FPGAutotune Pro
Final Report

Evan Andrews
Department of Electrical Engineering
and Computer Science

Alexander Sherstnev
Department of Electrical Engineering
and Computer Science

Benjamin Yonas
Department of Electrical Engineering
and Computer Science

Massachusetts Institute of Technology Massachusetts Institute of Technology —Massachusetts Institute of Technology

Cambridge, MA, USA
evan_a@mit.edu

*Authors contributed equally and are listed in alphabetical order.

Abstract—We present a real-time implementation of autotune
entirely in hardware on an FPGA. Our design records audio
input from a microphone, detects the fundamental frequency
being sung, matches that frequency to the nearest note in the C
major scale, and repitches the recorded audio to that note.

I. PROBLEM DEFINITION AND THEORY

Autotune is an audio processing technique used to make vo-
cals or instruments sound more pitch-accurate. Some versions
of autotune perform pitch-correction in real time while others
are used as post-processing tools. In our project, we autotune
human singing in real time to match the nearest note of the
chromatic scale in the key of C. The goal is to ensure the
singer sounds noticeably more in-tune with autotune applied.

Implementing autotune consists of two main subproblems:
detecting the frequency being sung, and adjusting the fre-
quency of a sound sample. In order for the autotuned output
to be perceived as real time, we aim to play back autotuned
output with at most 50 ms of latency.

A. Pitch Detection

Human voice is not a pure sine wave, but rather a super-
position of many waves called harmonics. The wave with the
lowest frequency is known as the fundamental frequency or
the 1% harmonic—this is the pitch we aim to detect and retune.
The other waves are higher order harmonics with integer
multiple frequencies of the fundamental (e.g. the 5™ harmonic
has 5 times the frequency of the fundamental).

We use the harmonic product spectrum algorithm [1] to
detect the fundamental frequency. This algorithm operates on
the frequency-space representation of an audio frame.

Let a(v) be the amplitude of the frequency v in the Fourier
space. We first compute b(v/), which is large when v is likely
to be a fundamental frequency:

k
b(v) = Ha(i V). (1)

b(v) represents the product of the amplitudes of the contri-
butions by some frequency v and its next k£ harmonics. We
then choose the fundamental frequency Vgndamentat tO be the

Cambridge, MA, USA
ashrstnv@mit.edu

Cambridge, MA, USA

byonas03 @mit.edu
x10°
1.5
[}
o]
2
= 1.0
&
=
0.5 1
0.0 - uu.uj Ao .JJ.‘ JAAL
0 200 400 600 800
FFT Bucket

Fig. 1. A graph of the frequency space for a sample of human voice. The =
axis is frequency and the y axis is the contribution by that frequency. Note
the peaks occur at a fixed interval, at multiples of the fundamental frequency.

frequency which maximizes b (see figure [I). We found that
k = 4 gave very good results in our testing.

In our evaluation, we found this algorithm to be significantly
more effective than simply scanning the frequency space for
the first “peak” because noisy data often obfuscates peak
positions.

B. Pitch Adjustment

The superposition of these harmonics and their relative
magnitudes produces the timbre of the sound—the quality
which differentiates unique voices. Therefore it is important to
maintain these relative magnitudes and phases. The simplest
way to adjust the pitch of audio while maintaining timbre is
to speed it up or slow it down via resampling. A sine wave
played twice as fast will have twice the frequency and twice
the pitch. However, the duration of the sound is not preserved
and phase discontinuities may arise when repitching sequential
frames of audio.



To resolve these issues, we use a dynamic phase vocodelﬂ
[2]. We begin by grouping incoming samples into overlapping
frames and multiply each frame by a Gaussian (also known
as a Hanning window). The space between the start times of
adjacent frames is called the hop size, and the duration of each
frame is called the frame size.

/ \

— —
Hop Size = ix Frame Size

Fig. 2. An audio sample split into overlapping frames f;, each multiplied by
a Gaussian.

We can speed up or slow down each of these frames
independently. Finally, we add the adjusted frames back to-
gether, with the original hop size. The resulting audio has
approximately the same duration as the original audio (see
figure [3), while each frame can be repitched by a different

factor.
/\ o

Fig. 3. Several overlapping audio frames, each sped up or slowed down by
a different factor. The resulting audio has approximately the same duration
as the input, despite the different scale factors. Note that the hop size is
preserved.

This approach resolves the duration issue, but introduces a
new problem. Since each frame is resampled at different rates,
waves pick up a different phase shift across each frame. The
result is that waves that were continuous in the original audio
may be discontinuous if adjusted using this method. While
testing, we found this to produce crackling artifacts.

To address this issue we must adjust the phase of each wave
to reflect the phase shift produced by resampling each frame.

