
Oud Synthesizer Final Report
Adan Abu Naaj

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, USA
adann@mit.edu

Ahmad Durra
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

durra@mit.edu

Abstract—We present a design for an FPGA-powered music
synthesizer designed to replicate the sounds of the Arabic classical
instrument, the Oud. The synthesizer features 24 capacitive
sensors representing 3 music scales, with each scale containing
8 distinct notes. These sensors simulate the pressing of strings,
allowing musicians to play the instrument. When a sensor is
tapped, the FPGA detects the input and generates a correspond-
ing note. This note is then processed through a PDM module
and delivered to the speaker output, producing an Oud melody.
As an MVP, our synthesizer will process individual notes, and
then we will utilize FPGA parallel processing to handle multiple
notes played at the same time.

Fig. 1. Oud Instrument.

I. PHYSICAL DESIGN (ADAN)

The physical design of the synthesizer consists of a laser-
cut, staircase-shaped enclosure featuring three distinct levels.
Each level has a row of eight capacitive sensors, each of which
corresponds to a unique waveform. The enclosure is engraved
with Arabic calligraphy and olive tree branches, reflecting the
cultural heritage of the Oud instrument.

We designed the capacitive sensors using computer-aided
design (CAD) software and then milled the capacitive pads
onto a copper PCB.

This multi-level design is inspired from multi-tiered pianos,
highlighting the ability to play different waveforms in one
instrument.

II. SYSTEM OVERVIEW (ADAN)

The synthesizer system comprises several interconnected
components and modules, each responsible for a specific

Fig. 2. Capacitor Pads.

Fig. 3. Laser Cut Enclosure.

function in the audio synthesis process. The main features
consists of:

• Capacitive Sensing Interface.
• Sine Waveform Synthesizer.
• Oud Audio Playback.
• Polyphonic Synthesizer.
• ADSR Envelope.
• Audio Output Module.

III. DESIGN AND IMPLEMENTATION

A. Capacitive Sensing Interface (Durra)

The capacitive sensing interface forms the user input mech-
anism for the Oud Synthesizer. Rather than the traditional key-
board interface, the Oud synth utilizes an array of capacitive



pads. It detects touch events on the capacitive pads and triggers
corresponding notes to be played.

1) Physical Interface Design: The physical interface con-
sists of an array of capacitive pads milled onto a copper
PCB. Each pad represents a specific note on the Oud; A
user touching the pad triggers that note to be played. To
continuously monitor pad touch events, an MPR121 capacitive
touch sensor IC is used. The MPR121 is capable of handling
12 touch inputs and we are using 3 mpr121 to handle 24 notes.
The remainder of the Capacitive Sensing Interface handles
communication with the MPR121.

2) I2C Controller Module: The MPR121 uses an I2C
communication interface. To facilitate data exchange with this
interface, an I2C controller module is implemented on the
FPGA. The controller manages the low-level I2C protocol.
The format of a read and write transaction to the MPR121
is shown in Figures 4 and 5, respectively.

Fig. 4. I2C read transaction format for MPR121.

Fig. 5. I2C write transaction format for MPR121.

The module’s key inputs and outputs are defined as follows:
• Inputs:

– command_byte_in: 8-bit input specifying the tar-
get register address.

– data_byte_in: 8-bit input specifying the data to
be written to the target register.

– rw: A control signal indicating the operation type (0
for write, 1 for read).

– start: A signal to initiate an I2C transaction.
• Outputs:

– scl_out: Clock signal for the I2C bus.
– data_byte_out: 8-bit data received during a read

transaction.
– ack_out: A signal indicating acknowledgment

from the MPR121.
• Bi-directional:

– sda: Bi-directional data line for the I2C bus.
The I2C controller operates using a finite state machine

(FSM) to manage the sequence of operations required for I2C
communication. The FSM ensures that all timing constraints
are met and that the MPR121’s setup and hold times are
respected. The key states of the FSM are as follows:

• IDLE: The FSM remains in this state until the start
signal is asserted, indicating the initiation of a transaction.

• START: Generates the start condition by pulling SDA low
while SCL is high. Once established, the FSM transitions
to the ADDR state.

