
Motion Sentry

Final Report

Ezekiel Daye​
Department of Electrical Engineering

and Computer Science ​
Department of Physics​

Massachusetts Institute of Technology​
Cambridge Massachusetts​

egdaye@mit.edu

Ryan Hourican​
Department of Electrical Engineering

and Computer Science ​
Massachusetts Institute of Technology​

Cambridge Massachusetts​
ryanh24@mit.edu

Makar Kuznietsov​
Department of Electrical Engineering

and Computer Science ​
Massachusetts Institute of Technology​

Cambridge Massachusetts​
makark@mit.edu

Abstract—Motion Sentry: A Real-Time 3D Object Tracking
System Using FPGA

The Motion Sentry is an advanced tracking system that is
made up of camera-based motion detection, servo motor
control, and laser sensing to allow for real-time 3D object
tracking. The full system utilizes an FPGA to run a
pipelined background subtraction algorithm to identify
motion in the x-y plane. With this data, the FPGA relays the
position to a servo motor which translates the position into
motion using pulse-width modulation (PWM). The servo
adjusts the orientation of a LiDAR sensor to capture z-axis
depth information about the detected object and sends that
back to the FPGA through a UART interface.

The system will take the depth information and display the
results via 8-bit numerical images that represent key
parameters such as object distance or velocity, providing
clear and concise monitoring of the object and the systems
performance.

The Motion Sentry effectively uses the FPGAs ability to
handle high-bandwidth, computationally intensive tasks
such as video processing and real-time pixel classification to
create a tracking system. By combining parallel processing,
external DRAM for memory management, and integrated
control of servo and LiDAR systems, the Motion Sentry
demonstrates a sophisticated design optimized for digital
systems and advanced motion tracking applications.

I.​ INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have long been
used with advanced sensor technology to track objects in a
variety of scenarios. Due to the FPGAs parallel processing
capabilities and reconfigurability, they are ideal for
applications requiring high-speed data processing and low
latency. When combined with Light Detection and Ranging
(LiDAR) sensors, to provide precise depth information, the
combined system of FPGA, servo, and LiDAR is capable of
achieving a comprehensive understanding of a multitude of
environments.

In 2012, a study demonstrated the implementation of
real-time background subtraction on an FPGA using the
Horprasert model, achieving effective motion detection for
video surveillance applications. The authors noted that “the
proposed hardware-friendly model achieved robust
segmentation and shadow detection in real time, with a low
hardware cost” [1]. This work highlights the capability of
FPGAs to efficiently execute a complex mathematical
algorithm, such as background subtraction, while
maintaining real-time performance.

Additionally, the defense sector has extensively adopted
FPGA technology for object tracking and detection. Since
an FPGA can handle large data streams and perform
complex algorithms in real-time, they are ideal tools for
usage in radar and signal processing applications. This
allows for precise target detection, tracking, and
discrimination capabilities in aerospace surveillance and
defense systems [2].

Building and borrowing from these ideas, the Motion
Sentry project aims to develop a small-scale real-time 3D
object-tracking system. By using an FPGA-based
background subtraction for x-y plane motion detection and
integrating servo-controlled LiDAR for z-axis depth
information, this system attempts to achieve efficient and
accurate tracking in most environments.

II.​ PARTS OF SYSTEM

A.​ Background Subtraction (Ezekiel)
 Background subtraction aims to identify moving objects

in a static scene by comparing each pixel in incoming
frames to a reference background model. The process of
creating this requires mathematical modeling, efficient
memory management, and pipelining to meet the FPGAs
restraints in timing and resources. To create a background
subtraction algorithm for the FPGA is a complicated task
and requires meticulous design and coordination between
modules. The algorithm used in this implementation is
adapted from Horprasert et al.’s work, which introduces a
robust approach for background modeling and shadow
detection by incorporating metrics like brightness distortion
and chromaticity distortion [3]. This algorithm is well-suited

©2024 IEEE

for FPGA implementation because can be parallelized in
hardware, making it efficient for real-time applications.

 To classify the pixels as foreground, background,
shadow, or highlight each pixel is compared against a
statistical background model, and a set of two other metrics
are calculated using the data from the background model –
brightness distortion (𝛼) and chromaticity distortion (CD).
With all of this information, the system can tell which
objects are moving in the static frame. This stage is pivotal
for achieving accurate foreground extraction to track
objects.

1.​ Pixel Classification Logic:​
The pixel classification module uses the
calculations of brightness () and chromaticity α
(CD) distortions for each pixel using the following
equations:

α = 𝐼
𝐸 (1)

𝐶𝐷 = (𝐼
𝑅

− α𝐸
𝑅

)2 + (𝐼
𝐺

− α𝐸
𝐺

)2 + (𝐼
𝐵

− α𝐸
𝐵

)2 (2)

○​ Thresholds are applied to α and CD to
classify pixels:

■​ If 𝛼 and CD fall within certain
thresholds, the pixel is classified
as part of the static background.