For some wave of frequency v, let ¢, (v) be its starting
phase at frame n. Normally, the phase shift accumulated
between frames n — 1 and n is ¢, (v) — ¢,—1(v). Because
of our retuning, however, the phase shift should be scaled by
the tuning ratio R. A tuning ratio R = 2 means we expect
twice the pitch, and so twice the phase shift.

Thus, we compute the adjusted phase for some wave of
frequency v on frame n to be

S (V) = 0 1 (V) + (00(V) = dna(v)) R (D)

We then adjust the phase of each wave in the Fourier space by
multiplying by exp (¢, (v) — ¢ (v)). This ensures that waves
remain continuous across repitched frame boundaries.

IThe cited article describes a “static” phase vocoder which tunes by a set
resampling rate. Our algorithm differs by dynamically updating the resampling
rate as we receive audio input.

C. Uncertainty Principle: Balancing Latency with Accuracy

To achieve “real time” playback, the frame size must be
short enough for delay to be imperceptible while maintaining
a frequency granularity fine enough to accurately choose the
tuning rate R.

The frequency space generated by the discrete Fourier
transform has a granularity g determined by the sampling rate
r = 16kHz and the frame size s. Note that the granularity g,
which defines the bin sizes of the frequency space, is merely
a function of the frame size in terms of time.

g=-. 3)
S

In order to achieve <50ms latency while leaving ~10ms
for computation, s < 7 - 0.04s = 640samples. However,
this produces a granularity g = 25Hz which is too wide to
accurately detect pitch. Even assuming instant computation,
the theoretical best granularity we can achieve with this latency
is 20 Hz—still too coarse to determine pitch.

To address this fundamental limitation, we maintain two
separate audio buffers. The larger buffer is used to perform
pitch detection, at a latency greater than 50 ms, while the
smaller buffer is used to perform the actual adjustment, at
a latency less than 50 ms. This strikes a balance between “real
time” adjustment and accurate pitch detection.

II. IMPLEMENTATION
A. Evaluation in Python

To verify the quality of our method, we first implemented
each module of our design in Python. This allowed us to test
end-to-end how our modules would interact, and verify our
algorithm produced high quality results.

In designing our software implementation, we took care to
structure our Python similar to hardware. For example, we
avoided passing arrays by value, and instead designed each
module to operate in-place on a few large arrays that were
passed as parameters to mirror the System Verilog we would
eventually write.

Following the theory, we began by detecting the fundamen-
tal frequency of each frame. We verified that the harmonic
product spectrum algorithm was effective by empirically test-
ing against real audio. Figure [] shows the result of our
pitch detection and note matching on real data. The tuned
note closely matches the detected fundamental—except for
some discontinuities when the singer changes pitch. These are
moments of silence in the audio where our algorithm struggles
to detect a fundamental frequency among the noise. We found
these spikes to be inconsequential in our testing as they occur
very briefly when the audio has low amplitude.

Next, we implemented the phase adjustment module en-
abling us to verify the quality of our autotune end-to-end. We
tested extensively on real audio to confirm that we produced
high quality and consistent results.

Our full software implementation showed high quality re-
sults as a proof of concept, but had poor latency. Since we
designed our algorithms carefully to be implementable in



600
z ~
£ 400 i
= a | Goma
o P
2 P
o 2t

200

0 ‘I T T T T
0 250 500 750 1000

Frame Index

Fig. 4. The detected fundamental frequency (orange) and tuned note (blue) per
frame (x-axis) in our software implementation. The audio recording features
Ben Yonas singing the C major scale. The y-axis shows pitch represented
in FFT bucket indices. Note the individual monotonically increasing scale
degrees represented by the sustained lines.

hardware, we were confident we could achieve similar high-
quality results with in real time on an FPGA.

B. Hardware Implementation

Once our software implementation was complete, we began
implementing our algorithms in System Verilog. Figure [f]
shows a block diagram of our hardware implementation.
BRAMs, FFT modules, and I/O are highlighted. As the dia-
gram shows, there are two main branches of our design: pitch
detection and phase adjustment. We tackled these problems
one at a time.

1) Audio I/O: Our initial step was to determine how we
would record and playback audio on the device. We used the
INMP441 MEMS microphone which communicates over the
IS protocol. We then tested this in hardware by using pulse
density modulation (PDM) to play back the recorded samples.

2) Pitch Detection: We first implemented the fundamental
finder module, corresponding to the left branch of our block
diagram (figure [6). We used an open source FFT implementa-
tion [3] which we configured to use 2048 samples at 16 bits
of precision. This module gave us excellent throughput and
good latency (< 5000 cycles).

We implemented the harmonic product spectrum using 48
bit multiplication, which proved to be the limit of what our
FPGA could compute in a single cycle (using DSPs on a
100 MHz clock).

