
always comm: An FPGA-based Video
Conferencing Stack

Akshay Attaluri
MIT

akshay a@mit.edu

Rishab Parthasarathy
MIT

rpartha@mit.edu

Gilford Ting
MIT

gting@mit.edu

Abstract—We present a design for an extensible video con-

ferencing stack implemented entirely in hardware on a Nexys4

DDR FPGA, which uses the M-JPEG codec to compress video

and a UDP networking stack to communicate between the FPGA

and the receiving computer. This networking stack accepts real-

time updates from both the video codec and the audio controller,

which means that video will be able to be streamed at 30 FPS

from the FPGA to a computer. On the computer side, a Python

script reads the Ethernet packets and decodes the packets into

the video and the audio for real time playback. We evaluate

this architecture by synthesizing SystemVerilog RTL code using

Vivado and deploying on our Nexys4 DDR FPGA, where we

plan to evaluate both end-to-end latency and throughput of video

transmission.

Index Terms—digital systems, field programmable gate arrays,

networking protocols, video codecs, video streaming

I. INTRODUCTION AND MOTIVATION

As video conferencing has become increasingly common
post-COVID, video streaming has become an extremely costly
workload for traditional computers. In response, we present
always comm, a design for an FPGA-based video conferenc-
ing and streaming system capable of streaming video in real
time, either to another FPGA or an online endpoint. At the
highest level, our specialized device should be able to accept
video data directly from a camera and speaker and perform
real-time signal processing and compression so that it can be
streamed over a network connection.

Specifically, we demonstrate that an FPGA can calculate
video codecs and audio in parallel with networking protocols,
enabling efficient computation of the video conferencing stack.
With core modules calculating the Motion JPEG codec for
video and communicating audio, image data can be streamed
directly from BRAM to a nearby laptop connected over
Ethernet using our UDP networking module. This means that
our project can be used for video conferencing (if it’s a one
person to one person connection) as it can stream video at
30 FPS. Overall, we demonstrate that with limited memory,
an FPGA-based implementation can achieve extremely high
throughput in video conferencing, achieving the same as with
much bulkier, more hardware intensive implementations on
classical compute like our computers.

There are a number of significant challenges that makes
this project meaningful to do. First, while an FPGA may be
better able to parallelize the computation of the DCT, we must
also be extremely careful to not overuse DSPs. On top of

that, run-length encoding requires variable length bitstreams,
which is difficult to manage on a traditional FPGA module
which expects fixed size outputs. Overall, the Ethernet PHY
on the Nexys4 DDR boards is also not very well documented,
so there are significant challenges with transmitting over this
connection with properly formed packets.

As such, we set the goals of the project like so:
1. The Commitment (MVP): Able to send arbitrary pack-

ets over Ethernet and able to demonstrate a minimal
compression scheme that can be sent over the Ethernet
and decompressed to a larger size.

2. The Goal: Able to send arbitrary packets over UDP and
able to demonstrate that there is a functioning M-JPEG
pipeline.

3. Stretch Goal: Fully functioning UDP and M-JPEG
protocol that operate and can be processed at 30 FPS.

As such, the current state of our system contains a UDP
module that sends over the Ethernet at 87 FPS, which is
further discussed in our evaluation section, meaning that the
networking module reaches even the stretch goal. On top of
that, through Wireshark traces and Python scripts, we have
found that we can use Huffman encoding to compress and
decompress packets with at least a compression ratio of 8-
12, meeting the commitment. We have also implemented a
successful testbenched version of the DCT, which completes
the M-JPEG protocol, and thus hits the goal. We can success-
fully reconstruct audio over DCT, and video has also been
successful at 180 FPS, exceeding our Stretch Goal.

II. SYSTEM DESCRIPTION

At a high level, the system consists of three key modules:
the audio module, the video codec, and the networking inter-
face.

First, the audio module consists of a SPI controller reading
from a microphone at 8 kHz, which is written to our other
modules through the network controller. We provide a simple
block diagram below in Fig. 1.

