Hand Gesture Controller
Final Report

1%t Tasmeem Reza
MIT EECS
Cambridge, MA, USA
rtasmeem@mit.edu

Abstract—We propose a system that tracks hand gestures and
converts different gestures into different commands to control
a PC, implemented on an FPGA with an attached camera.
The hands are tracked with colored tags on fingertips, and the
locations of the tags are determined via a multi-iteration k-means-
clustering algorithm on a real time video feed. The FPGA is
able to perform as much as 16 iterations of the algorithm for
one frame of latency, utilizing techniques such as downsampling
and parallelized computation to speed up calculations and reduce
memory usage. Theoretically, the number of clusters shown, their
distances, and their movements can be interpreted as different
gestures to control some downstream media corresponding to
certain commands and movements, e.g. numeric input, scrolling,
and zooming. The command determined from the gesture can be
transmitted to a PC via the PS/2 protocol. Through this project,
we aim to demonstrate the feasibility of computing cluster means
in real time, and that computer interaction is possible in the use
case of numeric input.

Index Terms—digital systems, field programmable gate arrays,
cameras, object tracking, clustering, k-means, gestures

I. INTRODUCTION (STEVEN)

With a working camera feed that gets displayed on an
external monitor via HDMI, the main challenge of imple-
menting hand gestures on an FPGA is the k-means clustering
algorithm. This algorithm allows for finding the locations of
cluster centroids by performing multiple iterations of cluster
reassignment and cluster centering, provided that the number
of clusters k is given. At each iteration, each point in a cluster
is reassigned to the centroid closest to it, and after all points
are processed, each centroid is repositioned to the center of
mass of all points assigned to it. The difficult in implementing
such an algorithm arises from the limited time and resources
to do the calculations. The FPGA has limited memory, so it
becomes necessary for the video data received from the camera
to be immediately displayed to the screen. Due to this, the
computation of the cluster locations has to be done within
a limited timeframe, so that the latency between the video
data and the cluster location data does not become noticeably
high. This means the algorithm must be completed in the time
it takes to display one or two frames of video. Furthermore,
memory and computation constraints limit how much data is
stored from previous frame, as the algorithm requires storing
frame data to perform multiple iterations on the current frame.

Besides the constraints posed by the FPGA, the k-means
algorithm may also get stuck in a local minimum, where it

—data_addr_in—3| addr_a

—pixel_value_in—»| din_a

—data_valid_in—»| we_a we_b [T @

2" Steven Reyes
MIT EECS
Cambridge, MA, USA
steverey@mit.edu

would not find the correct clustering. Two distinct clusters may
be assigned to the same centroid if they are close enough, and
if there are more centroids than clusters, some clusters may
not be assigned any points, and so their locations cannot be
updated and will always be too far from the actual cluster
points. Additionally, the number of clusters present may be
variable, as different gestures display different numbers of
fingers shown.

To resolve these concerns, different techniques are em-
ployed. The video is downsampled in order to reduce the
memory footprint of frame data to only 4 BRAMs. Multiple
pixels can also be fetched from a BRAM at a time by storing
them in rows of 2 pixels, halving the amount of time needed
per iteration. For issues specific to k-means, it is augmented
slightly by repositioning clusters with no assigned points onto
points that are furthest away from their assigned centroids.
Furthermore, clusters can be merged together if their distances
are close enough within some threshold, so that a variable
number of clusters are permitted.

II. SYSTEM OVERVIEW (STEVEN)

K-Means Module

clk_pixel—

Pixel
Iterator

BRAM

Addresser _

HILI XYW > 1Unoo auwed

2-cycle
delay

clk_pixel

com_updater
heount_in[18:8]

com_hcount_cut[w:8][10:0] _hcount_out—»

veount_in[9:8]

com_vcount _out[w:B8][9:8] _vcount_out—»

pixel_value_in

com_valid_out

com_hcount_in[w:8][18:8]
com_vcount_in[w:@8][9:8]

— com_valid_in

X
clk_pixel

S

Fig. 1. Block diagram for the k-means clustering algorithm module.

A block diagram of the k-means algorithm module is shown
in Figure 1. The first step is to store the pixels in the mask
that are part of the clustering process into BRAMs, as the
algorithm refers to it over multiple iterations. There are two
separate sections of memory, where one is written to with
fresh mask pixels of the current frame, and the other is read
to perform the actual k-means algorithm on. Only the reading
memory module is shown in the block diagram. Whenever the
HDMI protocol signals a new frame, the roles of each memory
module are swapped.

The pixels are downsampled by 4 times in both dimensions,
so that there are 16 times fewer pixels to process through
per iteration. This mainly allows multiple iterations of the
algorithm to be performed in the time span of reading and
saving one frame of pixels. A Python simulation of the algo-
rithm shows that only 5 iterations are needed until centroids
converge, while this method allows at most 16 iterations to be
performed in a single frame.

