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Abstract—We present a design for an interactive audio-
visual system that uses real-time data acquisition and audio
synthesis to replicate a Musical Instrument Digital Interface
(MIDI) piano with visual feedback. We implement this design
using a hardware stack with two facets: MIDI intake / audio
processing to play notes and object tracking / video processing
to set the beats per minute (bpm). The hardware stack interfaces
with a MIDI device to receive data, a camera to track a baton,
and a 720p HDMI monitor to display data.

Index Terms—Musical Instrument Digital Interface, Digital
Systems, Digital Signal Processing, Object Tracking, Real-Time
Audio Visualization

I. THE PROBLEM

Real-time audio synthesis and visualization interfaces
are difficult to create purely in software because of the over-
head of higher-level programming languages. Therefore, we
have developed a hardware-based real-time audio visualization
and synthesis platform to provide valuable feedback to the
user in a professional music or educational setting. Our design
is intended to provide this audio and visual feedback in a
understandable and intuitive way while allowing itself for
expansion. The difficulty with addressing this problem is two-
fold: the audio is synthesized from scratch, and we are not
using a pre-existing music display driver to draw the notes in
the proper location.

As a refresher, the requirements of the project were
the following: decoding MIDI messages, using a baton to
set BPM, using BPM, integrating multiple sounds to create
a “summed” PWM, and integrating the audio/video into a
unified system. Our design has met these requirements because
instantaneous audio feedback is provided for up to 4 notes at
once, and instantaneous visual feedback in the form of a staff
that demonstrates the note being played.

II. HIGH-LEVEL EXPLANATION OF THE DESIGN
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Fig. 1. A high level view of the system
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At a high level, our project takes in MIDI data from any
kind of MIDI device, and it parses it into a sound and visual
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representation on a musical staff. The key module on the audio
side is pwm_combine, and this effectively generates the
noise. On the other hand, the key module on the video side is
note_storing_run_it_back, and this effectively draws
all the notes. Innovative techniques of our design include
the real-time note detection and display, lightweight audio
synthesis, and dynamic note generation on the display.

III. MIDI KEYBOARD INTERFACING & SYNTHESIZER
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Fig. 2. The breakdown of the bytes within a midi message. [3]

MIDI is the digital protocol that we are working with,
and it is a specific version of UART (Universal Asynchronous
Receiver/Transmitter) that typically transmits 3 messages in
a burst at baud rate of 31,250 Hz [1]. Some devices, like
the keyboard we are working with, send messages known as
active sensing and clock messages. These messages do not
adhere to the previously described packet structure. Rather,
they are only 8 bits (10 including UART start/stop) [1[], and
this presented some challenges because they are typically sent
more quickly than the note data. In total, the entire MIDI
message packet that we are working with consists of 30 bits,
and the breakdown is as follows: 6 UART start/stop bits, 8
velocity bits, 8 note number bits, 4 channel bits, and 4 status
bits (on/off message type)

The physical setup consists of the following parts:
1) MIDI Breakout Board
2) Perf board for wiring
3) MIDI interface cable
4) MIDI-OX Software
5) loopMIDI Software

Note: A schematic of the hardware setup is available in Section
A. Data Intake

When a note in pressed on the keyboard, the note is
sent over USB-MIDI (a different, more complex protocol) to
a laptop. Inside the laptop, loopMIDI and Midi-OX route the



data to the standard MIDI Out cable for receipt by the FPGA.
On the FPGA, several things occur:

e The midi_decode module receives the start bit of the
first UART message; then, it decodes the message. If this
message is not a note on or note off message, then the
message is ignored, and the module returns to the IDLE
state. (This logic ensures that the active sensing and clock
messages are ignored.)

o If the message is valid, then the module awaits for the
rest of the information: the note and its velocity which
are encoded in the next 20 bits (2 UART packets).