Next, the video codec module is a compressor for video
streaming at 30 FPS, which otherwise would have an ex-
tremely large memory footprint and thus be infeasible to
transmit efficiently. Specifically, the video codec is connected
to a frame buffer, which retains the frame due to the camera
being in a different clock domain than the rest of the code.
First, the image is input into a JPEG signal generator that

Fig. 1. Block diagram for audio module

retrieves the appropriate section of the image, which is con-
verted into YCrCb form, an alternative to RGB that encodes
luminance and chrominance. This YCrCb form is input into
the video codec module, which in this case implements the
MJPEG codec. This MJPEG codec has each frame encoded
as a separate JPEG image, which is encoded using the Discrete
Cosine Transform (DCT), a quantization, and Entropy Coding.
The entropy coding consists of separate run length encoding
and Huffman encoding. Finally, this video codec output is
streamed into a network accumulator. The video codec pro-
tocol is described in more depth in Section 3 of this report,
and a high level block diagram can be seen in Fig. 2.

Finally, the networking module is a finite state machine that
reads in data from the video and audio registers, performs
necessary computations to generate headers and checksum,
and outputs this information to the Ethernet PHY. The Ethernet
PHY on our Nexys4 DDR board follows the Reduced Media
Independent Interface (RMII) protocol, meaning that we have
to send it information 2 bits per cycle of a 50 MHz clock
(100 Mbps). To this end, we have a transmit scheduler that
transitions our networking module between its various states,
each of which involves writing a different component of our
packet to the PHY. The block diagram is provided in Fig. 3.
The FSM is also defined in Fig. 4.

III. SPECIFIC DESIGN

A. Audio Module

Because our video codec module is significantly more
complex than most audio codec schemes (and deals with
much more data), we simply repurpose the simple audio
transmission module used in Lab 3, reading out the audio
signal from a MAX9814 microphone and storing it in an
audio BRAM block. This data is read from once the Ethernet
module requires audio data, when in the process of assembling
a packet. This reads 8 bits of data at 8 ksps, which is fed into
a register that is read 10 times a second, meaning that the
register is 8 Kb. We use a register and not a BRAM because
this makes synchronizing signals for the networking module
significantly easier. This communicates with the speaker over
SPI.

B. Video Codec

The video module connects with an OV5640 camera
clocked at 12.5 MHz using a traditional frame buffer, which
is then piped into the MJPEG specification, which processes

each frame of the video separately using the JPEG codec.
We describe the detailed implementation of the specification
below.

1) YCrCb Subsampling and JPEG Signal Generator:

The first step of the MJPEG specification is subsampling
the channels in YCrCb. Because the luminance channel is
more important than the chrominance channels for human
eyesight, the standard subsampling scheme is 4:2:0, which
means that all luminance values are retained, but each 2x2
grid of chrominance values is averaged. This module also
rescales the range of the values from [0, 255] to [-128, 127],
as the transformation used next is more stable when values
are centered around 0 rather than solely positive.

To implement this subsampling, we divide the image into
16x16 superblocks, as each DCT operates on 8x8 chunks. Each
superblock thus contains 4 blocks in the non-subsampled Y
channel and 1 block in each of Cr and Cb, amounting to 6
blocks in total. We note that because each superblock thus
has 6 chunks of size 64, which have DCT coefficients of at
most 11 bits, we find that two superblocks fit well in each
packet. We thus trigger our JPEG signal generator to traverse
two superblocks each time a new video packet is requested by
the network accumulator. We also traverse the next block for
DCT only after the previous DCT is fully done being JPEG
compressed, as this simplifies synchronization and still easily
meets timing as discussed in the Evaluation section.

2) 2D DCT: The second step of the MJPEG specification
is computing the 2D discrete cosine transform (DCT) of
the subsampled Y, Cr, and Cb channels, which isolates the
different frequency components for later compression.

The 2D DCT follows the formula

Gx,y =
1

4

7∑

i=0

7∑

j=0

gi,j cos

(
(2i+ 1)xω

16

)
cos

(
(2j + 1)yω

16

)

(1)
Analyzing this equation, we note that the 2D DCT is fully

separable into a 1D DCT on the rows and a 1D DCT on the
columns, which we leverage in our implementation. We begin
by implementing a 1D DCT module, which calculates the 1D
DCT on a series of 8 values. This module accepts a series of
8 values every cycle and outputs the relevant outputs 5 cycles
later. To pipeline this module, a butterfly-based algorithm was
utilized as displayed in Fig. 5. The butterfly algorithm splits
the DCT into antisymmetric and symmetric terms, which are
then multiplied by the cosine coefficients, reducing the number
of multiplications that must be performed by 30% [1]. This
algorithm was implemented using fixed point arithmetic, with
the output of the DCT module having 5 extra bits after the
decimal point as compared to the input. Fixed point arithmetic
was chosen to reduce the load on DSPs from the discrete
cosine transform, as this is the most DSP-intensive part of the
project.