The main driver of the algorithm is the pixel iterator
module that sequentially generates the pairs of coordinates
(hcount, vcount) of all down-sampled pixels, and makes
a read request for each one. The fetched values as well
as the properly pipelined hcount and vcount values are
fed into the com_updater module, which determines the
assignments of clusters and accumulates running totals to be
divided later for obtaining the center of mass coordinates.
After all the values have been fetched from memory, the
pixel iterator pauses and waits for the com_valid_out
signal, indicating that the com_updater module has finished
performing division. The video signal generator also keeps
track of how many iterations have been performed so that it
stops issuing new read requests when the maximum has been
reached. At this point, the centroids’ locations are properly
outputed with a valid out signal.

From this, the centroids are merged together, as explained
later in the paper, to determine the correct number of clusters.
With ten fingers, the number of clusters could be anywhere
from 0 to 10. This number is then used to issue numeric
input commands to a computer via the PS/2 protocol, which
allows simulated keyboard presses to be transmitted. A state
machine is maintained to keep track of the current digit, where
0 clusters indicate the start of a digit, and 1 to 10 each
correspond to a digit to be typed (with 10 clusters for the digit
0). The input commands are only sent at every state transition
from O to another digit. This allows any string of digits to be
typed.

III. K-MEANS AUGMENTATION (STEVEN)

There are two main modifications necessary to make the k-
means algorithm more reliable: repositioning centroids with
no assigned points and increasing the number of clusters.
When implemented naively, the algorithm has a tendency for
centroids too far from the points’ locations to not be assigned
any points at all. In this case, there is no new valid position,
since the newly calculated coordinates would require dividing
0 by 0. If the centroid’s position is not updated, however,

Fig. 2. Repositioning empty centroids, before (top) and after (bottom)
modification, with the grey area representing cluster points, and the white
points representing centroids. The floating centroids around the sides in the
top figure are repositioned to have assigned points in the bottom figure.

future iterations might not assign new points to it, as the other
centroids get closer and closer to the actual points.

To resolve this, the centroids with no assigned points are
repositioned on top of the point that has the maximum distance
from its assigned centroid, which is the method that the
k-means algorithm of the scikit-learn library uses to
resolve empty clusters (1). In practice, this resolves the issue
of empty clusters, as shown in Figure 2.

One other issue that arises is that it’s still possible for
centroids to be responsible for multiple clusters, as shown
in Figure 3. Increasing the number of centroids resolved this
problem, so that each cluster has at least one centroid. This
solution was specifically chosen, since clusters are also to be
merged together eventually to account for a variable number of
clusters. In this system, the number of centroids was fixed at
k = 16. After implementing these two changes, every cluster
consistently gets assigned at least one centroid in the Python
simulations.

IV. MEMORY FOOTPRINT (TASMEEM)

Our k-means algorithm makes extensive use of BRAMs.
Since we are downsampling the image by a factor of 4, the
size of image that we need to store is 320 x 180 for a 720p
resolution. This requires us to store 320 * 180 = 57600 bits of
data since we only need to store a 0 or 1 bit for each pixel.
Unfortunately, a single BRAM can only store 36 kBits of data,
whereas we need roughly 57 kBits. Hence, we decided to use
two BRAMs store the mask for the entire frame. In our design,

Fig. 3. Increasing centroid count, before (top) and after (bottom) modification.
Here, the number of centroids are increased from 5 to 10.

this is abstracted away as frame_memory module which has
the capacity of two BRAMs.

The k-means algorithm needs to read the entire frame
each iteration, and our implementation performs around
16 iterations per frame. Therefore, we instantiate two
frame_memory modules. One module stores the mask from
the previous frame and is kept stable (no writes are issued
to it for the current frame). The mask from the current
frame is written to the other frame_memory module. The
k-means algorithm always operates on the previous frame
because the data is kept stable for the entire frame. When the
controller module receives signal for a new frame, it switches
the roles for the two frame_memory modules, as such, the
frame_memory module that stored the previous frame now
writes data from the current frame, and the module that wrote
pixel data from the current frame is now the module has stores
data from the previous frame. The idea is similar to rolling
buffers. The whole process requires 4 BRAMs in total.

One important detail that is worth mentioning, the BRAMs
we instantiated in the frame_memory module has a depth
of 2 bits. So every read instruction fetches two consecutive
bits of the image.

V. K-MEANS ITERATION (TASMEEM)

The system allows for 16 iterations of k-means per frame,
and testing has shown that 5 iterations are needed for con-
vergence. However, the centroids of the current frame being
processed are initialized with those of the previous frame. In
practice, only one iteration is needed to stabilize the centroids
to the current frame’s data.

