consisting of 9 bytes sent consecutively 
without interruption. The format of the bytes is as follows:

•​ Byte 0: Frame header (0x59).

•​ Byte 1: Frame header (0x59).

•​ Byte 2: Lower 8 bits of distance.

•​ Byte 3: Higher 8 bits of distance.

•​ Byte 4: Lower 8 bits of signal strength.

•​ Byte 5: Higher 8 bits of signal strength.

•​ Byte 6: Lower 8 bits of temperature.

•​ Byte 7: Higher 8 bits of temperature.

•​ Byte 8: Checksum (sum of previous 8 bytes, lower 
8 bits).

To handle this communication, a LiDAR UART receiver 
module was developed. This module ensures alignment 
with the incoming frames by verifying the frame headers 
(0x59) and confirming the checksum. If the validation fails, 
the module discards the entire frame.
Additionally, the LiDAR supports command-based 
communication via UART, with frames structured as 
follows:

•​ Byte 0: Frame header (0x5A).

•​ Byte 1: Frame length (including header and 
checksum).

•​ Byte 2: Command identifier.

•​ Bytes 3 to N-2: Data segment (little-endian 
format).

•​ Byte N-1: Checksum (sum of all preceding bytes, 
lower 8 bits).

A dedicated module was implemented to send commands to 
the LiDAR, enabling functionalities such as:

•​ System reset: 5A 04 02 60.

•​ Set frame rate: 5A 06 03 LL HH SU.

•​ Set baud rate: 5A 08 06 H1 H2 H3 H4 SU.

•​ Obtain firmware version: 5A 04 01 SF.
After evaluating all communication options, UART mode 
was selected for its simplicity and robustness. A logic 
analyzer was used to validate the consistency of UART 
packets and ensure adherence to protocol specifications.

Display System
The display system communicates with the FPGA via the 
HDMI protocol, with the goal of overlaying text such as 



distance measurements onto a live video feed. Initially, the 
implementation used sprite sheets to display digits (0-9). 
The sprite sheet approach involved converting an image into 
a .mem file in binary colors, minimizing the data file size 
using a custom script. However, issues with BRAM 
utilization arose during this process.
To address these challenges, the team transitioned to a 
vector-based graphics approach. Instead of using 
pre-rendered sprites, the module hardcoded the line 
segments necessary to render each digit. When displaying 
data, pixel values from the camera feed were dynamically 
replaced with white pixel values to represent the digits. This 
approach proved more efficient and avoided BRAM 
limitations, successfully enabling the display of numerical 
data on the video output.

To display numerical digits, the seven-segment digit format 
was employed, similar to the design used on the built-in 
LED seven-segment displays available on the FPGA. The 
vertical segments occupy 80% of the total height, leaving 
10% margins at both the top and bottom. Similarly, the 
horizontal segments span 40% of the total width, with 30% 
margins on the left and right sides. This layout ensured a 
clear and proportional digit representation on the display.

Binary to Binary-coded decimal conversion
The LiDAR outputs data in a 16-bit binary format, which 
needs to be converted into a human-readable decimal format 
for display. To achieve this, a double-dabble algorithm 
module was implemented to convert the binary numbers 
into binary-coded decimal (BCD) format. In BCD, each 
digit of a decimal number is represented by a 4-bit binary 
equivalent.
Among the various coding schemes available for BCD, the 
project utilized the 8-4-2-1 coding method, where each 
decimal digit is directly represented by its binary 
counterpart as follows:

•​ 0: 0000

•​ 1: 0001

•​ 2: 0010

•​ 3: 0011

•​ 4: 0100

•​ 5: 0101

•​ 6: 0110

•​ 7: 0111

•​ 8: 1000

•​ 9: 1001

The double-dabble algorithm is a methodical approach to 
convert binary numbers into Binary-Coded Decimal (BCD) 
format. It operates by recursively shifting the binary number 
string to the left while simultaneously adjusting the BCD 
representation. The process begins with the least significant 
bit (LSB) of the binary number, and as each bit is shifted, it 
is appended to the BCD representation.​