■​ If 𝛼 is low but CD is within the
range, the pixel is categorized as
a shadow.

■​ Pixels with high 𝛼 may be
classified as highlights.

■​ High 𝛼 and CD indicate a
foreground object.

○​ This module outputs the classification
result for each pixel, which can be used to
generate a foreground mask.

For example:

if (alpha < THRESH_ALPHA && cd < THRESH_CD)
begin
 classification <= BACKGROUND;
end

2.​ Statistical Background Modeling :
○​ Mean (E) and SD (𝜎) are computed for

each pixel channel (Red, Green, Blue)
over multiple frames. These metrics are
calculated before tracking can begin and
are stored in the DRAM.

3.​ Newton-Raphson Square Root Module:
○​ The square root operation, critical for

computing and CD, uses the σ
Newton-Raphson method for iterative
approximation.​

𝑥
𝑘+1

 = 𝑥
𝑘

−
𝑓(𝑥

𝑘
)

𝑓'(𝑥
𝑘
) , 𝑓(𝑥) − 𝑥2 − 𝑎 (3)

4.​ DRAM Storage and Access:
○​ All intermediate values, such as sums (∑

I), squared sums (∑), and statistical 𝐼2

results (mean, variance), are stored in
DRAM for every pixel. These values are
accessed and updated for each new frame.

5.​ Pipeline and Synchronization:
○​ The system is pipelined to ensure that

accumulation, model update,
classification, and output occur
concurrently. Proper synchronization
between stages is critical to avoid timing
conflicts and data overwrites.​

Memory Considerations for FPGA-Based Background
Subtraction

Implementing a background subtraction algorithm for 720p
video resolution on an FPGA requires extensive memory
resources to store and manage pixel-level data efficiently.
Each frame at 720p resolution consists of 921,600 pixels,
and the algorithm demands both intermediate and final
values to be stored for every pixel. The memory
requirements stem from the need to maintain running sums,
sums of squares, and distortion values for chromaticity and
brightness, which are critical for real-time
foreground-background classification.

Background Model Memory Analysis

The memory requirements for each pixel in the background
model include:

1.​ Running Values (Stored Temporarily for
Ongoing Calculations):

○​ Running Sums (sum_R, sum_G,
sum_B):

■​ Each channel (R, G, B) uses 48
bits per pixel.

■​ Total memory for running sums:​
48 bits/pixel/channel × 3
channels × 921,600 pixels ≈
132.7 Mb.

○​ Sums of Squares (sum_sq_R,
sum_sq_G, sum_sq_B):

■​ Each channel (R, G, B) uses 64
bits per pixel.

■​ Total memory for sums of
squares:​
64 bits/pixel/channel × 3
channels × 921,600 pixels ≈
176.9 Mb.

○​ Distortion Metrics (sum_CD, sum_BD,
sum_sq_CD, sum_sq_BD):

■​ Distortion sums (sum_CD,
sum_BD) use 48 bits each, and
sums of squares of distortions

(sum_sq_CD, sum_sq_BD)
use 64 bits each.

■​ Total memory for distortion
metrics:​
(48 bits + 64 bits)/pixel × 2
metrics × 921,600 pixels ≈ 103.7
Mb.

2.​ Total Memory for Running Values:​
132.7 Mb + 176.9 Mb + 103.7 Mb ≈ 413.3 Mb.

3.​ Final Stored Values (Mean, Standard Deviation,
Square Root Outputs):

○​ Means (mean_R, mean_G, mean_B):
■​ Each channel (R, G, B) uses 32

bits per pixel.
■​ Total memory for means:​

32 bits/pixel/channel × 3
channels × 921,600 pixels ≈ 88.4
Mb.

○​ Standard Deviations (SD_alpha,
SD_CD):

■​ Total memory for square root
outputs:​
32 bits × 2 metrics × 921,600
pixels ≈ 7.4 Mb.

4.​ Total Memory for Final Stored Values:​
88.4 Mb + 7.4 Mb ≈ 95.8 Mb.

Summary

●​ Memory for Running Values: ≈ 413.3 Mb
●​ Memory for Final Stored Values: ≈ 95.8 Mb
●​ Total Memory Usage: ≈ 509.1 Mb

DRAM Integration

The FPGA interfaces with DDR3 DRAM using a memory
controller to handle the large data volume. The traffic
generator, stacker, and unstacker modules manage read and
write operations to and from DRAM. For each frame, these
modules coordinate the retrieval of pre-computed
background model values (e.g., mean and standard
deviation) and store updated values for subsequent frames.