¢ Once this data is received, it is sent to the midi_ burst
module where it is packaged with other data for further
processing.

e Within midi_burst, a 5 element “note” array is
updated each cycle if new data comes in from
midi_decode. Additionally, a 5 bit valid array is output
by the module to indicate which indices have valid note
data. If the message received from midi_decode is a
note off, then the valid array bit gets set to zero, and
the data in the array at that index is set to zero. On the
other hand, if a note on message is received, then the
module searches for a “free” index from MSB to LSB
in the valid array to place the note. For instance, if the
valid array is: 5/ b11010, then the data will be placed
in the 2"¢ index, resulting in: 5/ b11110.

e The data from midi_burst is received by
pwm_combine, and it is parsed as described below:

1) A value, n, between O and 127 (inclusive) is re-
ceived by the module.

2) n mod 12 is calculated by continuously subtract-
ing 12. Each time 12 is subtracted, a counter m
increments by 1.

3) In the end, the result of n mod 12 is the
note number between 0 and 11 that is sent to
pwm_combine, and m is the octave between 0 and
10.

e Within pwm_combine, the data is sent to the
sine_machine module for audio synthesis, and it
also outputs an 5 element array for usage by the video
pipeline.l
At this point in the pipeline, the data goes in two

directions: the visual half of the system and the audio half.
The visual half of the note’s traversal will be discussed in the
next section.

B. Audio Synthesis ()

The audio synthesis 1is done purely within
sine_machine; however, this signal remains internal
to pwm_combine as it is responsible for adding the signals.
A high level overview is given below:

e In this sine_machine, sine data stored in flash, and it
is read from a BRAM at a rate determined by the note
and octave, and this data is sent back to pwm_combine.
This process will be discussed in further detail below.

e Within pwm_combine, the appropriate number of sine
waves are combined through weighted signed addition
depending on another form of data from the MIDI format.
Finally, this result is sent to the PWM module. The final
PWM signal comes out of the PWM module and into the
speaker, completing the audio system.

To expand upon the sine generation, the sine wave stored in
flash is a 440 Hz A4 note with 8000 samples. Moreover, each
sample is only 8 bits. To read a certain note, each sample
from the sine wave needs to be held for a certain amount
of time. Therefore, samples from the sine wave can only be
extracted every x cycles. This value depends on the clock
frequency, sample rate, and frequency of the original sine
wave. Its formula is given below where f.;; is clock frequency
that the module is run at and fy is the desired frequency of
the resulting sine wave.

fclk -440H z
(8000 samples) - f4

As an example, if we wanted to read the 440 Hz sine wave
back from flash, z would be equal to 12, 500. A key aspect of
this relationship is that this computed value x can be shifted
to the right or left to change the octave and correspondingly
change the frequency. Going back to the example value of
12,500 if this note is actually an AS5, then the module will
read every 6,250 cycles to create the higher frequency note.
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Fig. 3. The MIDI Data pipeline modules with abstracted inputs and outputs

Once the four sine waves are generated [3| they are
combined in a weighted sum. As part of the MIDI protocol,
there is an attribute called the note velocity, and this is a value
that ranges from O to 127. For each note, each value of the
sine wave is multiplied by this value then normalized (divided
by 255 through a 7 bit right shift).

IV. VISUAL INPUT & PIPELINE
A. Visual Input/Outputs & Video Mux

Our system has a visual output that is controlled by
the note_storing_run_it_back module. As notes are



received from the keyboard and MIDI inputs, they will be
displayed on a staff. Notes will be able to be overridden and
changed; multiple staff lines to be played simultaneously are
planned to be added as well.
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B. Pipelining

Due to the time-sensitive nature of the video pipeline,
all the modules need to be pipelined properly as shown in
figure [l] Moreover, the WNS and TNS were consistently
an issue for us during the design. Therefore, pipelining was
integral. The four pipeline endpoints needed are at Center of
Mass, Note Storing, Video Mux, and the frame buffer BRAM
modules; these modules all require the use of signals from
pixel reconstruct as well as from downstream modules.

C. Beat Detection

Baton Position

0 5000 10000 15000 20000 25000

= - ﬁ
5 80 : s .‘ L3 -
N e [ ®e e “
g -100 < h ® e
% 120 ¢ e e e .ﬁ. ° { o L od :

g . o e

sample Count

®y_com @beat_detected

Fig. 5. Plotted Y Position and Beat Detected

The baton tracker module takes the y position from the
center of mass module to detect extrema as detected beats. A
beat is detected when the y position has a O first derivative and
a positive second derivative; in other words, when the baton
goes down then up. In practice, the output of the beat detection
module is set high when the previous change in y position is
negative while the current change in y position is positive.

