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Abstract—We present an FPGA implementation of the classic
game Othello. Given 4 corners to represent the board boundary
and 1 game piece for the player, the FPGA projects the board and
game state onto an HD live video feed in an augmented reality
fashion. Internally, the solver engine implements the alpha-beta
minimax algorithm to find the optimal move up to a certain
depth, capable of responding nearly instantly while still easily
beating strong players. We implement the design on a Real
Urbana FPGA with an OV5460 camera and an HDMI monitor
running at 1280x720. We evaluate its performance based on
human player feedback and ability against online bots.

Index Terms- FPGA, Othello, Search Algorithm, alpha-beta
minimax, augmented reality

I. OVERVIEW

Many 6.2050 FPGA assignments revolve around image
and live video processing. FPGAs are also well known for
accelerating compute for certain types of classic algorithms.
We combine these two features in our project Othello. The
FPGA hardware recreates a live projection of an Othello
board based on player-determined boundaries and concurrently
accelerates an alpha-beta minimax search. The player only
needs 1 game piece to experience Othello against a challenging
but responsive computer opponent. Figure 1 below provides an
intended overview of the player experience. Figure 2 provides
a block diagram of the overall design.

Fig. 1. Sample overview of player experience

II. CONTROLS

As with any game, the player needs the ability to configure
the game’s settings. In our case, the player needs to define
thresholds on color channels for the corner and Othello piece,
as well as confirm moves. Utilizing the 16 switches and 4

Fig. 2. Block diagram of overall design

buttons provided on the Real Urbana FPGA, we designed the
following control scheme in Table I and Table II. Note that
btn[1] sets the mode for configuring between the corner and
board pieces, and in turn displays the current corresponding
configuration values on the FPGA’s seven segment display.
Due to a limited number of buttons and switches, Table III
combines pairings of the two for extra controls that we deemed
necessary later on in the development cycle.

btn[3] btn[2] btn[1] btn[0]
Confirm Move Save Config Game Piece Config Reset

TABLE I
FPGA BUTTON CONTROLS

sw[15:12] sw[11:8] sw[7:4] sw[3:1] sw[0]
Upper Bound Lower Bound Debug Info Channel Camera Enable

TABLE II
FPGA SWITCH CONTROLS

sw[0] & btn[3] btn[1] & btn[3]
Recognition Reset Game Reset

TABLE III
FPGA SPECIAL CONTROLS
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Fig. 3. Solver Module Block Diagram

III. SOLVER

As an opponent for the player, the design includes a
solver (3) which uses a tree search to explore possible lines.
Specifically, the solver implements alpha-beta pruning with
variable depth, inspired by [1]. On a high level, the solver
does the following:

1) Find legal moves from the current position.
2) Determine a heuristic ordering in which to try the legal

moves, prioritizing stronger moves first.
3) Try the first move by searching possible lines. Evaluate

the resulting position assuming that our opponent plays
the best possible moves at each stage.

4) Repeat for all other moves.
5) Return the move/evaluation which was best for the

current player.
This algorithm is known as Minimax, owing to the convention
that the score/evaluation is represented as one value which
white tries to maximize and black tries to minimize. Alpha-
Beta pruning is a strict improvement on this algorithm which
avoids searching redundant lines of gameplay, increasing
search speed. Both of these algorithms are applicable to many
2-player, perfect-information games, including Othello, chess,
checkers, and more.

The solver module computes the optimal move in a two-
player board game based on the current game state. The
module parameters include:

• N (default: 8): Board width (number of rows/columns in
a square board).

• MAX_SEARCH_DEPTH (default: 10): Maximum search
depth for the minimax algorithm.

The board_in input uses a row-major format for sim-
plicity. Outputs provide the optimal move’s position and
evaluation score, ensuring valid synchronization through
data_valid signals.

Our implementation is specifically tailored to both the game
Othello and FPGA hardware in several ways. Firstly, although
Alpha-Beta Minimax is most easily implemented recursively,
our implementation is iterative, using a stack to organize which
states to revisit after searching new moves. A result of this
is that we want to avoid storing unnecessary information on
this stack, as storing it in memory might be slow to access
or write, and we need to push and pop data very frequently.
Thus, we compress all state information as much as possible.
Each element on our stack looks like the following:

board player d revisit v ω ε moves to search

d is the depth and v is the current best estimate of the value
of that state.