To ensure accurate conversion, the algorithm applies a 
critical step: whenever a digit in the BCD representation 
reaches or exceeds the value of 5, 3 is added to it. This 
addition ensures that the BCD representation aligns with the 
8-4-2-1 coding scheme after the next shift, as shifting a digit 
greater than or equal to 5 by one position would otherwise 
produce an invalid BCD digit.
The steps of the algorithm can be summarized as follows:

1.​ Initialization: Start with the binary 
number and an empty BCD register.

2.​ Bit Shifting: Shift the binary number left 
by one bit, moving the shifted bit into the 
appropriate position in the BCD register.

3.​ Adjustment: Check each digit of the 
BCD. If a digit is greater than or equal to 5, add 3 to 
it to correct the representation for the next shift.

4.​ Repetition: Repeat the shifting and 
adjustment process for all bits in the binary number.

5.​ Completion: Once all bits are processed, 
the BCD register contains the equivalent decimal 
representation in 8-4-2-1 format.

This algorithm ensures a consistent and efficient conversion 
from binary to BCD, resulting in a 20-bit number that 
represents BCD for initial 16-bit number.

III.​ CHALLENGES

A.​ Background Subtraction (Ezekiel)
Overview

A robust background subtraction algorithm implementation 
presents many significant challenges, which mainly stem 
from the intricate nature of the algorithm and the technical 
barriers of working with hardware-level constraints. While 
the core mathematical operations behind background 
subtraction are conceptually straightforward in software, the 
limitations of FPGA hardware—especially when performing 
resource-intensive operations such as division and square 
root in fixed-point arithmetic—required a steep learning 
curve and substantial time investment.

Integrating the modules added further complexity to the 
system. The classification process requires inputs from both 
the current frame and the background model, increasing the 
necessity of DRAM access and module synchronization. 
The following challenges arose during implementation:



●​ Increased Memory Requirements:
○​ The classification stage requires not only 

the mean and variance but also derived 
metrics like α and CD, necessitating 
additional storage and computational 
overhead.

●​ Timing and Latency:
○​ The classification module must receive 

outputs from prior stages (e.g., statistical 
modeling and square root computation) in 
a timely manner. Any delay in these 
modules propagates to the classification 
stage, potentially stalling the system.

●​ Fixed-Point Arithmetic in Classification:
○​ Implementing the ​ operations in ·​ 𝑎𝑛𝑑 ·

·  
fixed-point required careful design to 
balance precision and resource utilization 
(see Appendix).

Challenges

The first major challenge was the lack of experience with 
designing such a complex and interconnected system on an 
FPGA, particularly in managing external memory (DRAM). 
The background subtraction algorithm, as described in [1,3], 
requires maintaining a per-pixel running sum and sum of 
squares for each of the RGB color channels. For 
high-resolution video, this results in a significant volume of 
data. Each pixel’s running sum requires 48 bits per color, 
while each sum of squares requires 64 bits per color. For a 
720p resolution (1280x720), the data demands quickly scale 
into megabytes (Background Model Memory Analysis), 
necessitating the use of DRAM. However, integrating 
DRAM into the system using the MIG DDR protocol 
proved to be a considerable challenge due to the lack of 
easily accessible testbenches with representations of latency, 
and memory access synchronization.

The second major challenge was the complexity of 
implementing core mathematical operations with the 
hardware constraints. For instance, operations such as 
square root and division, which are essential for calculating 
brightness distortion, chromaticity distortion, and pixel 
classification, are not natively efficient on FPGA hardware. 
Developing a fixed-point implementation of the square root 
using Newton-Raphson approximation required nearly a 
week of focused work to ensure both accuracy and 
compatibility within the pipelined system. Following this, 
significant time was spent integrating the square root 
module with the larger system, ensuring it operated 
correctly within the constraints of the pipeline. This 
integration had to account for timing synchronization with 
other modules such as the background model, brightness 
distortion, chromaticity distortion, and pixel classification. 
The effort to pipeline these modules properly consumed 
another week, as each module needed to independently 
verify its functionality before integration.