Module Latency Analysis

Timing and pipelining are critical for operation of the
background subtraction algorithm on FPGA hardware. This
section summarizes the latency of key modules involved in
the design.
1. Newton-Raphson Square Root (Sqrt)​

The Sqrt module utilizes the Newton-Raphson method to
calculate square roots for fixed-point values in Q16.16

format. The iterative algorithm requires 16 iterations to
converge for this precision level. In simulation division
happens in one cycle so the latency is only 18 cycles but
given division takes ~ 16 cycles the total latency is:

16 *(Initialize (1) + Division (16) + Finalize (1)) = 288
Cycles

2. Chromaticity Distortion

The ChromaticityDistortion module calculates
chromaticity distortion (CD) by determining deltas for the
red, green, and blue channels, squaring them, summing
them, and computing the square root. The operations
include:

●​ Delta and Delta-Squared Calculation: These
involve additions, multiplications, and divisions for
each channel. The division latency for each
channel contributes 16 clock cycles, totaling 48
clock cycles.

●​ Summing the Deltas: Adding three delta-squared
values contributes to 1 clock cycle.

●​ Total Latency: 48 (channel-wise delta calculation)
+1 (summing) +288 (square root)= 337 clock

3. Brightness Distortion

The BrightnessDistortion module calculates
brightness distortion (α) by normalizing the input pixel
values and performing a division to determine the brightness
distortion ratio. Key operations include:

●​ Numerator and Denominator Calculation:
These involve multiplications and divisions for
each channel. The division latency for each
channel is estimated to be 16 clock cycles,
resulting in 48 clock cycles for all three channels.

●​ Final Division: The calculation of α=N/D involves
one more division, taking 16 clock cycles.

●​ Total Latency: 48 (channel-wise division) +16
(final division)=64 clock cycles

4. Pixel Classification

The PixelClassification module determines
whether a pixel belongs to the background, foreground,
shadow, or highlight. The operations include:

●​ Buffering input values (1 cycle)
●​ Threshold calculation for α and CD (2 cycle)
●​ Classification logic based on thresholds (1 cycle)
●​ Output classification and validation (1 cycle)

The total latency is: 5 cycles

5. Background Model Latency

Since the background model calculations are performed
prior to real-time operations, its latency does not directly
impact the system's performance during tracking. The
module can take as many clock cycles as needed to
complete its operations without imposing strict timing
constraints. This design decision allows for a more
comprehensive and resource-efficient calculation of the
background statistics, leveraging the available memory and
computational bandwidth without compromising the
real-time aspects of the overall system.

B.​ Servo-Control (Ryan)
The servo control subsystem is responsible for the

dynamic orienting of the LiDAR sensor to track the detected
object in real-time. This involves processing the center of
mass (CoM) coordinates from the background subtraction
module, converting these coordinates into precise PWM
signals, and ensuring accurate servo actuation to keep the
LiDAR aligned with the detected object.

1. CoM to PWM Mapping logic
The CoM to PWM mapping module serves as the

bridge between the 2D pixel coordinates of the CoM in the
video frame and the corresponding angular positions
required to reorient the servo motors. This process ensures
the LiDAR remains focused on the moving object while
accounting for the camera’s field of view (FoV) and the
mechanical constraints of the servos.

The mapping process translates the pixel range of
the CoM, : 0 to 1280 and y: 0 to 720, to the calibrated 𝑥
servo angles ranges [] and . The 𝑚𝑖𝑛

𝑥
, 𝑚𝑎𝑥

𝑥
[𝑚𝑖𝑛

𝑦
, 𝑚𝑎𝑥

𝑦
]

linear transformation ensures predictable servo motion
across the entire camera FoV.
The Linear mapping equations are defined as:

 (4)𝑥
𝑝𝑤𝑚

 = 𝐶𝑜𝑀
𝑥

𝑚𝑎𝑥
𝑥
−𝑚𝑖𝑛

𝑥

1280 + 𝑚𝑖𝑛
𝑥

 (5)𝑦
𝑝𝑤𝑚

 = 𝐶𝑜𝑀
𝑦

𝑚𝑎𝑥
𝑦
−𝑚𝑖𝑛

𝑦

720 + 𝑚𝑖𝑛
𝑦

2. PWM Signal Generation
The servo control module generates PWM signals

to drive the motors based on the computed and 𝑥
𝑝𝑤𝑚

𝑦
𝑝𝑤𝑚

values. A high-resolution counter ensures precise timing for
PWM signals.