On each node visit, the solver does one of three actions.

1) First visit: If it is visiting a state for the first time,
it will find legal moves using the legal moves module,
choose the highest priority move using the move sorter
module, and find the state resulting from that move using
the flipper module. It then pushes a revisit call to the
stack, recording that the remaining moves to search are
the legal moves minus the chosen move, before finally
moving to the chosen child node.

2) Revisit: If it has just updated a state which has more
child moves to try, it will do the same as on a first visit,
but refer to the remaining moves to search instead of
computing legal moves.

3) Final Revisit: If it has just finished processing a state
(tried all moves and found an evaluation OR hit the
maximum depth and found a heuristic evaluation), it
pops a revisit call off the stack, which corresponds to
returning to the node’s parent.

To save clock cycles in the search and avoid unnecessary
computation, we very carefully avoided any ’tail call’ pushes
of the stack. A first visit to a node does not use the stack
at all, but rather directly sets register values to those of the
incoming node. Similarly, we avoid having to store any extra
information from a child state when revisiting the parent by
immediately updating the parent values from the stack.

A. Solver memory usage

All in all, these optimizations ensure that our search al-
gorithm’s memory usage is at most a couple of hundred bits
times the search depth1, allowing us to rely only on distributed
RAM.

We now give an overview of the significant modules used
in the solver and game state updating:

B. Legal moves

To find legal moves combinationally, we split each square
into its own problem. For a square to be a legal move, it must
have some direction in which there is a line of opponent’s
tiles followed by our own tile. This allows for a very parallel
computation - for each of the 8 directions, and for each
distance, check if this exact pattern is found. If any distance
and direction succeed, this is a legal move. Thus, every
direction and distance combination does a simple check, and
the results are all OR-ed together to give the square’s legality.

1Not including a constant number of bits used for legal move finding, state
updating, and similar modules

https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Alpha%C3%A2%C2%80%C2%93beta_pruning
https://en.wikipedia.org/wiki/Alpha%C3%A2%C2%80%C2%93beta_pruning
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Fig. 4. Solver simulation results

C. Move sorter

Alpha-beta pruning is vastly improved by searching stronger
moves first, since we prune redundant branches more quickly.
We sort moves based on a simple location-based priority (e.g.
corners are very high priority, since they cannot be flanked by
the opponent).

To find the first move to try out of the remaining legal
moves, we hard code a re-ordering schema which returns an
array of 1’s for moves to try and 0’s for illegal or already-
searched moves, with the rightmost indices being the highest
priority. This then goes into a recursive tree-based prior-
ity encoder module, which finds the index of the leftmost 1.
This is finally translated back into a coordinate in the board,
which becomes our next move to search.

D. Flipper

The flipper works similarly to the legal move finder. For
every direction from the square where a move is being played,
and for every distance in that direction, we check for the exact
pattern required to flip the opponent’s discs. If this pattern is
found, we flip those discs and combine the results of these
processes. This returns the resulting board.

E. Solver timing constraints

Experimentation with Vivado shows that the major combi-
national modules in the solver have to be split into 2 cycles to
meet timing constraints. Specifically, each visit of the solver
can be split into two stages:

1) Find legal moves and sort: The Legal moves module
takes the board state as input and feeds serially into the
Move sorter module (on a first visit) or the remaining

moves to search (on a revisit). Together, these two
operations fit in one cycle of a 74 MHz clock.2

2) Flip: The Flipper module takes input from
Move sorter and the board state. The propagation
delay of the flipper alone fits in one cycle of a 74 MHz
clock.

This allows us to visit a node every 2 cycles, regardless
of the type of visit. We can now compute the time required
to search based on an estimate of the average number of
legal moves (the branching factor of the game tree). This
branching factor can be roughly approximated as a function
of the number of moves made in the game thus far, and found
numerically by simulating lots of random game states. Using
this method, the estimated search times for various depths and
numbers of moves made are given as a heatmap in Figure 5.