A further complication arose when testing the algorithm. 
Unlike software, where modular components can be tested 
independently and easily, the full functionality of this 
system on the FPGA requires all modules to work 
seamlessly together. The interconnected nature of the 
modules meant that partial hardware testing was unfeasible 

until a working top-level design was completed. To simulate 
the system in isolation, a "magic memory" abstraction was 
used to simulate DRAM with no protocol overhead or 
latency, allowing the system to function as if unlimited 
resources were available. However, moving from this 
idealized simulation environment to the FPGA’s MIG DDR 
protocol introduced new challenges. Testing and debugging 
the DRAM interactions, particularly the timing and memory 
access patterns, required the creation of extensive Python 
testbench classes to simulate memory behavior and latency.

Here, Kiran's (LA) assistance was invaluable. Their 
development of MIG DDR and traffic generator simulation 
classes provided the framework for working with the 
simulated DRAM. Without this, it would have been 
exceedingly difficult to implement and test the background 
model at scale. Despite Kiran’s contributions, resolving 
memory access timing and ensuring compatibility with the 
algorithm required many iterations of debugging and 
testing.

Despite making progress on the background model, which 
successfully computed the running sums and sum of squares 
for each pixel, integrating this module with downstream 
components like chromaticity distortion, brightness 
distortion, and pixel classification required substantial 
effort. These modules not only needed to retrieve data from 
DRAM efficiently but also required correct synchronization 
and pipelining to avoid delays or stalls in processing 
incoming pixels. For example, the pixel classification 
module required the mean and standard deviation of each 
pixel (stored in DRAM) to be used in conjunction with the 
calculated brightness and chromaticity values of incoming 
pixels. This required precise timing, memory coordination, 
and the implementation of a buffer system to minimize 
latency.

Stephen’s (LA) BRAM management module was essential 
in helping develop a “magic” memory buffer to address 
these latency concerns. The BRAM management module 
ensured that data could be prefetched and staged in a way 
that appeared instantaneous to the requesting modules. This 
abstraction allowed progress to be made on the integration 
of the chromaticity distortion and brightness distortion 
modules with the pixel classification system. However, fully 
integrating these modules into the top-level design proved 
challenging due to timing constraints and DRAM 
dependencies. Additionally, real-time integration with 
external systems, such as the lidar and servo systems, 
presented further complexities beyond the scope of this 
specific algorithm.

Reflections and Future Improvements

Developing this algorithm demonstrated the substantial 
effort required to translate a computationally intensive 
algorithm into a hardware-friendly implementation. While 
the background subtraction algorithm itself is conceptually 
straightforward and has been extensively studied (see 
reference [1,3]), its implementation on an FPGA posed 
significant challenges. The iterative nature of the 
algorithm—requiring calculations for every pixel and every 
frame—created dependencies that compounded the 
complexity of the system. Trying to synchronize between 
modules, manage large data volumes in DRAM, and deal 



with hardware-level constraints added layers of difficulty 
that were underestimated at the start of the project.

Given the constraints of time, resources, and experience, it 
was not feasible to complete the full integration of the 
algorithm. The project as it is now required approximately 
four hours of daily work for over three weeks, much of 
which was spent addressing hardware-specific challenges 
such as pipelining, memory management, and mathematical 
approximations. These challenges were further magnified by 
the need to integrate with external systems for the final 
motion-sentry device. In hindsight, this algorithm would 
have been better suited as a two-person project, with one 
individual focusing exclusively on the top-level integration 
and memory management, and the other dedicated to 
implementing the mathematical operations and ensuring 
their accuracy.