• ADDR (Address Byte): Sends the 7-bit MPR121 address
(peripheral_addr_in) followed by the rw bit. The
rw bit is only 1 after a repeated start for a read. The
FSM then waits for an acknowledgment (ACK) from the
MPR121.
If an acknowledgment is received, the FSM transitions to
either DATA, READ, START, or STOP state depending
on what the last transmitted byte was. A transition to
a START state occurs if it is a read transaction and
the last transmitted byte is a command byte indicating
that the next step is a repeated start. Transitions to other
states follow the format for an MPR121 read/write shown
above.

• ACK: Ensures SDA is in a high-impedance state to
read the acknowledgment signal from the MPR121. If
an acknowledgment is received, the FSM transitions to
either DATA, READ, START, or STOP state depending
on what the last transmitted byte was. A transition to
a START state occurs if it is a read transaction and
the last transmitted byte is a command byte indicating
that the next step is a repeated start. Transitions to other
states follow the format for an MPR121 read/write shown
above.

• DATA (Data Transmission): Sends the command or data
byte, depending on the context. If the last transmitted byte
was the address, the FSM transmits the command byte.
If the command byte was last sent, it transmits the data
byte. The FSM then transitions to ACK.

• READ (Data Reception): For read operations, the FSM
transitions SDA to a high-impedance state to allow the
MPR121 to transmit data. The FSM reads this data byte
and then transitions to ACK followed by STOP state.

• STOP: Generates the stop condition by pulling SDA
high while SCL is high. This indicates the end of the
transaction. The FSM then transitions back to IDLE.

3) MPR121 Controller Module: The MPR121 controller
module handles initialization, configuration and continuous
reading of touch. It implemented as a FSM that sends a
sequence of transactions to the MPR121 to disable it before
starting configuration, set touch and release thresholds for each
electrode, enable it, followed by continuously reading its touch
status registers. The touch status is outputted and taken in by
the node decoder module.

B. Sine Waveform Synthesizer (Durra and Adan)

1) Note Decoder Module: The Note Decoder Module
translates the touch status input from the capacitive interface
to determine which note the user is playing. It then uses
a lookup table (LUT) to output the selected note to the
phase_accumulator module.

2) Generate Sine Waveform : To synthesize sine wave-
forms of the pitches being played, we store a 256 sample sine
wave in a BRAM. Given the note to be played, we traverse



through the 256 samples at the frequency of the note using
the Phase Accumulator Module

3) Phase Accumulator Module: Given note out from
the Note Decoder. The phase accumulator calculates a phase
increment value corresponding to the desired note frequency.
Given a phase increment, every clock cycle, it accumulates a
32-bit phase value steadily by the phase increment, and wraps
around at the desired frequency.

To calculate the phase increment, the formula Clock Frequency
Frequency

gives us the number of clock cycle that one period of that note
spans. We would like the phase value to sum up to 232 in that
number of cycles which means that the phase increment is
232 divided by the number of clock cycles in a single period
giving us the equation below for the phase increment

Phase Increment =
(

Frequency × 232

Clock Frequency

)
C. Oud Waveform Implementation (Adan)

To accurately replicate the Oud notes, we utilized the Python
library librosa for audio analysis and processing. We load the
authentic analog Oud recording and resample the audio to 16
ksps sampling rate where each audio sample is quantized to
16-bit integer format preserving the resolution and quality of
the Oud note.

Additionally, the processed audio samples are encoded into
a hexadecimal format to create a hex file for each distinct Oud
note that is compatible to be used by the FPGA. These files
are generated in advance and are later stored in BRAMs on
the FPGA for audio playback.

To verify the accuracy of the hex files, another Python
script using librosa and numpy converts the hex files back
into .wav audio format. This process allows us to compare
between the original and the resampled audio generated. The
testing process includes playing both .wav files to make sure
we capture the authentic sound of the note, and visualizing
the note by plotting the note before and after the resampling.

As shown in the plots below, the regenerated waveform
closely matches the original, demonstrating the accuracy of our
hex file generation process. Minor discrepancies, if present, are
due to the resampling and quantization processes but remain
within acceptable limits for playback quality.

D. Single Note Playback (Adan)

When a capacitive sensor is triggered, the system
identifies the corresponding note and retrieves its audio
data from memory for playback. The playback process
involves multiple modules including the note_decoder,
BRAM storage, sample_address_counter, and
sample_rate_counter.

a) Note Decoder: The note_decoder translates input
signals from the capacitive sensors into corresponding memory
addresses for the note data. Each capacitive sensor is mapped
to a unique note, and the note_decoder uses a lookup
table to output a corresponding address or signal that directs
the system to the correct hex file in BRAM.