Key specs:
●​ Frequency: 50Hz (20 ms period)
●​ Duty Cycle Range: 1 ms to 2 ms pulse width

(5-10% duty cycle)
●​ FPGA Clock frequency: 200 MHz

○​ Using 100 MHz to create this frequency
for the camera limits our further use of it

●​ Angular precision: Achieves accuracy within
0.001°, leveraging high clock resolution for duty
cycle adjustments.

Pseudocode:

always_ff @(posedge clk_camera) begin
 if (counter+1 == (20_000_000)) begin
 counter <= 0; // Reset after 20ms
 end else begin
 counter <= counter + 1;
 end
end
assign signal_out = counter < pwm_signal;

Calibration Process:
The calibration process ensures that the servo motors
accurately align with the camera’s field of view and track
moving objects effectively. This was achieved through a
systematic approach:

1.​ Midpoint Alignment: Identifying the PWM values
that positioned the servos to point at the exact
center of the camera’s frame. This served as the
baseline for calibration.

2.​ Boundary Identification: The PWM values
corresponding to the topmost, bottommost,
leftmost, and rightmost points of the camera’s field
of view were determined. These boundary values
were carefully selected to ensure they were
symmetrically spaced from the midpoint values.

3.​ Validation: Multiple iterative tests were conducted
to verify that the mapped PWM values consistently
directed the servos to track moving objects across
the entire range of the camera’s field of view.
Adjustments were made to fine-tune the calibration
and ensure robust tracking performance.

3. Synchronization with LiDAR
Synchronization between the servo control subsystem and
the LiDAR sensor is crucial for maintaining accurate
tracking and depth measurement of the moving object. The
system operates in real-time, requiring seamless
coordination to ensure the LiDAR sensor is always correctly
oriented toward the target as it moves within the camera’s
field of view.
Importance of Synchronization:

●​ Accurate Depth Data Acquisition: The LiDAR
must focus directly on the tracked object.
Misalignment can result in incorrect distance
measurements or failure to track an object.

●​ System Efficiency: Proper synchronization
ensures that every depth measurement is
meaningful, helping to optimize the overall
performance of the system.

4. Pipeline Integration
The servo control subsystem is seamlessly integrated into
the FPGA’s processing pipeline, ensuring real-time
performance and efficient operation by overlapping tasks
across multiple stages. Data from the background
subtraction module is continuously processed to identify
moving objects and determine their center of mass (CoM)
coordinates, which are then translated into servo angles and
synchronized with the LiDAR system for depth
measurements. Each component operates in parallel,
minimizing delays and enabling precise tracking in a 3D
space.

C.​ Lidar and Display (Makar)

To establish communication between the LiDAR and
FPGA, the UART protocol was employed with a baud rate
of 115200, 8 data bits, and 1 stop bit. Each data frame
transmitted by the LiDAR consists of 9 bytes, containing
information such as the distance value, signal strength, chip
temperature, and a checksum for error detection.
For this project, the TFmini-S LiDAR module from
Benewake (Beijing) Co., Ltd. was selected due to its
excellent tracking precision, wide range, and
cost-effectiveness. The module uses a straightforward
interface with two signal wires and two power wires. The
wiring configuration is as follows:

•​ Black wire: Ground, connected to the GND pin on
the PMOD-B row.

•​ Red wire: Power, connected to the +5V on the
FPGA.

•​ Green wire: Data transmission from FPGA to
LiDAR or clock signal, depending on the mode.

•​ White wire: Data transmission from LiDAR to
FPGA.

The TFmini-S supports three operational modes:

1.​ UART mode: Data is transmitted as a
string.

2.​ I²C mode: Suitable for lower pin count
requirements.

3.​ Custom output settings.
Experimental analysis revealed that the UART mode
consistently transmitted frames in a little-endian format,

with each frame consisting of 9 bytes sent consecutively
without interruption. The format of the bytes is as follows:

•​ Byte 0: Frame header (0x59).

•​ Byte 1: Frame header (0x59).

•​ Byte 2: Lower 8 bits of distance.

•​ Byte 3: Higher 8 bits of distance.

•​ Byte 4: Lower 8 bits of signal strength.

•​ Byte 5: Higher 8 bits of signal strength.

•​ Byte 6: Lower 8 bits of temperature.

•​ Byte 7: Higher 8 bits of temperature.

•​ Byte 8: Checksum (sum of previous 8 bytes, lower
8 bits).

To handle this communication, a LiDAR UART receiver
module was developed. This module ensures alignment
with the incoming frames by verifying the frame headers
(0x59) and confirming the checksum. If the validation fails,
the module discards the entire frame.
Additionally, the LiDAR supports command-based
communication via UART, with frames structured as
follows:

•​ Byte 0: Frame header (0x5A).

