Vowel Recognition:

Aloysius Ng
Department of Mathematics
MIT
aloy_ng@mit.edu

Abstract—We describe and implement a method to recognize
vowels from real-time speech using an FPGA board. The method
of vowel recognition will be via tracking formants, or the resonant
frequencies of a given signal; formants usually specific to vowels
spoken by a given person. The FPGA will take in audio output
via a microphone and calculate the formants of the given speech
signal over time. While there are many methods to calculate
formants, we chose to implement a dynamic programming
version that avoids complicated matrix operations but provides
its own design challenges. By comparing the formant values of
the speech signal to stored formant values for each vowel, the
FPGA can output the vowel it believes it is hearing. We pipe
out formant frequency information out via UART and display it
as a scrolling graph via HDMI. Our circuit does not use much
memory, but uses a large percentage of the logic available.

Index Terms—digital systems, field programmable gate arrays,
transcription, audio processing

I. INTRODUCTION

Speech recognition refers to a method of converting speech
from an auditory signal into text. Automatic speech recog-
nition (ASR), or speech recognition done via a computer,
remains an active field of research in terms of improving speed
and accuracy. We restrict ourselves to a subset of general ASR:
can we recognize which vowel sound is being spoken at a
given moment, if a vowel is being spoken? We use phonemes,
or the distinct units of speech, to represent sounds spoken at
a given moment: orthographically, there are only five (or six)
vowels in English, but the English language is considered to
have at least 15 distinct vowel sounds; these vowel sounds
are often represented using the IPA (International Phonetic
Alphabet).

Vowel recognition has been a line of research pursued for
decades, often based around formant-based strategies [1] [2].
Formants are regions of broad spectral maxima in human
speech, which roughly correspond to the resonant frequencies
of the sound signal. Because vowel sounds are produced from
an open vocal tract, vowels have clear formants, which can
often be identified via visually looking at a spectrogram.
Vowels spoken by a particular person are known to be dis-
tinguished via their first few formants, with two or three often
being sufficient. Formant values of the same vowel spoken by
different people are often not too dissimilar.

Calculating (or more accurately, estimating) formants from a
speech signal is thus the heart of this project. Simply taking the
maxima in the spectrogram (i.e. from a Fourier transform of
the given data) results in noisy and inaccurate formant values.

6.205 Final Report

Jonathan Huang
Department of EECS, Department of Biology
MIT
jhuang25@mit.edu

The most common strategy of formant calculation is via linear
predictive coding, which is used in commonly available speech
analysis softwares such as Praat. However, linear predictive
coding requires extensive matrix manipulation. We follow
instead an algorithm developed by Welling and Ney (1998) [3]],
which segments the spectrum of a speech signal into different
regions corresponding to a formant. Each region is estimated
by a second-order resonators with resonant frequency at the
formant. The algorithm uses a dynamic programming approach
takes considerable time on a normal processor. Our Python
implementation of their algorithm, for instance, takes 44ms
to calculate the formants when given the Fourier transform of
a 25ms window of audio sampled at 8000Hz (windows are
normally taken every 10ms to encourage overlap, as well):
calculating the formants themselves cannot be done live, let
alone calculating the Fourier transform and then the formants.

The goal is to leverage the parallel processing power of the
FPGA and to efficiently use the DSPs on board to compute
the formants live. We display our calculated formants on an
HDMI display along with the vowel that best corresponds to
the formants.

II. DESIGN DETAILS

The block diagram of the code we have implemented is in
Figure 1.

16kHz
trigger

MAX 9814 19 SPI 0 Offset
10ms trigger 32

32

32
}—;L‘ Windowing 2

Buffer
(400 x 32 bits)

3
!—L{
32
Magnitude 32 Formant
squared calculation \ Monitor (show graph)
BRAM oo -
orman

‘ DFT

Pre-emphasis
2

32 32
Real [lu}

Laptop
(Graph w. matplot)

(256*32bits)

Fig. 1. Block diagram of written code. Dashed red box represents the
spectrogram module.

A. Audio Input

We use the microphone used earlier in the class, the
MAXO9814. With the MAX9814, we can use the MCP3008
as an ADC and use the SPI protocol (completed in Lab 3) to

interface with it. We are sampling our audio at 16kHz (one
sample every 6250 clock cycles) using 10 bits of precision
from the MCP3008. This sample rate is sufficient to identify
all frequencies below the Nyquist frequency of 8kHz, which
is enough to capture all the relevant information of human
speech.