Then, the 2D DCT is implemented as an FSM that calls
the 1D DCT, which first loads in 64 serialized values over 64
cycles. After that, the 1D DCT is called on each row of the
loaded image, and then, the 1D DCT is called on each column

Fig. 2. Block diagram for video module

Fig. 3. Block diagram for networking module

Fig. 4. FSM for networking module writing to Ethernet PHY

Fig. 5. The butterfly algorithm for the DCT [1].

of the outputs of the 1D DCT. This output is then serialized
and outputted over 64 cycles. We make the design choice to
serialize input and output and use an FSM to reduce the load
on registers as adding these design choices does not add too
much dead time to the point of preventing the algorithm from
running at 30 FPS.

Both the 1D DCT and 2D DCT modules have been imple-
mented and testbenched against NumPy implementations of
the DCT on random inputs, ensuring that fixed point arithmetic
remains within 5% error of the expected output.

3) Quantization: The quantization step accepts the outputs
of the DCT module and scales the output by dividing by
some integer and rounding the result. To do this, we use a
standard quantization matrix proposed in the original JPEG
specification as the 50% quality threshold [2]. The quantiza-
tion module accepts serialized inputs and outputs serialized
outputs, keeping an internal counter from 0 to 63 that keeps
track of which quantization value to use. This module is also
implemented using fixed-point arithmetic by keeping track of
the inverses of the divisors and using multiplications rather
than divisions.

This module has been testbenched for arbitrary inputs to
ensure that rounding and division are implemented properly,
which has been implemented in Cocotb.

4) Zigzag Readout: After quantization, because of the
DCT’s tendency to encode large values in the upper left
quadrant of the 8x8 grid, the values are read in a zigzag
order to shift nonzero values to the beginning of the serialized
sequence [3]. A diagram of the ordering is shown in Fig. 6.

To implement this ordering, the module accepts serialized
inputs for 64 cycles before switching to outputting the serial-
ized inputs in the correct order for 64 cycles. The output order
is stored using a lookup table, which can be used to index into
the inputs.

5) Entropy Coding: The entropy coding module receives as
input a serial stream of 11-bit quantized DCT coefficients, in
the order defined by the zigzag readout module. In accordance
with the JPEG specification, we use three different methods
to achieve a minimal-length output: a category-based value
representation, run-length encoding, and Huffman encoding.
Importantly, this module has variable-length outputs, which
will eventually be turned into an output bitstream by down-

Fig. 6. Zigzag ordering for reading out the quantized values [3].

stream modules.
Firstly, coefficient values are not transmitted exactly as-

is; rather, a categorization scheme is used to minimize the
number of bits needed to represent these values. Specifically,
a given value V has the category C = →log2 |V |↑ + 1,
and is transmitted as a C-bit value – conversely, the values
for a given category C fall in the ranges [1 ↓ 2C ,↓2C→1]
and [2C→1, 2C ↓ 1]. (The value 0 has the category 0 and
is not represented by any bits.) The actual C-bit value that
is sent depends on the sign of V – if V > 0, V is sent,
and if not, ↔ V (the logical negation of V) is sent instead.
For example, the value category C = 3 contains the values
↓7,↓6,↓5,↓4, 4, 5, 6, and 7, and the bit representation of
these values are 000, 001, 010, 011, 100, 101, 110, and 111.
Under this representation, the number of bits used to represent
a value in the final bitstream is related to its magnitude,
which is beneficial since many of our DCT coefficients are
often small numbers – specifically, this avoids sending large
numbers of bits for small negative numbers (a regular 11-bit
two’s complement representation of ↓1, for example, uses 11
bits).