•​ Byte 1: Frame length (including header and
checksum).

•​ Byte 2: Command identifier.

•​ Bytes 3 to N-2: Data segment (little-endian
format).

•​ Byte N-1: Checksum (sum of all preceding bytes,
lower 8 bits).

A dedicated module was implemented to send commands to
the LiDAR, enabling functionalities such as:

•​ System reset: 5A 04 02 60.

•​ Set frame rate: 5A 06 03 LL HH SU.

•​ Set baud rate: 5A 08 06 H1 H2 H3 H4 SU.

•​ Obtain firmware version: 5A 04 01 SF.
After evaluating all communication options, UART mode
was selected for its simplicity and robustness. A logic
analyzer was used to validate the consistency of UART
packets and ensure adherence to protocol specifications.

Display System
The display system communicates with the FPGA via the
HDMI protocol, with the goal of overlaying text such as

distance measurements onto a live video feed. Initially, the
implementation used sprite sheets to display digits (0-9).
The sprite sheet approach involved converting an image into
a .mem file in binary colors, minimizing the data file size
using a custom script. However, issues with BRAM
utilization arose during this process.
To address these challenges, the team transitioned to a
vector-based graphics approach. Instead of using
pre-rendered sprites, the module hardcoded the line
segments necessary to render each digit. When displaying
data, pixel values from the camera feed were dynamically
replaced with white pixel values to represent the digits. This
approach proved more efficient and avoided BRAM
limitations, successfully enabling the display of numerical
data on the video output.

To display numerical digits, the seven-segment digit format
was employed, similar to the design used on the built-in
LED seven-segment displays available on the FPGA. The
vertical segments occupy 80% of the total height, leaving
10% margins at both the top and bottom. Similarly, the
horizontal segments span 40% of the total width, with 30%
margins on the left and right sides. This layout ensured a
clear and proportional digit representation on the display.

Binary to Binary-coded decimal conversion
The LiDAR outputs data in a 16-bit binary format, which
needs to be converted into a human-readable decimal format
for display. To achieve this, a double-dabble algorithm
module was implemented to convert the binary numbers
into binary-coded decimal (BCD) format. In BCD, each
digit of a decimal number is represented by a 4-bit binary
equivalent.
Among the various coding schemes available for BCD, the
project utilized the 8-4-2-1 coding method, where each
decimal digit is directly represented by its binary
counterpart as follows:

•​ 0: 0000

•​ 1: 0001

•​ 2: 0010

•​ 3: 0011

•​ 4: 0100

•​ 5: 0101

•​ 6: 0110

•​ 7: 0111

•​ 8: 1000

•​ 9: 1001

The double-dabble algorithm is a methodical approach to
convert binary numbers into Binary-Coded Decimal (BCD)
format. It operates by recursively shifting the binary number
string to the left while simultaneously adjusting the BCD
representation. The process begins with the least significant
bit (LSB) of the binary number, and as each bit is shifted, it
is appended to the BCD representation.​

To ensure accurate conversion, the algorithm applies a
critical step: whenever a digit in the BCD representation
reaches or exceeds the value of 5, 3 is added to it. This
addition ensures that the BCD representation aligns with the
8-4-2-1 coding scheme after the next shift, as shifting a digit
greater than or equal to 5 by one position would otherwise
produce an invalid BCD digit.
The steps of the algorithm can be summarized as follows:

1.​ Initialization: Start with the binary
number and an empty BCD register.

2.​ Bit Shifting: Shift the binary number left
by one bit, moving the shifted bit into the
appropriate position in the BCD register.

3.​ Adjustment: Check each digit of the
BCD. If a digit is greater than or equal to 5, add 3 to
it to correct the representation for the next shift.

4.​ Repetition: Repeat the shifting and
adjustment process for all bits in the binary number.

5.​ Completion: Once all bits are processed,
the BCD register contains the equivalent decimal
representation in 8-4-2-1 format.

This algorithm ensures a consistent and efficient conversion
from binary to BCD, resulting in a 20-bit number that
represents BCD for initial 16-bit number.

III.​ CHALLENGES

A.​ Background Subtraction (Ezekiel)
Overview

A robust background subtraction algorithm implementation
presents many significant challenges, which mainly stem
from the intricate nature of the algorithm and the technical
barriers of working with hardware-level constraints. While
the core mathematical operations behind background
subtraction are conceptually straightforward in software, the
limitations of FPGA hardware—especially when performing
resource-intensive operations such as division and square
root in fixed-point arithmetic—required a steep learning
curve and substantial time investment.

Integrating the modules added further complexity to the
system. The classification process requires inputs from both
the current frame and the background model, increasing the
necessity of DRAM access and module synchronization.
The following challenges arose during implementation:

●​ Increased Memory Requirements:
○​ The classification stage requires not only

the mean and variance but also derived
metrics like α and CD, necessitating
additional storage and computational
overhead.

