6.111 Final Report — MemSynth: Exploring
Digital Memory As A Multimedia Instrument

Jesus Diaz
Massachusetts Institute of Technology
jrdiaz@mit.edu

Abstract—We present MemSynth, an instrument for digital
memory exploration. Departing from conventional file-based
interactions, MemSynth invites users to explore raw memory
data from an SD card by selecting arbitrary memory regions
with switches and buttons. Powered by an FPGA, the device
oscillates the selected data streams, outputting them as auditory
soundscapes and visual representations. Creating new relation-
ships between memory and perception, MemSynth challenges
traditional paradigms of synthesis and offers a unique platform
for exploring digital memory as a multidimensional, creative
medium.

I. BLOCK DIAGRAM

i } read H iastane
s® Codidhs =
2&- (Fi1F0)
weid | reed
j Woxe [N Osillator
o sawples)
-8
werleed) £
('l‘bt‘\\...\ ;"&

s de o

i 3 s
v A
tu C,o .Ler :"\ gCS\A\ hmidy
wolid n \ wodu le E
u.u.;

RES et

Nt ."“\0“"‘ Processor
feaday [, shabu
valid

A

— evtputs

Fig. 1. Updated block diagram for the final version of the device.

II. PHYSICAL CONSTRUCTION

o K194725ASJH MIDI Shield to convert MIDI messages
to a UART stream of data we can feed to our FPGA.

o CIMCU-1334 DAC Module to convert the output from
our FPGA to line-level audio.

« Arturia KeyStep 37-Key Midi Keyboard Controller

o Urbana Board with Spartan 7 Series FPGA, by AMD/X-
ilinx.

I1I. Aubio AND MIDI

MemSynth implements classic features found in a conven-
tional digital synthesizer:

1) MIDI reading and processing

2) Polyphony (with volume stabilization)

3) I2S audio output

Artem Laptiev
Massachusetts Institute of Technology
laptiev @mit.edu

A. Block Diagram

Y iastamces

(Fi1F0)
———| nad
05:.'\ “ q'\'or
sawples
£

P \r"‘h
ke .
.J' ! T"\‘" = s
e sample g ‘l - A
o Lok B
volid Conducter \ wedvle

Fig. 2. Updated block diagram for V0.

il MIDL

&
b Processor
[shater

valid

NNt
feadas

AN

— ovtpets

B. MIDI Processor

To begin, we quickly highlight a design change in our MIDI
Processor from the initial proposed block diagram for version
0 of this project.

Our original design featured a single MIDI module that
would be fed UART data from our MIDI breakout board, and
would output note on/off messages with their corresponding
pitches. The MIDI protocol however, is capable of transmitting
a variety of other information for events including pitch
modulation and key press velocity. Because of this, we decided
to split this module into two modules: (1) a general MIDI
reader that is responsible for taking in raw UART data and
outputting status and data bytes for MIDI events, and (2) a
MIDI processor that takes in this data from the reader, ignores
all data unrelated to note on/off events, and just uses the
relevant events to output noteOn and pitch data. In this way,
we can generalize the reading of MIDI data in case we decide
to expand functionality to more MIDI events in the future.

C. MIDI Receiver

MIDI (Musical Instrument Digital Interface) is a technical
standard that allows electronic musical instruments to commu-
nicate with each other. Each MIDI event sends three packages
via UART, with the first package describing the “status” of the
event (identifiable by a 1 in the MSB), and two subsequent

leading_bit == 0 m

leading_bit ==1

G

Fig. 3. The MIDI state machine found in our MIDI Reader module
receives incoming UART data from the MIDI instrument. Data is
determined to be valid whenever there is a transition between the BYTE
RECEIVED and IDLE states.

leading_bit == 1

A

STATUS
RECEIVED

BYTE
RECEIVED

\/

leading_bit==0

data packages providing relevant information for the event.
To make our system resilient to dropped MIDI packets, we
implemented a state machine that serves as the intermediary
between the coordinator for our oscillators and the incoming
stream of UART data:

After receiving all required data, the state machine will set
its valid data out bit accordingly.

D. Polyphony

For our version 0 of this project, we focused on implement-
ing the two primary events found in MIDI: Note On and Note
Off. When a key is pressed on our MIDI instrument, a Note
On message is sent with the corresponding note number to
our synth. The note continues to be played until the key is
released and a corresponding Note Off event is sent.

NOTE ON: 1001 CCCC

STATUS BYTE NOTE OFF: 1000 CCCC

DATA BYTE 1 0PPP PPPP

DATA BYTE 2 0VVV VVVV

Fig. 4. MIDI Note On and Note Off events with corresponding data
bytes. The 7 lower bits of Data Byte 1 specify the pitch value and the
lower 7 bits of Data Byte 2 specify the velocity value (which will be
unused for now).