Because center of mass is continuously calculated in real
time, the y position may marginally fluctuate even in a still
frame. These fluctuations are filtered out by restricting the
aforementioned conditions: if the previous change in y position

is a negative number less than -2, and the current change in y
position is a positive number greater than 2, then the output is
set high; the threshold value 2 was determined empirically.
With these restrictions, small fluctuations in change in y
position from -2 to 2 are not considered as valid detected
beats. If the current change in y is within this invalid range,
the module waits until a valid change in y position value is
received to replace the previous change in y position value.

Furthermore, mask color for the data that feeds in the
center of mass module is hardcoded to find pink to match the
color of the baton.

D. BPM Generation

The BPM generation module is a state machine with the
states IDLE, OVERRIDE, BATON, and DEFAULT. The states
are mainly determined by two FPGA switches encoding up to
four states, with some exceptions.

The IDLE state remains the same unless the switch con-
figuration changes. If the switches encode for the OVERRIDE
state, the state transitions to OVERRIDE. However, if the
switches encode for BATON to be the next state, the state
transitions to BATON only if the immediate previous state
was IDLE (in addition to the current IDLE state). This logic
prevents the state machine from indefinitely cycling between
IDLE and BATON as long as the switches encode for BATON,
continually overriding previously-set BPMs. Each time the
switches are changed to the BATON configuration, BPM can
only be generated once until the switches are updated to
another state, then back to BATON.

In the OVERRIDE state, BPM is set to whatever number
is encoded in the top 8 switches on the FPGA.

The BATON state gives the user 15 seconds to set a
tempo. The number of beats detected (by the baton tracker
module) in the 15 seconds will be multiplied by 4 to attain
the BPM (of the quarter note), then multiplied by 4 again to
calculate the BPM of the %6 note. At the start of this state,
15 LEDs light up. One LED turns off each second, visually
counting down the remaining time. Once the countdown
finishes, the state transitions back to IDLE, and a new BPM
can only be generated by the baton if the switches are changed
to something else, then back to BATON.

Lastly, the DEFAULT state is simply a convenience for
the user to set bpm equal to a common BPM of 60.

E. Note Duration

Based on the note information received from the audio
system, the duration of each note in the "MIDI burst” is
determined, and this data is forwarded to the note-storing
module for drawing. This module is relatively simple in its
logic compared to note storing, but it keeps a running cycle
count of how long a certain note is held for. For instance, if
A3 comes in one cycle, and is held for 100_000 cycles, then
this module module will measure this. It stops its count if any
of the four following conditions are met:

o The octave changes.
« The note itself changes.



o The note valid array at that specific note’s index changes.
o The duration has passed a specific threshold of % >
23.999_999_999 where d is the current duration and b
is the bpm. Note that 24 billion cycles is the length of a
whole note, and it is the longest note we are representing.

If none of those conditions are met for a given note, then
the duration simply counts up for that note based on the data
that comes from the MIDI system. Moreover, we will explain
the third point more clearly with an example. Suppose there
is a valid array of 5711111, and this module is currently
determining the note duration for the fourth index. If the valid
array on the next clock cycle is 5/ 01111, then the duration
count for the note at index 4 will be set to O on the next clock
cycle.

FE Note Storing

This module receives the data from note duration, and it
parses the kind of note based on this value. The duration for a
quarter note is 60 sec - 100,000,000 cycles. One fourth of this
value is the number of cycles for a sixteenth note. To compare
the input from note duration to the thresholds, we would have
to use division (comparing the input note duration in clock
cycles to 60- %), but we avoid this by comparing the
input times bpm to the threshold by comparing in duration
times bpm to 60 - 100,000,000.

Based on the rhythm of the note, we index into the note
sprite image to store the correct type of note into the frame
buffer to be drawn by the hdmi monitor; this note pixel data
is muxed with camera data, so whichever can be displayed on
the monitor

Additionally, based on pitch, using the note C8 as the top
note that is can be displayed on the screen, we can calculate
the y position of the note. Each note slot on the staff is 6
pixels, and there are 7 possible note locations (as sharp notes
are on the same position as their non-sharp counter parts). The
octave determines how many repetitions of 6 pixels - 1 octave
- (7 notes) down to draw the note, and this is offset by the
particular pitch.