After computing which FFT bin contains our fundamental,
we compute a weighted average with the adjacent FFT bins.
Say we find bin ¢ to contain the fundamental. Then we wish
to compute the weighted W average of bins ¢ — 1,4,7 + 1:

(Z - 1)F7;71 + ZFZ + (Z + 1)Fi+1
Fi 1+ F+ Fipq .

Once we computed the fundamental, we performed a linear
scan in a lookup table (LUT) of C major notes to find the

W= “4)

nearest match. In our initial testing, the fundamental and
nearest note could be displayed on our FPGA’s 7-segment
display, which we used for quick debugging.

We were initially concerned about storing data in LUTS
on the FPGA fabric instead of in BRAMs, but upon testing
discovered that we had ample resources.

3) Resampling: Once our pitch detection was implemented
and tested, we moved on to resampling. The algorithm we
designed was inspired by PDM. A visualization of this algo-
rithm is shown in figure [5] In our implementation we perform
interpolation by considering each input sample four times.
We then take the average of the four nearest samples in the
output. This allows us to represent an output sample 3, %, or
% between two input samples.

Input 1
nput sample Slope = R

Output sample

Fig. 5. A visualization of our resampling algorithm. One step on the x axis
corresponds to one output sample, and one step on the y axis corresponds
to one input sample. The straight line has slope R—the tuning ratio. The
resampling algorithm takes vertically (to the next input sample) until it crosses
the tuning line, then it takes a step horizontally (to the next output sample).

4) Phase Adjustment: Phase adjustment was the most chal-
lenging module to implement due to the complexity of the
calculations involved. We chose to perform our calculations
in polar coordinates for simplicity, and converted to and from
Cartesian (real + imaginary) coordinates using the CORDIC
algorithm. We used an open source implementation of the
CORDIC algorithm [4]] which we found simple and effective.

We represented our polar coordinates as two 16 bit numbers,
a phase and an amplitude. To take advantage of modular
arithmetic, we chose units for our phase such that 0 = 0 and
216 _ 1 = 2. This simplified our calculations significantly.
The CORDIC implementation we used allowed us to convert
this form to and from 16 bit Cartesian coordinates efficiently.

Our phase adjustment formula (equation [2) depends on the
previous original phase and adjusted phase for each wave. We
decided to store this information in reprogrammable LUTSs
instead of BRAM. This gave us single-cycle access latency
and made the implementation far simpler. Although it required
more FPGA fabric to synthesize, we found this acceptable
given our overall low resource usage.

5) Recombining Frames: Once the frame is resampled, it
can finally be added to the output audio buffer and read out on
the speaker. Frames must be added together since they overlap
% with each other. We achieved this by using a circular buffer



|

ﬁ Microphone (I12S) }ﬁ

,,,,,,,,,,,,,,

’ Left Hanning Window ‘

FFT (2048)

' FF'T Buffer 1

,,,,, i DUIISE |
’ Fundamental Finder }7

original frequency

tuned frequency

| Little Audio Buﬂer}

’ Hanning Window ‘

FFT (256)

Phase Adjustment ‘
tuning ratio l

’Inverse FFT (256) ‘

1

’ Hanning Window ‘

’ Speakers (PDM) ‘

l

Fig. 6. A block diagram of our implementation.

equal to twice the length of one of the frames. This way,
there is enough space for 4 samples to be superimposed on
one another and played back correctly. The buffer is circular
to avoid any excess BRAMs and keep audio output as simple
as possible.

The final audio samples are passed into PDM to play out on
the audio jack. We chose PDM instead of PWM to get higher
fidelity for our 16 bit audio as the PWM lab audio did not
produce sufficient audio quality for our standards.

C. Module Communication

One challenge in our hardware implementation was coor-
dinating all of our modules. This is especially challenging in
this project because there are tight deadlines for when work
must be completed in order to achieve real time processing.

We decided to store most of the state of our system in top-
level BRAMs rather than within modules. This made it simpler
to test modules individually, and also made communications
between modules simpler. Modules begin computation when
a single-cycle “starting pistol” goes high, and output a ready
signal when they finish. This eliminates the need to manage
precise timing between modules and decouples their imple-
mentation.

Within modules, we attempted to achieve 1 sample per
cycle throughput when possible. This allowed us to simplify

inter-module communication further, by simply wiring the
output and data ready signals of one module to the input and
starting pistol signals of another. A good example of this in
our block diagram is the communication between the FFT,
phase adjustment, IFFT, and Hanning window modules—all
of which have a throughput of 1 output per cycle.

III. TESTING AND EVALUATION

Our initial goal and evaluation criterion was for autotuned
singing to sound more on-tune than it would otherwise.
Since this goal is subjective, most of our testing has been
qualitative. We took advantage of plotting in both our software
implementation and in our testbenches. We also referenced
existing pitch detection software (TE Tuner) to ensure that
our audio samples were being repitched properly.