●​ Timing and Latency:
○​ The classification module must receive

outputs from prior stages (e.g., statistical
modeling and square root computation) in
a timely manner. Any delay in these
modules propagates to the classification
stage, potentially stalling the system.

●​ Fixed-Point Arithmetic in Classification:
○​ Implementing the ​ operations in ·​ 𝑎𝑛𝑑 ·

·
fixed-point required careful design to
balance precision and resource utilization
(see Appendix).

Challenges

The first major challenge was the lack of experience with
designing such a complex and interconnected system on an
FPGA, particularly in managing external memory (DRAM).
The background subtraction algorithm, as described in [1,3],
requires maintaining a per-pixel running sum and sum of
squares for each of the RGB color channels. For
high-resolution video, this results in a significant volume of
data. Each pixel’s running sum requires 48 bits per color,
while each sum of squares requires 64 bits per color. For a
720p resolution (1280x720), the data demands quickly scale
into megabytes (Background Model Memory Analysis),
necessitating the use of DRAM. However, integrating
DRAM into the system using the MIG DDR protocol
proved to be a considerable challenge due to the lack of
easily accessible testbenches with representations of latency,
and memory access synchronization.

The second major challenge was the complexity of
implementing core mathematical operations with the
hardware constraints. For instance, operations such as
square root and division, which are essential for calculating
brightness distortion, chromaticity distortion, and pixel
classification, are not natively efficient on FPGA hardware.
Developing a fixed-point implementation of the square root
using Newton-Raphson approximation required nearly a
week of focused work to ensure both accuracy and
compatibility within the pipelined system. Following this,
significant time was spent integrating the square root
module with the larger system, ensuring it operated
correctly within the constraints of the pipeline. This
integration had to account for timing synchronization with
other modules such as the background model, brightness
distortion, chromaticity distortion, and pixel classification.
The effort to pipeline these modules properly consumed
another week, as each module needed to independently
verify its functionality before integration.

A further complication arose when testing the algorithm.
Unlike software, where modular components can be tested
independently and easily, the full functionality of this
system on the FPGA requires all modules to work
seamlessly together. The interconnected nature of the
modules meant that partial hardware testing was unfeasible

until a working top-level design was completed. To simulate
the system in isolation, a "magic memory" abstraction was
used to simulate DRAM with no protocol overhead or
latency, allowing the system to function as if unlimited
resources were available. However, moving from this
idealized simulation environment to the FPGA’s MIG DDR
protocol introduced new challenges. Testing and debugging
the DRAM interactions, particularly the timing and memory
access patterns, required the creation of extensive Python
testbench classes to simulate memory behavior and latency.

Here, Kiran's (LA) assistance was invaluable. Their
development of MIG DDR and traffic generator simulation
classes provided the framework for working with the
simulated DRAM. Without this, it would have been
exceedingly difficult to implement and test the background
model at scale. Despite Kiran’s contributions, resolving
memory access timing and ensuring compatibility with the
algorithm required many iterations of debugging and
testing.

Despite making progress on the background model, which
successfully computed the running sums and sum of squares
for each pixel, integrating this module with downstream
components like chromaticity distortion, brightness
distortion, and pixel classification required substantial
effort. These modules not only needed to retrieve data from
DRAM efficiently but also required correct synchronization
and pipelining to avoid delays or stalls in processing
incoming pixels. For example, the pixel classification
module required the mean and standard deviation of each
pixel (stored in DRAM) to be used in conjunction with the
calculated brightness and chromaticity values of incoming
pixels. This required precise timing, memory coordination,
and the implementation of a buffer system to minimize
latency.

Stephen’s (LA) BRAM management module was essential
in helping develop a “magic” memory buffer to address
these latency concerns. The BRAM management module
ensured that data could be prefetched and staged in a way
that appeared instantaneous to the requesting modules. This
abstraction allowed progress to be made on the integration
of the chromaticity distortion and brightness distortion
modules with the pixel classification system. However, fully
integrating these modules into the top-level design proved
challenging due to timing constraints and DRAM
dependencies. Additionally, real-time integration with
external systems, such as the lidar and servo systems,
presented further complexities beyond the scope of this
specific algorithm.

Reflections and Future Improvements

Developing this algorithm demonstrated the substantial
effort required to translate a computationally intensive
algorithm into a hardware-friendly implementation. While
the background subtraction algorithm itself is conceptually
straightforward and has been extensively studied (see
reference [1,3]), its implementation on an FPGA posed
significant challenges. The iterative nature of the
algorithm—requiring calculations for every pixel and every
frame—created dependencies that compounded the
complexity of the system. Trying to synchronize between
modules, manage large data volumes in DRAM, and deal

with hardware-level constraints added layers of difficulty
that were underestimated at the start of the project.