Fig. 6. Original Oud Note Waveform.

Fig. 7. Regenerated Waveform (From Hex File).

b) BRAM Storage: The hex files generated for each
Oud note are stored in Block RAM (BRAM) on the FPGA.
Each note is stored as 8192 samples, where each sample is a
sequence of 16 bits.

Bits per Note = 8192 samples×16 bits/sample = 131, 072 bits.

Using the Xilinx Spartan-7 XC7S50 FPGA, which has 120
BRAM blocks each with 36,000 bits of storage, the number
of BRAM blocks required per note is:

131, 072 bits
36, 000 bits/BRAM

≈ 3.64BRAM blocks.

This rounds up to approximately 4 BRAM blocks per note.
Therefore, the FPGA can efficiently store up to 24 notes (two
full octaves) in BRAM.

Evaluation: By using this technique, we trade off memory to
achieve more accurate and authentic Oud sounds. However, to
scale the project and generate additional notes, we continued
with the sine wave synthesis approach and added different
waveforms and ADSR module to get more accurate instrument
sounds.



c) Address and Sample Counters: This system
consists of two modules: sample_address_counter
and sample_rate_counter. The
sample_address_counter determines the current
memory address being read from BRAM during playback
by sequentially incrementing through memory addresses
containing the audio sample.

The sample_rate_counter divides the FPGA’s system
clock to generate the required sampling clock for audio
playback, ensuring that audio samples are read at the correct
playback rate of 16 kSps.

E. Multiple Waveforms

We generated sine, sawtooth, and square waveforms us-
ing Python’s NumPy library, a powerful tool for numerical
computation. These waveforms were stored in hexadecimal
format and loaded into the FPGA’s BRAM for synthesis. Each
waveform was sampled 256 times per cycle, with a 16-bit
unsigned data width, ensuring sufficient resolution for audio
playback.

The formulas used to compute the values for each waveform
are as follows:

Sine Wave

sine wave[n] = amplitude · sin
(

2πn

num samples

)
+ offset

Sawtooth Wave

sawtooth[n] = 2·amplitude·
(

n

num samples

)
−amplitude+offset

Square Wave

square wave[n] = amplitude·sign
(
sin

(
2πn

num samples

))
+offset

These three waveforms produce distinct sounds for the
synthesizer:

• Sine Wave: The sine wave generates a smooth and
continuous oscillation, resulting in a clean and pure tone.

• Sawtooth Wave: The sawtooth wave has a linearly rising
slope followed by a sharp drop, creating a bright and
harsh sound.

• Square Wave: The square wave alternates between high
and low levels, producing a hollow and buzzy tone.

F. ADSR Envelope (Adan)

The ADSR (Attack-Decay-Sustain-Release) module models
the amplitude envelope of a sound signal, replicating the
dynamic and expressive qualities of real instrument sounds.
The design logic is based on the observation that when a
real instrument generates a note, the volume of the musical
note changes over time—rising rapidly from zero and then
steadily decaying. To produce this effect, we multiply the note
waveform by an ADSR envelope that contains attack, decay,

sustain, and release phases. The graph below illustrates the
amplitude envelope.

Fig. 8. ADSR Envelope Amplitude Values

1) Inputs & Parameters: The ADSR is a sequential module
with two primary inputs:

• Start: A trigger to start the envelope.
• Hold: Keeps the amplitude at the sustain level. Typically,

the note decays to silence after the sustain phase, but we
made a design choice to stay at a low sustain level.

Additionally, the ADSR takes two amplitude parameters,
Amax and Asus, as well as four time parameters: attack time,
decay time, sustain time, and release time.

• Amax: The maximum amplitude the envelope can reach.
• Asus: The amplitude of the sustain segment.
• Attack time: The duration of the attack segment.
• Decay time: The duration of the decay segment.
• Sustain time: The duration of the sustain segment.
• Release time: The duration of the release segment.
The module uses the above parameters to calculate these

local parameters:

attack step =
Amax − 0

attack cycles

decay step =
Amax −Asus

decay cycles

release step =
Asus − 0

release cycles

2) FSMD Design : The ADSR module uses a Finite State
Machine with Data Path (FSMD), combining the FSM control
logic with a datapath for managing the amplitude level, which
is tracked in the amplitude counter.

The FSM transitions through the following states:
• Idle: Default state; this state waits for a start signal to

transition to the Launch state and initiate the envelope
generation process.