Run-length encoding takes advantage of the fact that many
of the values in the resultant DCT coefficient block are
equal to 0, and significant compression can be achieved
by simply counting the number of zeroes preceding any
nonzero coefficient. To achieve this, an FSM structure is used,
where the module only transmits information downstream if
it receives a nonzero coefficient and simply increments a
zero_run_length counter otherwise. There are also two
signals transmitted for edge cases – zero_run_length is
of width 4, so it has a maximum value of 15. Thus, when the
16th zero in a row is processed, a special <ZRL> code rep-
resenting 16 consecutive zeroes is transmitted. Additionally,
the last coefficient in the block is followed with the end-of-
block code <EOB> (if there are preceding zeroes and the last
coefficient is zero, <EOB> is sent directly).

Thus, each fundamental chunk of information is a tuple of
3 numbers: R, the length of the run of zeroes preceding the

Fig. 7. Alignment of compressed coefficient information

nonzero coefficient, N , the minimum number of bits required
for the value, and V , the value of the coefficient. Crucially, R
and N are fixed-length quantities, while V is a variable-length

quantity. As long as the values are sent to a downstream reader
in this order, the coefficients can be easily recovered. For our
specific protocol, one reads 4 bits from the stream to get R,
another 4 bits to get N , and the next N bits to get V .

Lastly, the application of Huffman encoding comes from
the observation that the set of possible pairs of R and N is
relatively small, and often repeat – for example, the sequence
(0, 0, 0, 7) and the sequence (0, 0, 0, 4) have the same values
of R = 3 and N = 3. Thus, a Huffman encoding scheme
can be used to compress the (R, N) pairs losslessly. We use a
lookup table stored in read-only-memory (ROM) to translate a
code index, the concatenation of R and N , into a codeword, a
prefix-free binary code with variable length (between 2 and 16
bits). As per the JPEG standard, each combination of channel
type (Y vs Cr/Cb) and coefficient type (DC vs AC, top left
coefficient vs all other coefficients) get its own set of Huffman
codes – we use the values listed in the tables of INSERT
SOURCES HERE.

At the end of this module, we have a codeword Huffman
code output, a coeff value represented using the categorical
scheme, and other outputs to keep track of how many bits in
these values carry meaning. Huffman codes are left-aligned,
and coefficient value are right-aligned. To combine these
outputs and serialize them properly, we pass them into the
next module.

6) Data Alignment: The data alignment module combines
codeword and coeff into a 27-bit value aligned_value
such that the relevant bits are left-aligned and right next to each
other, with the rest of the variable being zeroes. (See Figure 7.)
We also keep track of how many bits in aligned_value,
carry meaning and both values are passed into the next module
for serialization.

7) Serialization: The ultimate goal of the serialization mod-
ule is to remove all “dead” bits that result from fitting variable-
length codes into fixed-length variables. This is achieved by
reading the aligned_values into a buffer every time valid
data is available, and outputting a 32-bit word every time
the buffer accumulates more than 32 bits. In this manner,

the variable-length compressed coefficients are turned into a
stream of bits divided into 32-length chunks. These chunks
are put into a video register for the networking module. There
is no danger of the buffer internal to the module overflowing
infinitely, as the maximum number of bits arriving per cycle
is less than the number of bits in the output (27 < 32). An
important implementation detail is that when the

as the 64 quantized coefficients from the DCT block are
translated into a compressed stream of bits,

the overall length of the stream may not be divisible by
32, and the last 32-bit chunk will not be fully filled. We pass
along an end_of_block signal with the previous variables
(pipelined appropriately, of course) such that this module will
know when to output an incomplete chunk.

C. Integration

Because the network is able to reorder and drop packets,
we make a few key changes to the integration between
the modules. Firstly, within each packet, we send two “su-
perblocks”, with each superblock comprised of 4 Y blocks,
one subsampled Cr block, and one subsampled Cb block. The
bits are aligned to the boundary between bitstream packets,
and are thus outputted in aligned chunks of size 32 bits, such
that each packet can be independently decoded into two 16x16
blocks of the image. In each packet, we also send a position
number – this is simply the index of the two-superblock chunk
when iterating over the blocks of the image in row-major order.
Because 180 (the height of our output video) is not divisible
by 16, we pad to the nearest multiple of 16 using zero-valued
pixels. Furthermore, we encode the DC coefficients as their
raw values instead of taking the difference from the previous
block – this removes dependencies between blocks and allows
us to deal with reordering packets.