Our original proposed design for this system utilized a
monophonic synthesizer. Instead of receiving a Note On
message and sustaining that note indefinitely, a monophonic
synthesizer would have to overwrite the current note whenever
a new Note On message was received. Such a design would

have prevented users from being able to play multiple notes at
the same time, and given the capabilities found on the FPGA,
we decided it was worth redesigning our system to support
this feature.

Our redesigned polyphonic synthesizer initializes a pre-
determined number of oscillator modules (adjustable via a
parameter in our module) and coordinates between these
oscillators and the incoming stream of messages from our
MIDI receiver—mixing everything into the final stream of data
that we feed into our I2S module.

To achieve proper coordination between modules we imple-
mented a Least-Recently Used (LRU) approach to determine
which oscillator should be overwritten in the case that we
have more Note On messages than available oscillators. In
addition to keeping track of each oscillator’s active status and
target pitch, we keep track of the “age” of each active module
as a 32-bit integer. By incrementing this age for each active
oscillator every clock cycle, we can then use this information
to accurately determine which oscillator to overwrite with
incoming Note On events.

With our current design, we have to be wary of the
effects of overflow given that we are updating this value
every clock cycle. Given our 32-bit age value, it would take
232 = 2,147,483, 648 cycles for the age variable to overflow.
Incrementing this value every clock cycle for a 100 MHz clock
would equate to an update every 10 ns, so in total it would
take 2,147,483, 648 x 1079 = 21.47483648 seconds.

For now, we have determined that this is a reasonable time
range for accurate LRU oscillator replacement. Given the fact
that it is not necessary for this age value to be accurate down to
the last clock cycle, we could very easily get away with instead
updating this age every couple hundred clock cycles. Though
it will be impossible for the user to determine a difference
of less than a millisecond in key presses, it would present
a noticeable hundredfold increase in our ability to accurately
identify the earliest notes played on our synth.

Lastly, we highlight the need for a volume stabilization
module, which was not included in our original VO synthesizer.
Our implementation of polyphony with multiple synthesizers
created issues with drastic variations in volume and overflow
due to the way we were directly adding the output from our
individual synthesizers to get the final audio output.

To address this, we implemented the volume stabilization
module, which serves as the middleman between our oscillator
coordinator module and the output audio stream we feed to
our I12S module. We receive a 18-bit audio stream from our
oscillator module (scaled to accommodate the maximum pos-
sible value for the addition of 4 oscillators with 16-bit audio),
and continuously feed this into a divider module, dividing by
the combinationally-determined number of oscillators that are
currently on.

E. 12§

To maximize the output quality of our audio, we have
implemented an I2S protocol, passing the sample data to our
DAC at 44.1 kHZ. To achieve this, we calculated the clock

(BCLK) we needed to drive the I2S at given our two channels
(left and right) and our 16-bit audio:

BCLK =

(number of channels) x (sampling rate) x (bits per channel)

Substituting the values:

BCLK = 2 x 44.1kHz x 16 bits

BCLK = 1.4112MHz

In our implementation, we opted for a slightly higher clock
of 2 MHz, given that it can be easily drawn from our 100
MHz clock.

IV. MEMORY MANAGEMENT
MemSynth’s memory is divided into 2 parts:

1) ”Main Memory” is the large pool of digital memory
available for the user to explore. We implement it with
an SD Card.

2) “Temporary Memory” is a BRAM that is used by our
audio and visual oscillators, as well as our UART bytes
explorer.

In order to achieve the desired effect of “playing” all the
media files as audio as well as “displaying” the data as some
imagery, we had to decide some constraints on what we
consider to be a ’sample” of data. Since the audio playback has
been our focus for the project, we decided that each sample
of data will have to be 16 bits in resolution. Therefore, we
interpret each 2 bytes in our Temporary Memory BRAM to
be a single sample, played out as audio and a single pixel
shown on the screen of 720x360 pixel resolution in greyscale.

A. Memory Write

Every interaction of the user with the Ul (changing the
width of the selected data or the starting index) is followed by
a rewrite of the corresponding section from the Main Memory
into the Temporary Memory.

We use an SD controller to read 512-bits-long chunks of
data byte by byte and update the corresponding positions in
the Temporary Memory BRAM.

B. Memory Read

For quick access, our system stores data samples in BRAM,
which is then continuously read by our oscillators. In our
original implementation of the oscillator module, we had a
dedicated BRAM for each oscillator. This was much simpler
implementation-wise than coordinating with a single oscillator,
but this greatly restricted our ability to scale the number of
oscillators given the limited number of BRAMs on the FPGA.