B. Audio Processing

The offset is estimated as a constant value that the output
of the ADC is offset by. We remove this by using a filter
similar to the ETSI standard set out in [4], but use division
by a power of 2 for easier calculation. Our processed audio
sample is given by below where s;, s, are the input and output
samples respectively and n be the index of the sample:

so(n) = si(n) —s;(n—1) 4+ so(n —1) (1 - 10124> NG

We then use a pre-emphasis filter which boosts higher
frequencies in the audio input to improve the signal-to-noise
ratio. We use a filter similar to that in [4], but again elect for
a power of 2 instead. Where s, is the output of this filter,

()=o) = (1= 35)saln=1. @

A maximum of 400 processed samples are stored at anytime,
corresponding to 25ms of speech. These 400 32-bit samples
are stored in flip-flops.

C. Fourier Transform

Every 10ms, this module takes the previous 25ms of audio
as input from the buffer. These input values are sequentially
given to the windowing module when a full window of 25ms is
available in the buffer. We denote such a grouping of samples
as a frame.

Note that two consecutive frames of 25ms have a 15ms
overlap, corresponding to 240 audio samples. The buffer re-
inserts these audio samples into the start of the buffer to
preserve them for the next window 10ms later. This does not
collide with a new audio sample as this reinsertion happens
in 400 clock cycles, much less than the 6250 cycles that is
needed for a new sample to come in.

To window each packet of 400 samples, we multiply our
values with those of a Hamming window, which varies from
0.04 at the edges of the frame to 1 in the center of the frame.
These are zero-padded to form a frame of 512 samples, which
is fed sequentially into a DFT module that implements the
Cooley-Tukey FFT algorithm.

The outputs of this module are 512 complex Fourier coef-
ficients, returned in reversed-bit order. These are sequentially
fed into a magnitude module, which computes the squared
magnitude of each complex coefficient. We only keep the
256 magnitudes that correspond to one half of the Fourier
coefficients.

D. Vowel Determination

For every frame of audio, we apply the algorithm outlined
by Welling and Ney to output the four formants based on
segmenting the interval from OHz to 5000Hz. Thus of our 256
FFT magnitudes, we need only care about the I = 160 that
cover all the data below 5000 Hz. We let these magnitudes be
|S(4)|? for i € [I], using the notation [I] = {0,...,I —1}.

We first outline the theory of the algorithm, which relies on
the following functions:

N 211
T(VaZ)IZ|S(J)ZCOS< i)
=0

T(ijvi) = T(Vvi) - T(Vv.j - 1)7
T(07j7 i)r(laja Z) — ’f'(].7j, i)T(27j, Z)
(T(Ovjai))Q - (T(17j7i))2
) T(Oajvi)r(Qajai) _ (7'(17]‘71'))2
(T(O,j, Z))Q - (’I“(Lj, Z))Q
) —Oé(j,i)’/‘(l,j,i)—ﬂ(j,i)’/’(l,j,i),
k,i) = min[F(k — 1,5) + Emin(j + 1,4)],
ki)

a(j,i) =

)

<.

=argmin[F(k — 1,7) + Emin(j + 1,1)].
J

where

o T(v,i) represent prefix sums for efficient calculation of
r(v, j, 1)

e 7(v,j,1) represent autocorrelation coefficients between
sample j and sample ¢

o «(j,4) and B(j, %) represent the coefficients of the second-
order resonator on the segment of frequencies from [j, 4]

o Emin(j,1) represents the prediction error of the second-
order resonator defined by coefficients «(j,4) and 3(j,1)
to the given data on the segment [7, i

o F(k,1) represents the minimum cumulative error over all
segmentations of [0,] into k& segments

o B(k,4) is the starting point of the final segment in the
minimum-cumulative-error segmentation of [0, 7] into k
segments

In terms of the above notation, the four calculated for-
mants are derived from the segmentation of [I]| that min-
imizes the cumulative error F'(4,I — 1). We can find the
segment endpoints via repeatedly applying the function B:
i(4) = I —1,i(3) = B(4,i(4)),i(2) = B(3,i(3)),i(1) =
B(2,i(2)),4(0) = B(1,i(1)) = 0 represent the five endpoints
of the four segments in decreasing order. Using the segment
endpoints, we can recalculate «(j,4) and ((j,4) to calculate
the resonant frequency, which is given by

45(4,1) '

For a more detailed derivation and explanation, see [3].