D. Networking Interface

As defined above, the networking interface is managed by
a scheduler that maintains an FSM, where each state involves
writing a different portion of our Ethernet packet to the
Ethernet PHY. The scheduler remains in each state for the
appropriate amount of cycles to fully transmit the relevant data,
at the 2 bit/cycle rate defined by the PHY. These values can be
found in I. Note that the networking module runs on a 50 MHz
clock to accomodate for the Ethernet PHY’s specifications [4],
generated from a clock wizard.

Field Size Cycles

Preamble 8 bytes 32 cycles
Ethernet Header 14 bytes 56 cycles
IPv4 Header 20 bytes 40 cycles
UDP Header 8 bytes 32 cycles
Audio/Video 1 byte 4 cycles
Sequence Number 1 byte 4 cycles
Data Up to 1470 bytes Up to 5880 cycles
FCS 4 bytes 16 cycles
Interframe Gap - 48 cycles

TABLE I
PACKET FIELDS AND CORRESPONDING SIZES AND CYCLES

1) Preamble: In accordance to the RFC 1972 spec, we
prepend our Ethernet packets with an 8 byte preamble, con-
sisting of 7 bytes of 0x55, and one byte of 0xD5.

2) Ethernet/IPv4 Headers: We structure our Ethernet and
IPv4 headers in accordance to the RFC 1972 and 791 specs.
The specs define the header to consist of source and destination
addresses, which we predefine to be local addresses. This is
permissible due to our network consisting of a simple ether
with only 2 clients. The rest of the headers are various pieces
of metadata, such as TTL (time to live), etc.

3) UDP Header: We also have a predefined UDP header in
accordance to RFC 768. This also has source and destination
addresses, as well as other metadata. Under IPv4 the UDP
checksum is optional, so we forgo it since we have the Ethernet
checksum instead.

4) Metadata: Each data packet is accompanied with rele-
vant metadata meant to expedite the reconstruction process. In
particular, a 1-byte signal indicating audio vs. video data, and
a 1-byte sequence number are prepended to the payload.

5) Data: We route the data from either the audio or video
register, based on the current states of the registers. The
audio register consists of 1024 8-bit registers, while the video
register is 300 32-bit registers. The audio sampling module
writes into these 8-bit registers directly, and the entropy coding
module does the same for the video register. We select the
video register size because the entropy coding pads its output
words to 32 bits.

6) PHY Handling: The Ethernet PHY that is onboard the
Nexys 4 DDR boards is the LAN8720A Small Footprint RMII
10/100 Ethernet Transceiver. We provide it with input signals
in accordance to the LAN8720A datasheet. In particular, we
maintain inputs for an MDIO interface, including a 1.5625
MHz clock and MDIO signal. We also provide a reference
clock that runs in -45º phase to the RTL networking logic.
Finally, we maintain a transmit enable and reset signal for
the PHY. The reset signal is held to an active low for the first
20000 cycles of the 50 MHz clock. The transmit enable signal
is held high while sending data and headers, and is held low
for the rest of the FSM’s transitions.

We use counters of the register’s occupancy as well as
signals from the source modules to know when to send an
Ethernet packet. In particular, we send an audio packet when
the audio register reaches 800 8-bit registers full. We simply
flush these bits into the packet and send it to the PHY. For
video, we have a signal that is routed from the entropy coding
module that indicates when a total of 12 blocks (2 superblocks)
have been encoded. At this point, we flush the video bitstream
from the registers into an Ethernet packet. Note that this
encoding data has variable length — luckily, Ethernet packets
can be anywhere from 64 to 1518 bytes in length, so we can
easily fit the full range of values into our packets.

Upon sending of the whole data packet, we send a signal
back to the JPEG signal generator module to start the codec
stack.

7) FCS: We implement CRC32-IEEE 802.3 in order to
generate a checksum for our packet. This implementation takes

in a byte of data as it is received by the transmit scheduler,
allowing for parallelization of the checksum calculation with
writing of the packet.