Then, we use a state machine to take the input notes and
store them into memory. First we initialize the background,
then the staff with rests. Then, we wait remain in the IDLE
state until we detect a note. A note can only be detected every
1,500,000,000 cycles (incremented by Y of the bpm) as this
is the cell duration for a sixteenth note. In short, we can only
detect a note once every sixteenth note. This is counted by
staff cells; each staff cell represents a possible slot for a 16th
note to be drawn; there are then 64 staff cells for 16 16th
notes per measure times 4 measures. The staff cell is always
looping through as places where detected notes can be drawn.

A note is only drawn if there is a change in rhythm
(incoming detected is compared to a matrix). There are two
cases: 1. The rhythm has changed to a 16th note which means
that the note has turned into a new note (either pitch or octave
has changed or note has turned off; or the note has maxxed out
at a whole note), and 2. The rhythm has changed to anything
else, which means that the current held note is being extended

and continued to be held. In the case that the note is being
held, we need to override the previously drawn note. We do
this by not only keeping track of the current staff cell, but also
the “start” staff cell, the cell where the note data is held. When
a sixteenth note is detected, the staff cell that it is detected in
is set as the “start staff cell” of that note. If that sixteenth
note is held and extended into a longer rhythm, we can access
this start cell and change it to store the data of an eighth note
instead of a sixteenth; the rest of the staff cells between the
current and start staff cell are filled with NULLS as to not
repeat data.

Then we use this start staff cell as the starting location
to draw the note (multiplied by 5 as each staff cell is 5 pixels
wide).

V. EVALUATION OF THE DESIGN

The code of the design can be found herel General
evaluation notes will be given then more specific details will
be explained. To provide context for the time constraints for
the audio side of the project, the clock that all the modules
in the audio system run off of is the 100 Mhz clock, but the
throughput of the data is restricted by the 31,250 Hz baud rate
of the MIDI messages. This limitation, however, also provides
plenty of leeway for logic because each bit within the midi
message is held for 190-090-900 — 3200 cycles. Therefore, the
timing requirements for the audio aspect of the project are
relatively relaxed compared to the video portion. Moreover,
all of the MIDI files that were used to test as songs were
from

On the video side, the BPM module was tested by
acquiring data and sending it over UART over Python. Fur-
thermore, the note storage module was tested via test benching
to ensure that notes with certain durations were properly held.
Since the video aspect was visual, the majority of the testing
was done on the monitor, and we ensured that notes, stems,
dots, and sharps were drawn in the correct location.

Speaking about the entire system, we ensured that the
audio matched the notes that were being plotted on the moni-
tor. Additionally, we ensured that the specific MIDI messages
from our digital keyboard were giving the audio and video
pipelines the same data. We ran into an issue with a valid array
not updating for the video system, and this was discovered
through this evaluation.

1) Latency and Throughput: The latency and through-
put are mostly limited by how fast the MIDI data can be
acquired. Even though the FPGA’s clock is running at 100
Mhz, the MIDI data is transmitted at a baud rate of 31,250
Hz. There is some logic that takes a couple of clock cycles
before this data is available. However, it is relatively small
compared to the 3200 cycles that each bit in the MIDI data
stream is held for. Moreover, since this is an audio / visual
system meant to operate at the scale of human hearing and
vision, it is noteworthy to point out that there is no detectable
delay in the audio or video output. On the audio side, a very
small overhead that we incur is combining the notes into "midi
bursts”. This takes a few clock cycles for extra logic and
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valid data detection; however, it significantly expanded the
capability of the project by allowing the system to generate
audio and visual feedback from concurrent notes.

2) Memory and DSP Usage: The system uses 150
BRAMs and 120 DSPs. This resource usage could certainly
be optimized further in a couple of ways. Firstly, there is an
instantiation of the sine_machine module (which has a
BRAM) that is not being used because only 4 sine waves are
being combined. Moreover, in staff_saver, a module that
we were not able to complete, there is some logic to reform
the MIDI message and feed in back into the system. The DSP
usage could be reduced by using the data provided to the
module in a way that does not require all these computations
to be redone.