In each cycle we can read two consecutive bits of the
image. We can use this to our advantage because k-means
algorithm can operation on different parts of the image and
we can later merge the information to calculate the clusters
for the entire image. Hence, we have two accumulator
modules that computes Zpixel(z,y) belongs to clusterj |‘T - x;luster'
and i) belongs o cluster; ¥ —Y5 | for all clusters j. One
accumulator module operates on the even pixels and the
other one operates on the odd pixels. Then finally we merge
the results from the two accumulator modules to calculate
the final coordinates of the clusters by computing their center
of masses. This allows us to compute one iteration of k-means
algorithm in roughly w = 28800 cycles. Each frame
takes 1650 x 750 ~ 1.2 million cycles in the HDMI. Even
if we perform 16 iterations on each frame, it will only take
16 x 28800 = 0.46 million cycles. So we can comfortably
finish calculating the center of masses before the start of the
next frame.

The center of mass calculation requires a division opera-
tion module to divide the total sum of coordinates by the
total counts for each cluster. The given module from lab
assignments does repeated subtraction of the divisor from the
dividend, which can be too slow if the dividend is as much as
320 % 180, and the divisor is only 1, taking on the order of tens
of thousands of cycles. The implementation was improved to
a base-2 long division algorithm, where each cycle determines
one bit of the dividend, MSB first, taking only 32 cycles.

VI. CLUSTER MERGING (TASMEEM)

Since we are counting the number of fingers, we do not
know the exact number of clusters we would have in our
image. Our idea to solve this problem is to run k-means
algorithm on 8§ clusters. Since we have 5 fingers, we can say
with high certainty that every cluster will be assigned to one
finger.

Now we essentially have a graph theory problem, where
we need to construct a graph such that cluster ¢ and cluster
7 has an edge if and only if they were assigned to the same
cluster. Once we create this graph, we can simply run any
graph traversal algorithm to find the number of connected
components which should be the same as number of fingers
on the frame.

The graph construction is based on the following heuristic.
If cluster ¢ and cluster j are assigned to the same finger, there
must be a pixel which is close to both clusters. In other words,
we define a pixel (z,y) is noisy for cluster ¢ and cluster j if

(2,), (25", 55)) = d((z, y), (@5, g5)] < 1

where d is the Manhattan distance metric function. For each
pixel, we can easily find ¢ and 7 by computing the closest
and second closest clusters from it. This can be implemented
as a reducer in the register transfer level (RTL). Hence we
can construct the graph by iterating through the pixels in the
BRAM one more time and for each noisy pixel adding an edge
between the closest and second closest clusters.

Once we have constructed the graph, we find the number of
connected components by a simple O(k?) algorithm where k
is the number of clusters (also the number of vertices). Since
k is small, this does not pose any overhead for us.

VII. PS2 MODULE (STEVEN)

PS/2 Module

com_hcount_out

- —
[w:g][1e:8] Cluster
M ——cluster_count
com_vcount_out 3 erger 1
[w:B][9:8]
Debouncer
ommand_valid—
Digit FSM [#—clean_count
rnmmand_digi‘t—

PS/2 Module

ps2_clock—»
psZ_data——»

PS/2 to USE
converter

Computer
USE port

Fig. 4. A block diagram for the pipeline to convert cluster locations into
a command corresponding to typing a digit of the number of clusters after
merging. The rectangular shaped modules indicate FPGA modules, while the
circular ones indicate physical hardware.

A summary of the pipeline for determining and sending the
command through PS/2 to the computer is shown in Figure
4. For the purposes of typing a digit based on the number of
clusters in the video feed, a glove is modified so that a small
piece of pink paper is taped onto each finger tip. When the
system is configured to only detect pink pixels, the number
of fingers shown to the camera corresponds to the number of
clusters the FPGA can count.

However, since the pink squares may have different levels
of illumination, the raw number of clusters after merging can
still flicker between numbers adjacent to it. To prevent this,
the count is fed through a debouncer module to get a clean
signal of the number of clusters detected, with the threshold
debouncing time set to 13 milliseconds. Afterwards, the count
is sent over to a finite state machine to interpret the series of
cluster counts as keyboard press commands. Since we have 11
possible states, corresponding to 0 to 10 clusters, the O cluster
is designated as the start of a new digit to be typed, while the

other 10 correspond to the end of typing of its corresponding
digit, with 10 clusters corresponding to digit 0. Then, the
digit typing command is sent only on state transitions from
0 clusters to some number of clusters. This allows for the
typing of the same digit consecutively, instead of only typing
when digits change. Furthermore, this also prevents further
flickering of digits not caught by the debouncer, so that any
change between two nonzero cluster counts do not send a
command.