Fig. 5. The times to search various depths from a state m moves into the
game for a range of m from 0 to 60. The middlegame is slower to search
because there are more legal moves, while the opening and endgames are
relatively quick. Our solver uses depths which follow the orange-red band to
keep search time approximately 1 second.

To keep search times fairly consistent, we implemented a
Depth picker module, which uses a case statement to pick
search depth based on the number of moves played thus far.
Testing shows that the search time is indeed on the order of
one second using these depths.

IV. RECOGNITION

The purpose of the recognition module as shown in Figure
6 is to identify the player-defined game board boundaries and
the currently active player piece. Given the game settings as
defined by the controls, the threshold modules filter for pixels
considered part of the corner pieces and the central game
piece.

The k-means center of mass module provides coordinates
for 4 points that it considers to be the corners and the lone
center of mass module computes for the game piece itself. The
corner data is then used to compute the bounding rectangle
and grid spacing for the game board, which is then used
to compute the coordinates of the game piece through the
following formulas:

piece x = (coordx → boardxl) ↑N/(boardxr → boardxl)

2Notice this is slightly slower than the clock speed of the HDMI output.
See the FPGA timing section for details
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Fig. 6. Recognition Module Block Diagram

piece y = (coordy → boardyt) ↑N/(boardyb → boardyt)

In our k-means module, we process over a stream of thresh-
old marked pixels to classify which corner they are closest
to. To take advantage of FPGA parallelism, we compute the
Euclidean distance from each such point to all k centers in
parallel similar to [2], before computing the minimum. During
each frame, the module tracks a sum and count of coordinates
for pixels belonging to each center. Upon receiving a new
frame signal, the module computes the new k centers. If the
corners all remain within a certain threshold after a few frames,
we consider the k center of masses as stabilized and valid,
before sending it down the design pipeline. Figure 7 provides
rendered scenes during RTL simulation of this module.

Fig. 7. Scene rendering simulation for k-means center of mass

Note that all the data accumulates when the HDMI active
draw signal is high, and all the remaining computation occurs
after the new frame signal arrives. This design takes advantage
of the very long HDMI blank and sync periods to compute the
new k center of masses - specifically, we have nearly 50,000
cycles given 1280 x 720 resolution HDMI specifications for
blank and sync cycles, which is more than enough for these
modules, especially as the longest path consists of 2 32-
cycle dividers in series for computing the coordinates from
the corners.

During our early test runs under real world conditions,
the recognition’s bounding box and piece location were very
jittery. We tackled this problem through a stabilizer module as

seen in Lab 6 of 6.2050, where the output value is determined
as a weighted average of 25% of the new value and 75%
of the previous value. This weighted account of history led
to decent stabilization. Additionally, after multiple rounds of
failed corner detection, we reset the k-means values to the 4
corners of the screen to help the computation escape a poor
convergence.

V. OVERLAY

Fig. 8. Overlay Module Block Diagram

The inputs to this module as seen in Figure 8 are:
• clk in, rst in (1-bit): Clock and reset signals.
• hcount (12-bit): HDMI hcount signal.
• vcount (11-bit): HDMI vcount signal.
• video in (24-bit): RGB pixel data from the video input

stream.
• valid in (1-bit): Indicates valid pixel data.
• game state (array, N PIECES): Bitmap indicating ac-

tive game pieces.
• valid player move (1-bit): Indicates if a move is valid.
• solver working (1-bit): Indicates if the solver is working
• game over (1-bit): Indicates if a game is over.
• board x left, board x right (12-bit): Horizontal

boundaries of the board in pixel coordinates.
• board y top, board y bottom (11-bit): Vertical bound-

aries of the board in pixel coordinates.
• piece x, piece y (3-bit): Coordinate locations of the

player game piece on the board.
• coord x, coord y (12-bit/11-bit): Actual pixel coordi-

nates of the detected player piece for determining whether
the player piece is in bounds.

• score white, score black (6-bit): Scores for respective
players.