Despite these difficulties, the work completed laid a solid 
foundation for future development. The background model, 
chromaticity distortion, brightness distortion, and pixel 
classification modules have been thoroughly tested in 
simulation and are functionally correct in isolation. Moving 
forward, efforts should focus on resolving the DRAM 
timing issues, optimizing the memory pipeline, and 
integrating the system on hardware. During the final stages 
of the project, efforts were redirected toward collaborating 
with team members to integrate the full system, which 
included modifying the existing color tracking 
implementation to provide velocity and direction 
information in the x-y frame. This experience has provided 
invaluable insights into the challenges of FPGA 
development, and the lessons learned will inform future 
projects in this field.

B.​ Servo-Control
Integrating the servo-control system into the overall 
design posed significant challenges, particularly due to 
the dynamic and mechanical nature of the component. 
These challenges primarily stemmed from timing 
complexities, synchronization issues, and the reliance on 
limited input data:
●​ Mechanical Delay in Sero Motion: Unlike 

electronic components, servos introduce inherent 
mechanical delay as they physically move to the 
commanded angle. This delay required careful 
consideration in the system’s real-time pipeline, as 
new position commands could not be issued until 
the servo completed its motion. Failure to account 
for these delays would have led to misalignments 
between the LiDAR’s orientation and the target’s 
actual position.

●​ PWM Signal Timing and Resolution: The servo’s 
50 Hz duty cycle demanded precise 
synchronization with the Camera’s 200 MHz clock. 
Generating PWM signals with sufficient resolution 
while maintaining real-time performance 
introduced latency into the control loop. This 

latency limited how quickly the system could 
respond to rapid object movements, reducing 
tracking fidelity under dynamic conditions.

●​ 2D Positional Dependency: The lack of direct 
depth feedback during initial tracking stages forced 
the servo-control system to rely solely on 2D 
positional data from the camera. This limitation 
required assumptions about the target’s movement 
and distance, reducing precision during high-speed 
or erratic object motion. ​

Reflections and Future Improvements
There are several areas for improvement within the 
servo-control sub-system. Implementing these changes 
would require additional time as many refinements, such 
as integrating depth-driven feedback, optimizing the 
timing pipeline, and automating calibration, demand 
extensive testing and development cycles. A longer 
timeline would allow for more robust iteration, ensuring 
that each component is thoroughly validated and better 
integrated into the overall system. ​

IV.​ Enhanced Calibration: While calibration was 
effective, this process can be streamlined and automated in 
future iterations. This could be done by incorporating a 
feedback mechanism using LiDAR or a secondary camera, 
allowing for real-time verification and adjustment of the 
servo’s range and alignment, ensuring greater accuracy and 
consistency.

V.​ Depth-Driven Feedback Integration: Due to our 
current reliance on 2D positional data, the system is not able 
to respond dynamically to changes in depth. A direct 
integration of depth feedback from the LiDAR could enable 
adaptive servo adjustments helping to improve tracking 
precision.
VI.​ Improved Timing Pipeline: Addressing the 

latency introduced by the mechanical delays and the 50 Hz 
PWM duty cycle would be a priority. Predictive algorithms 
to preemptively calculate servo positions could help 
mitigate these delays, maintaining alignment with the 
moving target.

A.​ LiDAR and display output
●​ LiDAR Integration: Working with a device that 

operates on a custom protocol, albeit based on 
UART, introduced significant challenges due to its 
unique frame structure. Initially, debugging this 
communication was cumbersome, as the LiDAR’s 
data frames required precise alignment and 
validation. The introduction of a logic analyzer 
greatly facilitated the debugging process, enabling 
reliable data acquisition and consistent 
communication with the LiDAR module.