• Launch: Initializes amplitude counter to 0 and transi-
tions to the Attack phase.



• Attack: Increments amplitude counter by attack step in
each clock cycle until reaching the maximum amplitude
level Amax. When amplitude counter equals Amax, the
system transitions to the Decay state.

• Decay: Decrements amplitude counter by decay step ev-
ery clock cycle until reaching the sustain level Asus. When
amplitude counter equals Asus, the system transitions to
the Sustain state.

• Sustain: Maintains the amplitude at the sustain level Asus
for a specified duration (sustain time) or as long as hold
is active. sustain time counter is incremented in each
clock cycle, and the system transitions to the Release
state when hold is low and sustain time counter equals
sustain time.

• Release: Gradually decreases the amplitude to zero after
the sustain phase by decrementing amplitude counter in
each clock cycle until reaching zero, then transitions to
the Idle state.

At any point, if start is triggered again (indicating that the
user played the same note or a different note), the envelope
resets, and the state transitions to the Launch state. The picture
below illustrates the ADSR FSM.

Fig. 9. ADSR FSM Transitions

3) Output : The ADSR module outputs a 16-bit envelope
signal representing the amplitude at any given time. This signal
modulates the note waveform generated by the synthesizer. To
enable polyphony, each note has its own instance of the ADSR
module, allowing multiple notes to play simultaneously.

G. Audio Output Module (Adan)

The sound output system is designed to convert digital
audio samples into analog signals that can drive a speaker
or headphones through a 3.5mm TRS (Tip-Ring-Sleeve) au-
dio cable. To achieve that, we use Pulse-density modulation
(PDM) module which takes in the 16-bit digital samples and
converts them into PDM signals. The duty cycle of the PDM
signal is proportional to the amplitude of the input audio
sample and the PDM carrier frequency is set significantly

higher than the audio signal frequency to ensure smooth analog
output after filtering.

H. Polyphonic (Adan)

Polyphony, the ability to play multiple notes simultaneously,
is a key feature of our project. Our system can handle up to
8 notes in parallel, each processed independently and then
combined to produce a harmonious output.

ADSR Modules: First, each note is assigned its own ADSR
(Attack-Decay-Sustain-Release) instance to dynamically shape
its amplitude over time. Each ADSR module outputs an
envelope (adsr_envelope[i]) for the respective note,
enabling simultaneous and independent amplitude control for
up to 24 notes.

Phase Accumulators & Address Generator: As explained
above, the phase accumulators generate phase values corre-
sponding to the frequency of each note. The phase values are
then processed by the address generator, which translates them
into memory addresses to retrieve waveform samples stored in
BRAM.

In addition, the address_generator keeps track of how
many and which notes are played by updating and outputting
active_voices and num_voices:

• active_voices: Identifies which notes are currently
being played. It is an 8-bit value where each bit represents
the state of a corresponding note. If a note is being
played, its bit is set to 1; otherwise, it is 0. For example,
active_voices = 8’b00001010 indicates that the
2nd and 4th notes are currently active.

• num_voices: A counter that keeps track of how many
notes are currently being played.

Waveform Storage in BRAM: Waveforms for each note are
preloaded into Block RAM (BRAM) modules. Each BRAM
is configured with dual-port access, allowing simultaneous
reads for up to 2 notes per module. The address generator
provides memory addresses to retrieve waveform samples
corresponding to the current phase of each note.

Note Summation and Averaging: The waveform samples
retrieved from BRAM are multiplied by their respective ADSR
envelopes if the corresponding note is active. The wave-
form for note i is output as sine_spk_data_out[i]. If
active_voices[i] is high, the sample is multiplied by
the ADSR envelope, resulting in:

voice values[i] = (sine spk data out[i] × adsr envelope[i]) ≫ 16

This involves a 16-bit by 16-bit multiplication, and the result
is shifted right by 16 to fit within 16 bits.

The values from all active notes in voice_values are
then summed. The total is normalized by dividing it by the
number of active voices (num_voices), as determined by
the address generator.

Division Optimization: To efficiently handle division by
numbers that are not a power of 2, we applied a method based
on the logic that dividing a number by 2 can be achieved by
first multiplying it by 16 and then dividing it by 8. Extending
this logic, as long as the divisor is a power of 2, we can



perform efficient division through multiplication and a single
shift operation. This approach avoids direct division, which is
computationally more expensive.