When the digit is determined, the digit is converted into
its corresponding scane code. This scan code consists of two
parts: the make code and the break code (2). The make
code corresponds to the key being pressed, while the break
code corresponds to the key being released. Specifically, the
make code consists of a byte of data, while the break code
corresponds to two bytes, the byte 0xF0, and then the same
byte as the make code. The three bytes are sent with a
number of cycles separating them, with each needing 11 bits to
communicate, the start bit of 0, the byte itself, an odd parity
bit, and the stop bit of 1. These bits are sent on a slower
clock of around 13 kHz, which is a speed compatible with
the PS/2 protocol. With the FPGA running at around 74.25
MHz, the PS/2 module maintains an internal counter looping
every 74,250,000/13,000 ~ 5,700 cycles, with half the time
being low and half the time being high. This simulates the
clock signal being sent to the PS/2 clock cable. The protocol
samples at every falling edge, so the data is only updated at
the rising edge on the PS/2 data line.

Finally, the two PS/2 signals are outputted through PMOD
pins on the board, which can be connected to a PS/2 cable
port, along with its ground wire. This can either be plugged
into a computer with an already existing PS/2 port, or into
a USB adapter to work with more modern computers. This
adapter needs an extra circuit that can inform the computer
that the device is a keyboard, costing around $7.

VIII. EVALUATION AND CLOSING THOUGHTS

In cocotb simulations of the memory writing and reading,
and k-means modules, each frame allowed for around 20
iterations to be done, which is greater than the expected
16, because of the extra v-sync region that was initially
unaccounted for. Nevertheless, the fact that consecutive frames
were not that different from each other allowed even only one
iteration to get reliable results. The latency of the centers of
masses are only behind one frame, which for this use case is
negligible, since the user only changes the number of clusters
after confirming a digit has been typed. In this timeframe, a
single frame does not matter.

With the memory used being only 4 BRAMs, and the system
only needing one iteration for convergence, the downsampling
could be reduced to only 2x instead of 4x, which allows for
more accurate cluster counting, as there would be less aliasing.

Initially, the division module posed a timing constraint, with
the initial implementation of binary searching the dividend
by multiplying it with the divisor. The multiplication was
between two 64-bit integers, and was the main culprit to

WNS becoming negative. However, with the new long division
module, WNS gets to around 0.5 nanoseconds.

In practice, the counting system works quite reliably, and
from our own testing, the right digit is typed around 90
% of the time. This allowed for some use cases such as
typing a phone number. Overall, the project was a success,
reaching our proposed ideal goal. For further additions to
this project, mouse scrolling would be the next use case we
would implement. This only needs to keep track the location
of k = 1 centroid, and keep track of its horizontal and vertical
velocities. The magnitude would determine the number of
scroll commands sent to the computer, via the Z-counter of
the PS/2 mouse protocol (3).

With regards to implementation, we successfully pro-
grammed and tested each of the combined memory module,
accumulator module, and com_updater module. However,
integrating them all into top_level.sv, proved to be a
challenge, as there is not much testing you can do with
cocotb. We tried to probe the values of the variables by
printing their values on the seven-segment display, but this
ultimately did not aid our debugging process. What ended up
working was integrating each module into top_level.sv
one at a time. We will definitely keep this principle in
mind when working with future projects with FPGAs or any
other hardware, when printing out intermediate values isn’t
supported.

Steven worked on the initial Python testing, k-means algo-
rithm implementation and integration, and the PS/2 protocol
implementation and wiring. Tasmeem also worked on module
integration, and worked on cluster graph construction and
connected component counter modules for cluster merging.
Both contributed in writing the reports and presentations, and
Tasmeem conceptualized the block diagrams, while Steven
converted them into computer-generated diagrams.

ACKNOWLEDGMENTS

The authors would like to thank Joe and the course TAs
and LAs for their unwavering support throughout this project.
This project would not have been possible without the lab
assignments they built that served as the foundation for this
project’s conception.

REFERENCES

[1] L. Li, “K-Means Clustering with scikit-learn — to-
wardsdatascience.com.” https://towardsdatascience.com/k-
means-clustering-with-scikit-learn-6b47a369a83c, 2019.
[Accessed 28-11-2024].

[2] A. Chapweske, “The PS/2 Mouse/Keyboard Protocol.”
https://oe7twj.at/images/6/6a/PS2_Keyboard.pdf, = 2003.
[Accessed 11-12-2024].

[3]1 A. Chapweske, “The PS/2 Mouse Interface.”
http://web.archive.org/web/20040604043149/http://panda.
cs.ndsu.nodak.edu/~achapwes/PICmicro/mouse/mouse.html,
2001. [Accessed 11-12-2024].