●​ Screen Output: Displaying text digits on the 
screen posed significant technical hurdles. The 
initial approach involved using a preloaded digit 
sprite sheet stored in BRAM, dynamically selecting 
the appropriate sprite segment based on the desired 
digit. However, discrepancies arose between the 
expected and retrieved data at specific BRAM 
locations. After extensive troubleshooting, an 
alternative approach was adopted. Instead of 
relying on preloaded sprites, digits were rendered 
directly onto the screen as 7-segment stencils by 
programmatically drawing lines in the appropriate 
positions. This solution not only circumvented the 
BRAM issue but also provided a reliable and 
efficient method for screen output.

●​ Integration: Integrating the LiDAR module with the 
display output introduced several challenges. One 
significant issue involved the LiDAR module 
occasionally falling out of sync with the data order 
sent by the LiDAR device. Another challenge arose 
from discrepancies between the clocks used across 
various modules. To address the synchronization 
issue, communication with the LiDAR was enhanced, 
enabling the ability to reset the LiDAR on demand, 
effectively realigning the data stream. The clock 
discrepancy was resolved by carefully ensuring that 
all components of the LiDAR system operated on the 
same clock, providing consistent timing and 
functionality throughout the integration.

6. APPENDIX

Fixed-Point Arithmetic in Verilog (Ezekiel)

Fixed-point arithmetic is a numerical representation used in 
hardware design to perform arithmetic operations with 
fractional precision, offering a balance between the 
simplicity of integer arithmetic and the precision of 
floating-point operations. In Verilog, fixed-point arithmetic 
is particularly advantageous for FPGA designs, where 
hardware constraints such as area, power, and latency are 
critical considerations.

Fixed-Point Representation

In fixed-point arithmetic, numbers are represented as 
integers with an implicit radix point. The position of the 
radix point is determined by the number of fractional bits, 
commonly denoted as Qm.n, where:

●​ m represents the number of bits in the integer part.
●​ n represents the number of bits in the fractional 

part.
●​ The total bit-width W=m+n+1 includes one bit for 

the sign-in signed representations.

For example, a Q16.16 fixed-point format allocates 16 bits 
for the integer part and 16 bits for the fractional part.

Square Root: Fixed-point square root is more complex, as it 
often involves iterative algorithms such as Newton-Raphson 
or CORDIC. The result remains in the same format, but 
intermediate results must be managed carefully to avoid 
overflow or underflow.

Implementation in Verilog

Fixed-point arithmetic in Verilog is implemented using 
standard integer data types, with careful attention to 
bit-widths and scaling. Consider the following example of a 
simple Q16.16 multiplication:

module FixedPointArithmetic (

    input logic signed [31:0] a,  // Q16.16 
format

    input logic signed [31:0] b,  // Q16.16 
format

    output logic signed [31:0] product    // 
Q16.16 format

);

    assign product = (a * b) >>> 16;  // 
Multiplication with scaling

endmodule

 Advantages of Fixed-Point in Hardware

●​ Hardware Efficiency: Fixed-point operations 
require fewer resources (e.g., LUTs, DSPs) 
compared to floating-point, making them ideal for 
FPGA implementations.

●​ Predictable Latency: The deterministic nature of 
fixed-point arithmetic simplifies timing analysis 
and pipelining.

●​ Custom Precision: Designers can tailor the 
bit-widths to meet the application's precision and 
range requirements, optimizing resource 
utilization.

Challenges in Fixed-Point Arithmetic

●​ Overflow and Underflow: Fixed-point arithmetic 
lacks dynamic range, leading to potential overflow 
or underflow if values exceed the representable 
range. This must be managed through scaling or 
saturation logic.



●​ Precision Loss: Right shifts during scaling can 
result in truncation errors, necessitating careful 
design to balance precision and performance.

●​ Debugging Complexity: Fixed-point calculations 
require careful verification, as errors in scaling or 
alignment can propagate through the system.

Code:​
https://github.com/EzekielDaye/Motion-Sentry
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Fig 1. Top Level Overview of Background Subtraction

https://github.com/EzekielDaye/Motion-Sentry


Fig 2. Block Diagram of Servo Control System

Fig 3. Image of the FPGA, Camera, and LiDAR systems connected
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