The implementation uses a case statement to deter-
mine the appropriate scaling factor based on the value of
num_voices. The scaling factor is calculated as:⌊

256

num_voices

⌋
The result is divided by 256 by performing a right shift of 8
bits after applying the scaling factor. For example, to divide
by 3, the sum is first multiplied by:⌊

256

3

⌋
= 85

and the result is then shifted right by 8, effectively dividing it
by 256.

This logic ensures that the final combined and normalized
waveform is prepared for playback through the Pulse Density
Modulation (PDM) module.

Fig. 10. Capacitive Sensors and Synthesizer.

IV. EVALUATION

Latency and Throughput

We analyzed the Vivado Post-Route Timing Summary and
Post-Place Utilities to evaluate the performance and efficiency
of our design.

Our design meets all timing requirements. The Worst Neg-
ative Slack (WNS) is 2.168 ns, and the Total Negative Slack
(TNS) is 0 ns, indicating no timing violations. The longest
path in the design extends from address_generator
_inst/active_voices_reg[22]/C to multiplied
_sum_reg[10]/D, with a total delay of 7.677 ns.

This longest path is primarily impacted by multiplying all
note waveforms with ADSR envelopes, introducing computa-
tional overhead due to the 16-bit by 16-bit multiplications.
However, these computational steps ensure each note has
a dynamically shaped amplitude, significantly enhancing the
musical quality and realism of the synthesized sound.

Resource Utilization

The design makes efficient use of FPGA resources, as
indicated by the post-place utilization report. The utilization
figures include:

• Slice LUTs: 3231/32600 (9.91%)
• Slice Registers: 2213/65200 (3.39%)
• DSP Blocks: 21/120 (17.50%)
• Block RAM Tiles: 0/75 (0.00%)
The DSP slices are utilized at 17.50%, efficiently handling

critical arithmetic operations such as the multiplications re-
quired for ADSR envelope shaping and waveform summation.

V. GOALS ACHIEVED AND SCALIBILITY (ADAN)

We successfully implemented our commitment that consists
of a synthesizer with switches that play individual notes using
a sine wave and a PWM module.

Later, we achieved our goal of creating an Oud synthesizer
using playback audio. However, this approach consumed a
significant amount of memory, so we replaced it with an
ADSR module and generated multiple waveforms to produce
more dynamic sounds and better replicate real instruments.
Additionally, we upgraded the PWM module to a PDM
module.

Finally, we achieved part of our stretched goal and scaled
our project to handle 24 capacitors instead of the initial 8.

To further scale the project, a straightforward change could
be to control the ADSR parameters using potentiometers
instead of module inputs. This will give users the flexibility to
modify the sounds, enabling a single synthesizer to emulate
multiple instruments.

Another simple addition could be to change the phase
increments to support more octaves.

Furthermore, we aim to explore alternative capacitor de-
signs, such as arranging them in a row or a circular layout,
allowing the synthesizer to play different amplitudes by de-
tecting specific locations on the capacitors.

Fig. 11. Final Synthesizer

VI. BLOCK DIAGRAM

Refer to Figure 7 and 8 attached at the end of the report.



Fig. 12. Block Diagram for Sine Synthesizer using Phase Increment Approach



Fig. 13. Block Diagram for Oud Audio Playback Synthesizer using Multiple BRAMs



ACKNOWLEDGMENT

We would like to thank Professor Joe Steinmeyer, Ki-
ran Vuksanaj, Stephen Kandeh, Kailas Kahler, and all other
Teacher Assistants and Lab Assistants for their help and
guidance throughout this semester. We would also like to thank
maker space mentors who helped us with the physcial design
of the project.

REFERENCES

[1] Librosa Documentation, Online. Available: https://librosa.org.
[2] J. Valdez and J. Becker, “Texas Instruments: Understanding the I2C

Bus,” SLVA704, June 2015. Online. Available: https://www.ti.com/lit/
an/slva704/slva704.pdf?ts=1732171821168.

[3] SparkFun Electronics, “MPR121 Capacitive Touch Sensor,” Online.
Available: https://www.sparkfun.com/datasheets/Components/MPR121.
pdf.

[4] Element14 Community, “System Verilog
ADSR,” Online. Available: https://community.
element14.com/technologies/fpga-group/b/blog/posts/
systemverilog-study-notes-adsr-envelope-generator-for-sound-synthesis.