The outputs are:
• video out data (24-bit): Modified RGB pixel data with

overlaid game elements.
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The overlay and related modules take game state informa-
tion and the position of the board within the input video in
order to ”draw” game pieces and grid spacing. By intercepting
the incoming video stream, the module modifies the pixel data
to render game elements in real-time. The design allows for
flexible rendering of pieces across the board, with the ability to
overlay sprites or draw via changing pixels based on the cur-
rent game state and piece positions. Each piece is represented
by a circular sprite centered within its corresponding board
cell, providing a clean and visually intuitive representation of
the game board. Game state pieces are represented by white
or black, invalid moves are represented as red, valid moves
are represented as green, and player moves during solver
engine execution are highlighted as gray. The images of the
board and the pieces will also be stabilized using a minimum
movement threshold for our previous k means calculation. This
will ensure the overlay is stable and not susceptible to small
changes in the camera input.

In addition to the rendering of game pieces and outlines,
a subtle green highlighting effect is applied to the area under
the game board. This is done by checking if the current pixel
is within the bounds of the board and not in a game piece
or a gridline. If this is true, the R and B values of the pixel
are decreased, creating the green highlight. This maintains the
visual hierarchy of the game while providing a much more
clear boundary for the overlay. An example overlay testbench
render can be seen in Figure 9.

Fig. 9. Scene rendering simulation for the overlay module of default game
state

To further enhance the user experience, the overlay module
relies on the aforementioned averaging module that stabi-
lizes the board’s motion against minor camera jitter and
lost identifications. Each new frame’s computed positions are
blended with the data from several preceding frames. This
multi-frame integration smooths out transient shifts in the
board’s detected coordinates and reduces flicker or jitter in
the displayed overlay. As a result, even if the camera or the
board slightly moves, the overlaid graphics will remain steady,
ensuring players can focus on the game play rather than being
distracted by wobbly graphics or momentary misalignment.

Lastly, we encode sprites with the digits 00 to 64 along
with a victory and loss message for the purpose of score
display. These are encoded as bitstrings where each pixel of
the original image is represented by a 0 or a 1, and the overlay
module can decide on the color to display for the sprite.

VI. GAME STATE MANAGER

Fig. 10. State Manager Block Diagram

The game state module shuttles stateful information be-
tween the recognition system, solver engine, and the overlay
module.

Given a player coordinate, it determines if the move is valid
with an internal legal moves module instance and upon confir-
mation, uses an internal flipper module instance to update the
game state. Afterwards, it signals the solver to begin solving.
Once the solver finishes, it sends its move back to this game
state manager for updates. This state manager also keeps track
of the score and whether the game has ended, which occurs
when no players can make legal moves. The state of the game,
the validity of a player’s move, and work status of the solver
engine are all wired as outputs to other modules.

VII. OTHER DESIGN ASPECTS

The remaining aspects of the design come mostly from lab
6 in 6.2050. To enable HD camera quality (1280x720 at 60
fps), we rely on storing video data with help from the AXI
protocol, MIG, and FIFO IP to arbitrate with DRAM. For each
pixel that comes out, we run it through the same color channel
and threshold modules seen in previous labs to guide the later
recognition modules. Our system was composed of multiple
clocks derived from the Vivado clocking wizard, consisting of
a camera, camera sampling, MIG, HDMI, HDMI TMDS, and
solver engine clock. To arbitrate between the different clock
domains from the game engine and the recognition as well
as overlay system, we rely on Vivado FIFO Generator IP for
synchronous clock domain crossing transfers.

An interesting design choice that frequently popped up was
taking the sum of an 8x8 array representing the Othello board,
as in the case of heuristics and score tracking. We noticed
that a linear accumulation through a for loop of each row in
parallel chained with a final linear summation in RTL code
led to better timing when compared to a fully recursive tree
adder. Such a result goes against expectation, but we suspect
that Vivado optimizations are a factor in play here.

VIII. EVALUATION

A. Game Play
Image 11 and Image 12 demonstrate the augmented reality

display capabilities of our FPGA design for Othello, based on
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the simplistic real life setup of 4 corners of 1 color and 1 piece
of another color in Image 13. Image 14 showcases the game
over scene, from which a player must reset the game state to
start a new game. As of now, we have yet to ever see the vic-
tory message as the solver engine’s lookahead simply makes it
too powerful. A video of our functioning design can be found
at https://www.youtube.com/watch?v=4q LQUODgKs.