This state machine is more specifically governed by two
modules, write_scheduler and tx_scheduler. The
first handles reading from data registers and handling the
Headers, Metadata, and Data states. tx_scheduler handles
the Preamble, FCS, and IFG states, and is responsible for
direct interfacing with the PHY’s inputs and outputs. During
the relevant phases, it receives data at a rate of 1 byte per 4
cycles from the write_scheduler.

E. Reconstruction

On the recipient device, we use a Python script with
Wireshark to sniff the relevant Ethernet port and collect all
packets. We write these packets to a .csv file, which is read
by another script that performs the inverse of the video codec
procedure. Audio is also similarly reconstructed. Due to poor
concurrency of Python and execution speed of Python, we do
not currently support a live video feed.

IV. EVALUATION

A. Latency and Throughput

We qualify the latency and throughput of our overall system
by measuring the time it takes to send a single packet of two
superblocks. Each DCT takes around 150 cycles to complete
(64 to process input, 20 for DCT and 64 to serialize output),
and the quantize and zigzag modules take another 70 cycles.
The run length encoding takes a final amount of at most 20 to
30 cycles to fully serialize the output. For each of the twelve
blocks, this takes 240 cycles, while the final signal from the
networking module takes 384 cycles to send a header and 1080
cycles to send the data values. The value of 1080 is taken
empirically from the average package size over Wireshark of
135 bytes, meaning that overall, we send each packet in around
4400 cycles. Scaling that to 120 packets per frame and 100
million cycles per second, this means that we send frames
at 180 FPS, which matches the observations found in packet
decompression, where we observe a frame rate of 183 FPS.

We note that thus our decision to make our modules FSMs
and drive DCTs sequentially for each packet does not impact
our throughput significantly, as we are still able to process
video far faster than needed for our goal of 30 FPS.

B. DSP and BRAM usage

In terms of DSP usage, the main use of DSPs in our project
was the DCT module, as it computes a number of pipelined
additions and multiplications. We find that the DCT module
uses 44 of the 53 DSP blocks allocated to the design, with the
majority of the rest being allocated to the YCrCb conversion.
Given that the board has 240 DSPs, we find this to be a
perfectly reasonable amount, as our butterfly based approach
to the DCT saves a significant amount of computation.

On the other hand, for BRAM, we only use BRAM for
the frame buffer, which is of size 1 Mb, and lookup tables
for Huffman encoding, setting the camera registers, and the

networking module. With this in mind, we are firmly under the
threshold for BRAMs. We note that a reasonable extension of
our project is to send the audio data and video data into FIFOs
built on top of BRAMs as opposed to the current register setup,
as this is the more natural solution on FPGAs. However, for the
sake of reducing complexity and synchronization of signals,
we choose to use registers as we have more than enough logic
slices to account for this usage. In fact, we only use 9000
LUTs and 20000 FFs when each of 15000 logic slices either
provides 6 LUTs or 8 FFs, meaning we still have a large
amount of distributed RAM left.

C. Synthesization and Timing Constraints

In its current state, our system synths and deploys success-
fully with a final WNS of 0.255 on the Nexys4 DDR FPGA.
We are able to send Ethernet packets containing valid video
and audio data to a connected laptop, on which we can run
a reconstruction script to generated decoded video and audio
data.

Our entire stack’s timing is based on the specification set
by the Ethernet PHY, which is a data transmission of 2 bits
every cycle of a 50 MHz clock. This timing requirement
is inherited by all previous modules in the system. Our
networking modules read in 1 byte every 4 cycles of the 50
MHz clock, our audio module samples at a rate of 8 bytes per
millisecond, meaning that we send an Ethernet packet every
0.1 seconds with 800 audio bytes. Similarly, the timing of
the the video codec stack is governed by the next_packet
signal from the networking stack. The codec stack itself is
pipelined appropriately to avoid timing issues. We used clock
wizards as were necessary to generate clock signals for our
input devices, codec, and networking stack.

D. Project-Specific Evaluation

1) Compression: We first evaluate compression on the raw
compression ratio that we are able to achieve using the
JPEG codec. At worst, the DCT coefficients for each pair
of superblocks are 12 blocks of 64 11-bit values, which
accounts for 1100 bytes. However, we find that the average
payload size for video packets is 135 bytes, meaning we
achieve an average compression ratio of 8 over the DCT
coefficients, which is standard, but on the higher end for a
JPEG-based implementation for small color representations
and small images, which often struggle more with JPEG
compression as the block size is nontrivial with respect to
the size / features in the image itself.