The outline of how we implemented this algorithm on the
FPGA is as follows:

»(j,1) = arccos (

Algorithm 1 Formant Calculations

Input: Magnitude of Fourier coefficients, |S(i)|? for i € [I]
Output: K = 4 calculated formant frequencies
1: Compute T'(v,1) over v € [3],4 € [I], store in BRAM.
2: for i € [I] do
3 forje[i—1] do

4 Calculate Emin(j,4) and store in BRAM.

5: end for

6: for k € [1,min(i + 1, K)] do

7 F(k,i) =00

8 for jek—2,i—1] do

9 if F(k—1,j)+ Emin(j + 1,i) < F(k,i) then
10: F(k,i)=F(k—1,j)+ Emin(j + 1,7)

11 B(k,i) = j.

12: end if

13: end for

14: Store the final value of F'(k, i) and B(k, %) in BRAM.
15: end for

16: end for

17: Find segment endpoints with ¢(K) =T — 1.

18: for k=K, K —1,...,1do

19: i(k—1) = B(, (i(k))

20: Calculate the formant frequencies @(i(k — 1),i(k).

21: end for

22: return Formant frequencies ¢(0,1)...,o(k — 1,k).

There were two big points of consideration for the design
of this algorithm. One was how to do arithmetic with a fixed
number of bits. We chose to restrict our number representation
to 24-bits in order to perform multiplication within a single
cycle, done via multiplying two 24-bit numbers to a 48-
bit number then truncating as necessary. Division, which
is necessary to compute «(j,¢), B(j,1), and ¢(j,¢) require
parallel division modules, which we tuned to run within timing
contraints. A rough back of the envelope calculation shows
that if we perform all arithmetic calculations sequentially we
easily exceed our 10 ms window timing, or 1 million cycle
computation constraint. Thorough pipelining was necessary to
increase the throughput of many arithmetic calculations.

The second point of consideration was how to manage our
BRAM correctly, which 75 x 36kB memory. Computing and
writing all of the values of Emin(j,4) into BRAM (as the al-
gorithm [3]] describes) would take over a third of the BRAM by
itself. From the perspective of memory conservation, we chose
instead to only compute E'min(j,¢) as-needed, and instead use
a state maching to manage when we were computing Emin
(steps 3-5) and computing F' and B (steps 6-15). Memory
conservation was another motivation for not pre-computing
r(v, j,1) and storing it in BRAM as well.

E. Data output

We output our audio processing data via UART, combining
the processed audio, the Fourier coefficients, and formant
frequencies in a single package. We store these data values
in a stored buffer. Since there are 100 frames every second,

these buffered values are transmitted at the same rate of 100
Hz (Fig. .

Lel-T-T-1
10ms of
processed audio

Fl=l- - [
256 Fourier coefficients
(reversed-bit order)

Ius|«s| . | . |4n|

8’hffffffff
Header

Fig. 2. UART packet diagram

The header ensures that all data is received and informs
of the separation between the audio and the coefficients. This
is crucial as being off-by-one on the reversed bit order gives
very different results. The benefit of sending outputs via these
packets is that we can record long recordings. However it
also requires a higher BAUD rate. It needed to be more than
420000, so we used the standard rate of 460800 bits per
second.

The output of this data is then processed off-board. The
order of Fourier coefficients returned to normal and plotted
with the matplotlib library on Python.

F. Data Display

We also display the formant values via HDMI on a screen,
similar to a live spectrogram. Like a spectrogram, our display
has time as its horizontal axis and frequency as its vertical axis.
We color a pixel white if the frequency at the corresponding
time is a formant of the sample at that (approximate) time
value; otherwise, the pixel is left black. To create the scrolling
nature of the graph, we in essence decompose our frame into
160 sections with an index into the starting section; this is
equivalent to creating 160 BRAM frame buffers. We draw
each frame with the pixels from left to right being stored in
the frame buffers starting at the index counting upwards. At
the end of each frame of the display, we write the new data
to the frame buffer at the index, then increment the index by
one. Because we start drawing our frame based on the data at
the beginning at the index, this has the effect of shifting all of
the data left one section, then updating the rightmost section,
creating the desired scrolling nature of the display. To draw a
given row, we fetch its data during the previous row’s blanking
section, which requires fetching data from BRAM. To fit our
BRAM fetches into the previous row’s blanking section, we
make our BRAM width 8 bits; this means the 1280 bits of
information in each row can fit into 160 fetches, which can fit
into half of the time of the blanking section.