We used Cocotb to create test benches for our individual
modules. Due to limitations of Cocotb and the size of our top
level, integration testing via simulation became impractical.
Therefore, we wanted to ensure our unit testing of modules
was thorough. Some test benches were straightforward and
relied on asserts for expected values while more complex
modules required different techniques. We were able to sig-
nificantly leverage our Python implementation in these cases
to compare outputs—either quantiatively or qualitatively. This



approach allowed us to carry our confidence from the Python
implementation over to the hardware implementation.

For example, in the early stages of our hardware implemen-
tation we wanted to verify our FFT module worked as expected
so we began by qualitatively comparing FFT outputs on
recorded audio samples. As our tests became more elaborate,
we began quantitatively comparing output between our Python
and hardware implementations by checking the root mean
square (RMS) of the difference with reasonable thresholds.
Techniques like these were used for major modules including
resampling, phase adjustment, and the Hanning window.

Finally, we implemented additional Python frameworks to
facilitate our testing. For example, in order to tests BRAM-
reliant modules, we implemented a simulated BRAM in
Python which implemented the same interface, enabling us to
easily verify modules which interacted with top level BRAMs.

IV. BUG IDENTIFICATION AND USER INTERFACE
A. Bug Identification

Following the preliminary report of our autotune imple-
mentation, there were plenty of small bugs to address. For
one, the sample accumulator was being improperly written to,
resulting in high frequency noise destroying the audio quality.
Additionally, we found bugs in the phase adjustment module
which were very challenging to identify due to the more com-
plex data manipulations present in the module. For example,
our reconstruction of Hermitian symmetry was incorrect. As a
result, we rewrote the module from scratch. Lastly we found
bugs in the fundamental finding module which suffered from
overflow in the accumulation of frequency products required
for producing the harmonic product spectrum. To resolve this,
we needed to increase our bit width for representations in the
module.

B. User Interface

Finally, we added a nice interface which displays detected
frequencies and notes being tuned to for the ease of identifying
how well our hardware implementation works. This data is
being transferred over UART to a computer, which is running
the Python front end for the Ul

V. CONCLUSION

At the time of writing this final report, we feel that we
have effectively addressed the technical challenges related to
autotune. Given our testing in software and bug identification
in hardware, we feel that our autotune module accurately
identifies and retunes input audio to align with the C chromatic
scale.

When looking back at how we implemented our design
as a whole, there are definitely notable good approaches
and practices that we upheld. Some good practices included
developing comprehensive tests for most of our modules,
which gave us the confidence of where to look during the
hardware debugging stage of our development. Another great
approach that we took was the implementation of a non-real
time autotune implementation in python, which could be used

to identify the signal processing limitations of our chosen
sample and frame parameters.

ACKNOWLEDGMENT

The authors would like to thank Joseph Steinmeyer and
Janette Park for their help during lab hours and for providing
the hardware required for this project. Additionally, we would
like to thank Frangois Grondin for his inspiration to use the
Phase Vocoder algorithm, and his excellent website detailing
its implementation [2]]. Furthermore, we thank Dan Gisselquist
of Gisselquist Technologies for his excellent FFT [3] and
CORDIC [4] modules. We also liked the epigraph at the end
of his webpage: “He that withholdeth corn, the people shall
curse him: but blessing shall be upon the head of him that
selleth it.” [5]]

REFERENCES

[1] A. M. Noll, “Pitch determination of human speech by the harmonic
product spectrum, the harmonic sum spectrum and a maximum likelihood
estimate,” Proceedings of the Symposium on Computer Processing in
Communications, vol. XIX, 1970.

[2] F. Grondin, “Guitar pitch shifter,” https://www.guitarpitchshifter.com/
index.html.

[3] D. Gisselquist, “An open source pipelined fft generator,” https://zipcpu.
com/dsp/2018/10/02/fft.html.

[4] , “Using a cordic to calculate sines and cosines in an fpga,” https:
/fzipcpu.com/dsp/2017/08/30/cordic.html.

[5] King Solomon, The Holy Bible. King James, 1611, ch. Proverbs 11:26.


https://www.guitarpitchshifter.com/index.html
https://www.guitarpitchshifter.com/index.html
https://zipcpu.com/dsp/2018/10/02/fft.html
https://zipcpu.com/dsp/2018/10/02/fft.html
https://zipcpu.com/dsp/2017/08/30/cordic.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

	Problem Definition and Theory
	Pitch Detection
	Pitch Adjustment
	Uncertainty Principle: Balancing Latency with Accuracy

	Implementation
	Evaluation in Python
	Hardware Implementation
	Audio I/O
	Pitch Detection
	Resampling
	Phase Adjustment
	Recombining Frames

	Module Communication

	Testing and Evaluation
	Bug Identification and User Interface
	Bug Identification
	User Interface

	Conclusion
	References