Fig. 11. Invalid and Valid Move Display

Fig. 12. Valid Move Display

B. Solver Performance

To evaluate the effectiveness of our solver engine, we
conducted a series of matches against established alpha-beta
minimax implementations. We ran multiple matches against an
open-source online bot[3]. Our bot cleanly won every game
in a 10-game match, with substantial score differentials. In
addition to this bot vs. bot testing, we were unable to beat the
solver ourselves after substantial practice.

Our solver also definitely performs better when compared
to the original paper from 2004[1]. Their node processing took
anywhere from 3 to 16 cycles at 50 MHz, while ours always
took 2 cycles at 74 MHz.

Fig. 13. FPGA Design Testing in Real Life

Fig. 14. Game Over Display (We have yet to reach the winning display)

C. FPGA Timing Requirements and Throughput

Our design had to primarily handle meeting the timing
requirements of two clocks - the HDMI pixel clock and the
solver engine clock. The HDMI pixel clock requires a rate of
74.25 MHz. Whenever we failed to meet this timing, we had
to introduce additional pipeline stages. In the end, there is only
a 5 cycle delay from pixel read to output. The overlay module
takes 3 cycles to compute the proper projections, which then
feeds to a sprite module that experiences a 2 cycle delay
due to BRAM reads. Additionally, the display projection is
technically always a frame behind as the recognition module
performs its computations after the HDMI new frame signal,
but the human eye cannot notice this delay.

As mentioned previously, the solver clock is set at 74 MHz -
we can run this at an arbitrary clock but would like to push the
speeds as high as possible. This is approximately as high as we
can push it for timing to pass among every path during routing
(at this clock rate, the timing does not pass during synthesis
and placement). However, an FPGA design with just our solver
engine can definitely reach slightly higher clock speeds due
to lower resource contention.

We have to also ensure against FIFO overflows in the HDMI
to solver clock domain crossings. The recognition module
simply feeds the game state engine a new potential player
coordinate every frame, so this FIFO will never overflow.
The game state engine feeds a constant stream of state to

https://www.youtube.com/watch?v=4q_LQUODgKs
https://othello-game-ai.netlify.app
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the overlay module, but an overflow will also never occur as
the HDMI clock is higher. FIFOs were specifically used to
guarantee data synchronization of the data bits.

D. FPGA Resource Usage
Our design used in total 19918 LUTs. The solver engine

used 5928 and the game state manager used 4443 - most of
the usage comes from the legal moves checker and flipper
modules due to their massive parallelism. The MIG itself was
also a heavy user of LUTs at 5346. The recognition system
only used 2011 and the overlay system only used 465.

Our design used 23 DSP units, with 8 of those used in the
recognition engine for k-means calculation and 8 used in the
overlay system for projection as well as sprite drawing.

The score digits and game over messages heavily utilized
BRAM. Despite being stored as a bitstring of 0s and 1s for
each pixel, they utilized 47 36 kb BRAM blocks. This could
definitely be optimized, but we were not too concerned as the
FIFOs and other BRAM-reliant modules still had more than
enough of the remaining 28 BRAM36 and many BRAM18
blocks to work with.

Lastly, Vivado reports that our design uses 1.235 W, with
the DRAM MIG system being the dominant user at 0.613 W.

E. Goals Reached
We have satisfied all but one goal in our original proposal

for the commitment, the goal, and the stretch. Based on
the commitment, we have a working recognition, solver, and
overlay projection system. Based on the goal, we can robustly
identify boards based on 1 color for the corners, search several
layers deep within a second, and have textual overlays as
well as smooth video stabilization. Based on the stretch,
we have a recognition system based on k-means and can
automatically adjust search depth based on the state of the
game. Our one missing goal is for a parallelized search,
but we realized that alpha-beta minimax isn’t a particularly
parallelization algorithm due to the propagation of alpha and
beta dependencies.

For future work, we suspect that a better control system
combined with taking in a 24 bit color camera feed would
improve the robustness and filtering of the recognition system
to provide an even better game time experience. Additionally,
our overlay module could use anti-aliasing, which a simple
3x3 line buffer and convolution module utilizing Gaussian Blur
could achieve at the expense of a few more cycles of delay in
the video feed.

IX. SOURCE CODE

All code relevant to this project can be found at
.
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