III. BLOCK DIAGRAM
IV. RESULTS

As illustrated in Figure 3, the computed magnitudes of
the Fourier coefficients mostly match with that generated by
the specgram function in the matplotlib library. Differences
between the two can be attributed to outputs being truncated
to 8-bits for UART transmission and different settings and
windowing methods. We also plotted the formant values we
got, but these are not accurate yet. However, it shows that it
is similar as these formants are detected when clear lines like
vowels are said.

Frequency (Hz)

10000 15000 20000

Fig. 3. Two spectrograms of the same filtered audio input. Above: Fourier co-
efficients computed on the board with intensity corresponding to logarithm of
the value. Below: Output of matplotlib.specgram with mode set to magnitude.

8000

=)
[=]
o
o

Frequency (Hz)
B
[=]
o
o

10000

T lonnniey

5000 15000 20000

2500 A
2000 A
1500 -
1000 -

500 A

£
ol |1

i
i

-ur'l a'r"

0 50 100 15 0 250 300

Fig. 4. Calculated values are similar but do not match correct values.

In terms of FPGA resource usage, we use approximately
one third of the BRAM to store our values of our functions
T,E,F,B,p. We use 68 of 120 DSPs and 58 percent of
LUTS available on the board, reflective of the amount of
arithmetic that we are attempting to compute, but we also
used extensive pipelining to reuse our multiplication circuits
as often as possible. Our circuit was also close to the timing
constraint, having a positive slack of only +0.158ns.

In terms of our project goals, this implementation was able
to identify formants, which is close to achieving minimum
viable product of vowel recognition, but we recognize that
general speech recognition would have been an incredibly
complex task. By making the calculation of the formants more
accurate and comparing formant values by Euclidean distance,
we would be able to finish.

V. CONTRIBUTIONS

Aloysius wrote the sections for initial audio processing,
adapted an existing FFT implementation for our project,
and performed most of the testing of function modules

via comparing his Python implementation to our modules.
Jonathan wrote the sections for most function modules with
correct pipelines and BRAM memory management.

VI. RETROSPECTION
We learned quite a few lessons from this project:

o We initially had a much bolder goal of recognizing all
phonemes in the English language using a mixed Gaus-
sian model, but we quickly realized that the magnitude
of work required to label data for such a model would
have been a lot of work.

o Writing the algorithm in Python first was a good sanity
check on the viability of our approach. It also served as
a good baseline of the amount of computation time re-
quired. Aloysius had an excellent approach of debugging
our SystemVerilog by comparing it to the exact outputs
of the Python program.

o Dealing with binary integers was complicated and led
to some precision issues, as we had to re-scale numbers
many times to avoid over-flowing our 32-bit format.
While floating-point arithmetic is generally frowned upon
in this class, we wonder if it could have been useful for
our project.

o We spent a considerable amount of time optimizing our
design before writing anything in SystemVerilog, which
paid off. While we still did underestimate the extent
of timing issues (multiplication of two 32-bit numbers
to a 64-bit number doesn’t fit in a single cycle...), this
guided us on how to design our (extensive) pipelining
that avoided the worst timing issues.

o Start earlier.

ACKNOWLEDGMENT

We thank Joe Steinmeyer and Jan Park for their advice and
help throughout this project.

REFERENCES

[1] M. Stanek and L. Polak, “Algorithms for vowel recognition in fluent
speech based on formant positions,” in 2013 36th International Con-
ference on Telecommunications and Signal Processing (TSP), 2013, pp.
521-525.

[2] S. K. Pal, A. Datta, and D. D. Majumder, “A self-supervised vowel
recognition system,” Pattern Recognition, vol. 12, no. 1, pp. 27-34, 1980.

[3] L. Welling and H. Ney, “Formant estimation for speech recognition,”
IEEE Transactions on Speech and Audio Processing, vol. 6, no. 1, pp.
36-48, 1998.

[4] ETSI, “Speech processing, transmission and quality aspects (stq); dis-
tributed speech recognition; front-end feature extraction algorithm; com-
pression algorithms.” [Online]. Available: https://www.etsi.org/deliver/
etsi es/201100 201199/201108/01.01.03 60/es 201108v010103p.pdf

[5] nanamake, “Pipeline FFT Implmentation in Verilog HDL,” 2024,
accessed: 2024-11-26. [Online]. Available: https://github.com/nanamake/
r22sdf

https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://github.com/nanamake/r22sdf
https://github.com/nanamake/r22sdf

	Introduction
	Design Details
	Audio Input
	Audio Processing
	Fourier Transform
	Vowel Determination
	Data output
	Data Display

	Block Diagram
	Results
	Contributions
	Retrospection
	References