We note that all our modules are testbenched against stan-
dardized numpy implementations and as such are numerically
valid. When we reconstruct video, we can see the video as
we expect, with motion captured qualitatively as we see in
real life. However, we notice that because of bright sections
of the image, because we already work with quantized values
in the RGB space due to the 565 bit format, the DCT and
quantization overly truncate signals and clamp them to 0 or
255. That being said, we note that this is standard for a MJPEG
compression scheme with high compression ratio, which is

necessary to stream video, with harsh quantization matrices.
This has validated on reference implementations of MJPEG on
small images similar to ours, where the aforementioned issues
with small images also crop up.

Fig. 8. Image with Artifacts from JPEG compression

As such, we believe that our compression was implemented
successfully and matches the MJPEG standard. In a future
iteration of our system, we would love to experiment with
higher resolution video and unquantized color signals, along
with possibly modifying the codec / quantization schemes to
better account for the harsh lights of lights and bright signals.

2) Networking: Firstly, we evaluate our networking perfor-
mance. We observed 0 packet loss on streams up to 240,000
packets long, containing both video and audio data. Moreover,
these packets are all in-order, as verified by the sequence
metadata byte in their header. Because we’re sending our data
over a single Ethernet cable to a constantly receiving client,
such performance is optimal and expected. Our networking
module is also fully testbenched, and we used Wireshark to
verify data integrity over the ether.

On the audio streaming side, we can qualitatively evaluate
our result after reconstruction. The audio stream is untouched
by the Ethernet transmission, with it being of the quality we
would expect directly from the board. Given that we perform
no compression on this data, this is the expected outcome. The
quality of the video feed is discussed above.

3) Evaluation of Goals: Our initial goal for this project
was to create a fully functioning video codec and auxiliary
networking stack to send compressed video over the network
to a receiver, at 30 FPS. We were able to accomplish this
goal fully, even achieving a much higher FPS of around 180.
We were also able to implement Ethernet, IPv4, and UDP
headers as desired, sending data using universal protocols.
With that we have even reached our stretch goal of sreaming
both audio and video over Ethernet using M-JPEG and UDP
with throughput of at least 30 FPS. Having designed our
modules with such ideals in mind, there are several ways we
can improve the usage of our system.

The first is developing a better reconstruction script. Cur-
rently, our reconstruction runs on Python out of convenience,
which means that it cannot sustain the throughput necessary

for a live video stream. A next step would be to implement a
more robust reconstruction algorithm, with better parallelism.
This would also be much easier to accomplish on a non-
MacOS machine, as this would enable us to interface directly
with our machine’s Ethernet port.

Another avenue of improvement is leveraging the multicast
capability of UDP to send our video/audio stream to multiple
recipient devices, thereby creating a more versatile conferenc-
ing setup. Because of our adherence to the UDP specification,
such an improvement would not require much of a change in
our design.

Finally, we could also build an FPGA-based receiver device
to complete our on-chip conferencing setup. This receiver
would have a simpler networking stack to just receive packets
and store them, and an implementation of the inverse of our
codec. It would write this video and audio reconstruction to a
speaker and monitor.

V. IMPLEMENTATION INSIGHTS

While implementing the video codec, we had a tradeoff
between using BRAM buffers to minimize register usage
or serialization. After running into numerical bugs with the
butterfly algorithm and 2D DCT FSM, we decided to go with
serialization, as it was far easier to testbench with each output
coming out one cycle at a time. On top of that, as we have
sufficient time to serialize data without incurring too much
dead time, as described in the Evaluation section, we chose
to stick with a serialized ready-valid interface, as it was far
easier to connect modules and test.