Given the constraints of time, resources, and experience, it
was not feasible to complete the full integration of the
algorithm. The project as it is now required approximately
four hours of daily work for over three weeks, much of
which was spent addressing hardware-specific challenges
such as pipelining, memory management, and mathematical
approximations. These challenges were further magnified by
the need to integrate with external systems for the final
motion-sentry device. In hindsight, this algorithm would
have been better suited as a two-person project, with one
individual focusing exclusively on the top-level integration
and memory management, and the other dedicated to
implementing the mathematical operations and ensuring
their accuracy.

Despite these difficulties, the work completed laid a solid
foundation for future development. The background model,
chromaticity distortion, brightness distortion, and pixel
classification modules have been thoroughly tested in
simulation and are functionally correct in isolation. Moving
forward, efforts should focus on resolving the DRAM
timing issues, optimizing the memory pipeline, and
integrating the system on hardware. During the final stages
of the project, efforts were redirected toward collaborating
with team members to integrate the full system, which
included modifying the existing color tracking
implementation to provide velocity and direction
information in the x-y frame. This experience has provided
invaluable insights into the challenges of FPGA
development, and the lessons learned will inform future
projects in this field.

B.​ Servo-Control
Integrating the servo-control system into the overall
design posed significant challenges, particularly due to
the dynamic and mechanical nature of the component.
These challenges primarily stemmed from timing
complexities, synchronization issues, and the reliance on
limited input data:
●​ Mechanical Delay in Sero Motion: Unlike

electronic components, servos introduce inherent
mechanical delay as they physically move to the
commanded angle. This delay required careful
consideration in the system’s real-time pipeline, as
new position commands could not be issued until
the servo completed its motion. Failure to account
for these delays would have led to misalignments
between the LiDAR’s orientation and the target’s
actual position.

●​ PWM Signal Timing and Resolution: The servo’s
50 Hz duty cycle demanded precise
synchronization with the Camera’s 200 MHz clock.
Generating PWM signals with sufficient resolution
while maintaining real-time performance
introduced latency into the control loop. This

latency limited how quickly the system could
respond to rapid object movements, reducing
tracking fidelity under dynamic conditions.

●​ 2D Positional Dependency: The lack of direct
depth feedback during initial tracking stages forced
the servo-control system to rely solely on 2D
positional data from the camera. This limitation
required assumptions about the target’s movement
and distance, reducing precision during high-speed
or erratic object motion. ​

Reflections and Future Improvements
There are several areas for improvement within the
servo-control sub-system. Implementing these changes
would require additional time as many refinements, such
as integrating depth-driven feedback, optimizing the
timing pipeline, and automating calibration, demand
extensive testing and development cycles. A longer
timeline would allow for more robust iteration, ensuring
that each component is thoroughly validated and better
integrated into the overall system. ​

IV.​ Enhanced Calibration: While calibration was
effective, this process can be streamlined and automated in
future iterations. This could be done by incorporating a
feedback mechanism using LiDAR or a secondary camera,
allowing for real-time verification and adjustment of the
servo’s range and alignment, ensuring greater accuracy and
consistency.

V.​ Depth-Driven Feedback Integration: Due to our
current reliance on 2D positional data, the system is not able
to respond dynamically to changes in depth. A direct
integration of depth feedback from the LiDAR could enable
adaptive servo adjustments helping to improve tracking
precision.
VI.​ Improved Timing Pipeline: Addressing the

latency introduced by the mechanical delays and the 50 Hz
PWM duty cycle would be a priority. Predictive algorithms
to preemptively calculate servo positions could help
mitigate these delays, maintaining alignment with the
moving target.

A.​ LiDAR and display output
●​ LiDAR Integration: Working with a device that

operates on a custom protocol, albeit based on
UART, introduced significant challenges due to its
unique frame structure. Initially, debugging this
communication was cumbersome, as the LiDAR’s
data frames required precise alignment and
validation. The introduction of a logic analyzer
greatly facilitated the debugging process, enabling
reliable data acquisition and consistent
communication with the LiDAR module.

●​ Screen Output: Displaying text digits on the
screen posed significant technical hurdles. The
initial approach involved using a preloaded digit
sprite sheet stored in BRAM, dynamically selecting
the appropriate sprite segment based on the desired
digit. However, discrepancies arose between the
expected and retrieved data at specific BRAM
locations. After extensive troubleshooting, an
alternative approach was adopted. Instead of
relying on preloaded sprites, digits were rendered
directly onto the screen as 7-segment stencils by
programmatically drawing lines in the appropriate
positions. This solution not only circumvented the
BRAM issue but also provided a reliable and
efficient method for screen output.