3) Timing: As mentioned, this system is not meant to
be a high-speed audio. video processing platform. As a result,
keeping delays / timing issues under the human-perceptible
level of delay (5 - 10 ns) was the goal. We fairly tightly
adhered to this requirement but faltered slightly with our WNS
of -1.385 and TNS of -84.324. Despite the negative slack, the
audio and video systems did not have a perceptible issue with
processing the MIDI data.

4) Use Cases: The audio aspect of the final product
aligned strongly with the deliverables outlined in the project
checklist because of how many notes that it is able to handle.
The deliverable detailed acquiring, decoding, and synthesizing
audio for 5 separate notes over the MIDI protocol. The
acquisition and decoding were achieved for 5 notes, and this
data is forwarded to the video portion of the project. However,
only 4 notes were synthesized for the audio output to ensure
that the combined signal (with all the notes) sounded well.
More specifically, adding the 5" sine wave was possible, but
the volumes of the other 4 notes would have had to be reduced.
However, it does not decode all the types of MIDI messages.
For instance, pitch bends (which control the pitches of all
the notes that follow) are not recognized. Other messages
that were not decoded were notes on channels other than
channel 0, and the timing clock messages (they were ignored).
There were some minor aspects of the project that could have
been modified to extend functionality. For instance, multiple
MIDI channels could have been read from, and this could be
achieved by having multiple instantiations of pwm_combine
for each channel then summing the results. Furthermore, with
the final version of midi_burst, the system could have been
extended to handle up to 16 notes.

VI. REFLECTIONS

There were several aspects of the project that could have
been improved upon. Firstly, we would have more thoroughly
integrated the MIDI protocol into the project from the be-
ginning. More specifically, we believe that interesting visual
effects could have been tied with specific MIDI messages. For
instance, the pitch bend MIDI message certainly could have
been used to modify the pitch of the output audio, but we
think that it could have been interesting to introduce visual
distortions based on the pitch bending. Furthermore, there

could have been multiple staffs that output the note based on
the MIDI channel that the information was received on. As
a general note, we would have started the project earlier to
implement more of these features.

VII. CONTRIBUTIONS

The project was mostly divided along the audio and
visual lines. Anthony was responsible for the MIDI data intake,
including understanding and mapping out the breakout board
and getting the data from the MIDI device. During the initial
stages of the project, he conducted research regarding the
different types of MIDI messages, and he worked on viewing
the digital signal on an oscilloscope. Moreover, Anthony also
organized the MIDI data into a data structure for usage in
the video pipeline. With the MIDI data, Anthony extracted
the note and octave and used this information to generate the
frequencies of each note. He generated these notes using his
sine generation module. Then, he combined the outputs of
multiple of these modules to provide the final audio output
for the project. Finally, he was responsible for the initial draft
of a notable portion of the final report and the IXTEX formatting
of the entire document.

On the other hand, Ann was responsible for two things
related to the visualization of the notes: she worked on the
baton tracking module to enable the interactive setting of the
BPM. By recording and counting the extrema of the path of
the baton over a set period of time, she calculated the beats
per minute. Additionally, she received the MIDI data from
Anthony to draw the notes on the HDMI output. Given a note,
Ann first kept track if its continuous duration; based off the
length of the duration, she assigned a rhythm to the note.
Additionally, the note pitch and octave were used to determine
the y position of the note. The rhythm and pitch were then used
to index into a note sprite map and save the right note sprite
to memory to display.

This was accomplished by indexing into a note sprite
map that she created. Furthermore, she developed the logic for
determining the type of the note (whether it was a sixteenth,
eight, fourth, etc.). Beyond developing this logic, she also
worked on placing the notes in the correct location on the staff
depending on the note (A,B,C, D#, etc..) based on its octave.
To emphasize, drawing the notes on the HDMI output was not
a straightforward task because of the depth of the project. The
notes dynamically changed, sharps were included, stems were
also drawn, and the notes were placed in the correct place on
the staff. In short, she developed the machinery to “splice”
the sprite map of all the notes, stems, and sharp symbols and
output them in the correct place on the staff.
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IX. APPENDIX A - MIDI DATA RECEIPT
SCHEMATIC
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