We also found an extreme quirk with using the OV5640
cameras on the Nexys4 DDR boards. We found that while
clocking the camera xclk signal at 25 MHz worked on the
Urbana boards, the PMOD pins on the Nexys4 board do not
support such a fast signal. Instead, we switch the xclk signal to
a 12.5 MHz clock and the camera register assignment from 200
MHz to 100 MHz, and the cameras thus work with the Nexys4
DDR boards. However, we also encountered a new failure
mode for cameras on this board. While the cameras would
fry some data pins on the Urbana board, when the Nexys4
board was not connected to external power, the cameras would
inevitably fry every port after a given time plugged in. After
discussion with Kiran, we believe this may be a result of some
kind of power cycling, but it is still unknown where it comes
from.

While implementing the networking module, we encoun-
tered some interesting issues regarding packet malformation,
extraneous response packets, and more. A key revelation was
that the NIC (network interface card) of a MacBook Pro
automatically discards packets with certain EtherTypes (no-
tably, the IEEE experimental type we were using for testing),
incorrect checksums, and invalidly sized packets. This nuance
makes it somewhat difficult to debug issues with the Ethernet
PHY, as we cannot pinpoint malformation in the packets. This
became a major pain point during most of the development
process. Moreover, MacOS automatically tries to resolve an
IPv6 client through any Ethernet connection, through ARP and

MDNS packets. In order to remove this, we had to properly
configure our port to not send any such packets.

We also ran into some issues with how the Nexys DDR
board sets up the LAN8720A PHY. In particular, the board
uses an external pull up resistor on a configuration strap of
the PHY, and then inverts the output of the LED that shares a
pin with the strap. This unique configuration and other similar
quirks make the behavior of the PHY somewhat distinct from
that of the original spec. Luckily, we were able to use the
Nexys 4 DDR schematic to clarify these items.

Finally, we also found that a lookup table implementation of
the CRC-32 module was best for our system. At the expense
of having a 8 by 255 bit lookup table that gets initialized
into BRAM, we are able to support 1-cycle calculation of the
CRC-32, under the configuration where we send it one byte
of our packet at a time. This allows us to send full packets
without having appended padding to give us time for checksum
calculation.

VI. CONCLUSION

Having now completed this project, we are all extremely
happy with our choice to take on this endeavor and the results
of our work. Doing this scale of FPGA project was new to
all of us, and we found the work to be very fulfilling, albeit
challenging. This project gave us a great representation of how
such projects usually pan out, with some of the work involving
more complex algorithmic tasks, such as DCT, variable length
encoding, etc. and other code interacting with intricate specs,
like the Ethernet PHY. We look forward to any future projects
in this area, and we’re really grateful to Joe and the rest of
the course staff for their efforst on preparing us for this!

VII. CONTRIBUTIONS

Akshay was in charge of the networking stack. Gilford
was responsible for the entropy coding, data alignment, and
serialization modules. Rishab was responsible for the audio,
JPEG signal generator, DCT, quantization, and zigzag encod-
ing modules, overall integration, and integration with camera.
We all collaboratively worked on reconstruction scripts. We
would also like to thank Kiran, Joe, Kailas, Jan, and Stephen
for all taking a lot of time to help us on the fnal days of the
project.

VIII. CODE

Code can be found at
. Please note that you should copy and paste the

link, the link doesn’t link properly because of the underscore.

REFERENCES

[1] X. Ji, et al., “Early Determination of Zero-Quantized 8 ! 8 DCT
Coefficients,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 19, no. 12, pp. 1755–1765, Dec. 2009.

[2] G. K. Wallace, “The JPEG still picture compression standard,” in IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
Feb. 1992.

[3] H. Barman, et al., “Distributed compression and decompression for
big image data: JPEG and CCITT Group,” Multimedia Tools and
Applications, vol. 83, no. 17, pp. 1–41, Nov. 2023.

[4] Digilent, “Nexys 4 DDR Reference Manual,” Available: https://digilent.
com/reference/programmable-logic/nexys-4-ddr/reference-manual, Ac-
cessed: Nov. 2024.

[5] Cisco, “IPv4 Addressing White Paper,” Aug. 2013.
[6] R. M. Metcalfe and D. R. Boggs, “Ethernet: distributed packet switching

for local computer networks,” Communications of the ACM, vol. 19, no.
7, pp. 395–404, July 1976.

[7] J. Postel, “User Datagram Protocol,” RFC 768, USC/Information Sci-
ences Institute, Jan. 1980.