●​ Integration: Integrating the LiDAR module with the
display output introduced several challenges. One
significant issue involved the LiDAR module
occasionally falling out of sync with the data order
sent by the LiDAR device. Another challenge arose
from discrepancies between the clocks used across
various modules. To address the synchronization
issue, communication with the LiDAR was enhanced,
enabling the ability to reset the LiDAR on demand,
effectively realigning the data stream. The clock
discrepancy was resolved by carefully ensuring that
all components of the LiDAR system operated on the
same clock, providing consistent timing and
functionality throughout the integration.

6. APPENDIX

Fixed-Point Arithmetic in Verilog (Ezekiel)

Fixed-point arithmetic is a numerical representation used in
hardware design to perform arithmetic operations with
fractional precision, offering a balance between the
simplicity of integer arithmetic and the precision of
floating-point operations. In Verilog, fixed-point arithmetic
is particularly advantageous for FPGA designs, where
hardware constraints such as area, power, and latency are
critical considerations.

Fixed-Point Representation

In fixed-point arithmetic, numbers are represented as
integers with an implicit radix point. The position of the
radix point is determined by the number of fractional bits,
commonly denoted as Qm.n, where:

●​ m represents the number of bits in the integer part.
●​ n represents the number of bits in the fractional

part.
●​ The total bit-width W=m+n+1 includes one bit for

the sign-in signed representations.

For example, a Q16.16 fixed-point format allocates 16 bits
for the integer part and 16 bits for the fractional part.

Square Root: Fixed-point square root is more complex, as it
often involves iterative algorithms such as Newton-Raphson
or CORDIC. The result remains in the same format, but
intermediate results must be managed carefully to avoid
overflow or underflow.

Implementation in Verilog

Fixed-point arithmetic in Verilog is implemented using
standard integer data types, with careful attention to
bit-widths and scaling. Consider the following example of a
simple Q16.16 multiplication:

module FixedPointArithmetic (

 input logic signed [31:0] a, // Q16.16
format

 input logic signed [31:0] b, // Q16.16
format

 output logic signed [31:0] product //
Q16.16 format

);

 assign product = (a * b) >>> 16; //
Multiplication with scaling

endmodule

 Advantages of Fixed-Point in Hardware

●​ Hardware Efficiency: Fixed-point operations
require fewer resources (e.g., LUTs, DSPs)
compared to floating-point, making them ideal for
FPGA implementations.

●​ Predictable Latency: The deterministic nature of
fixed-point arithmetic simplifies timing analysis
and pipelining.

●​ Custom Precision: Designers can tailor the
bit-widths to meet the application's precision and
range requirements, optimizing resource
utilization.

Challenges in Fixed-Point Arithmetic

●​ Overflow and Underflow: Fixed-point arithmetic
lacks dynamic range, leading to potential overflow
or underflow if values exceed the representable
range. This must be managed through scaling or
saturation logic.

●​ Precision Loss: Right shifts during scaling can
result in truncation errors, necessitating careful
design to balance precision and performance.

●​ Debugging Complexity: Fixed-point calculations
require careful verification, as errors in scaling or
alignment can propagate through the system.

Code:​
https://github.com/EzekielDaye/Motion-Sentry

7. REFERENCES

[1]​ S. Chen, Y.-P. Hsu, and Y.-T. Tsai, "FPGA-Based Implementation of
Real-Time Background Subtraction for Video Surveillance Using the
Horprasert Model," Sensors, vol. 12, no. 1, pp. 585–605, 2012.

[2]​ Xilinx, FPGA Applications in Radar and Defense Systems, 2017.
[3]​ T. Horprasert, D. Harwood, and L. Davis, “A Robust Background

Subtraction and Shadow Detection,” Proc. Computer Vision
Laboratory, University of Maryland, 2000.

Fig 1. Top Level Overview of Background Subtraction

https://github.com/EzekielDaye/Motion-Sentry

Fig 2. Block Diagram of Servo Control System

Fig 3. Image of the FPGA, Camera, and LiDAR systems connected

	I.​INTRODUCTION
	II.​PARTS OF SYSTEM
	A.​Background Subtraction (Ezekiel)
	Summary
	2. Chromaticity Distortion
	3. Brightness Distortion
	4. Pixel Classification

	5. Background Model Latency

	B.​Servo-Control (Ryan)

	III.​CHALLENGES
	A.​Background Subtraction (Ezekiel)
	B.​Servo-Control
	A.​LiDAR and display output
	6. APPENDIX
	7. REFERENCES