To address this, we redesigned our oscillators to fetch data
from a single BRAM, with a coordinator that would assign
cycles based on a round-robin approach. We kept an array of

oscillator addresses that would be updated by each respective
oscillator module depending on its requested pitch frequency
and a data array where samples from the BRAM would be
assigned for each oscillator. We use an event counter that loops
through our oscillator indices, and, with a one-cycle memory
module, every cycle we update the data array for the previous
oscillator and make a request for the current oscillator. Data is
continuously read for the given values in the oscillator address
array, so we use a separate isNoteOn array to indicate whether
a sample should be included or ignored in our audio output.

- DATA REQUESTED

DATA RETURNED

OSCILLATOR
o = N

0 1 2 3 4 5 6 7 8 9 10 "

TIME (CLOCK CYCLES)

Fig. 5. Round Robin coordination for oscillator BRAM usage. Data is
returned one cycle after a request is made.

V. VISUAL REPRESENTATION

MemSynth outputs the sections of data, selected by the user,
through 2 modes of visual representation.

A. UI Memory Exploration

Fig. 6. Raw bytes representation of selected data, using p5.js. 7-bit values
decoded as ASCII chars.

In order to provide an experience of closer familiarity with
the digital memory for the user, we decided to implement a
feature of displaying the raw data selection as text. Since we
could only present a small fraction of the data selected as
human-readable text, implementation of the graphics on the
FPGA would be unnecessary. Therefore, we decided to pass
part of the data from the FPGA over the UART to a PC, which
implemented visualization using pS5.js, a Javascript graphics
library.

Since a number of variables had to be passed via UART
(including the selected data wave length, playback indices of

the audio oscillators, and the data itself) all over a single
port, we had to design a communication protocol between
the FPGA and PC. A simple working solution was to append
headers "WAVLEN”, "OSCIND”, or "WAVDAT"” before the
corresponding data was sent.

B. Visual Representation

Among the stretch goals for this project was the design of
a visual representation of the audio being outputted by our
synthesizer. A simple way we were able to do this was by
iterating through the audio data on our oscillator and feeding
this directly to the red, green, and blue values being displayed
on the screen. Making use of the existing HDMI framework
we built earlier in the semester, we were able to generate
some interesting output to complement the audio output of
the synthesizer.

Fig. 7. HMDI output of sine wave sample at various different sample
widths.

VI. EVALUATION

We first evaluate this project by revisiting the goals from
our initial block diagram presentation:

e The Commitment: For this low-score MVP we aimed to
have a MIDI decoder and oscillator outputting I12S data
with a frequency of 44.1 kHz. All of these goals were
met with our VO.

e The Goal. This goal focused on having a way to mix
the audio samples from our oscillators. In our VO, this
was implemented with our oscillator coordinator, which
is also responsible for coordinating with incoming MIDI
events, and the volume stabilizer modules. This goal was
also met in our VO.

o The stretch goal. At the time, our idea for a stretch goal
was “Real-time wave modification.” We were able to
achieve this also in a relatively simple way by simply
adjusting the number of samples we would oscillate in a
given waveform.

Outside of these goals, the primary challenge that we came
across in our system came down to memory; that is, both the

constraints of memory on the FPGA and the way we manage
it. Our vision for this synthesizer was to be able to take in
any kind of data: MP3 files, PDFs, a picture of a cat, etc, and
be able to output whatever that would sound like.

Without SD, we attempted to cut down on our BRAM usage
in the VO design. We initially had BRAMs for each oscillator,
a BRAM for our HDMI output, and a BRAM for the UART
data we were sending over to a laptop. Our solution to this
was to integrate all oscillators into a single shared BRAM, and
although that change certainly helped with BRAM usage, we
were still constantly running into memory issues. Though we
were only using around 30 percent of the available memory
on the FPGA, we realized that the issue likely came down
to the way we structured our data. Our sound samples were
16 bits wide but 512 levels deep, which we believe created
very narrow strips of memory in our BRAMs, and could have
been improved by efficiently redesigning our memory storage
to store multiple 16-bit samples in a single line.

VII. RETROSPECTIVE

Looking back on this project, we have a number of key
takeaways:

« Take advantage of office hours and staff when you get
stuck. Prior to our final-stretch meeting with Joe, we spent
much of the time in VO debugging our MIDI modules,
which prevented us from making progress on our V1. We
looked at the output of our MIDI breakout board, and
assumed that it was fine because it was outputting what
looked to be a proper UART message, so we looked over
our MIDI modules over and over to try and find a bug.
During our meeting however, Joe quickly pointed out that
the voltage difference in these messages should be on the
order of volts, not the millivolts we were seeing. Half an
hour after our meeting, we realized we had forgotten to
hook up the 5V pin in our breakout board, which had
been the source of our issues.

o Use logic analyzers! At least for most things. A lot of
our initial debugging was done with an oscilloscope,
as we tested the various outputted frequencies that our
synthesizer sent via 12S. Once our aforementioned MIDI
problem was fixed, we stayed using the oscilloscope with
triggers to analyze all the digital data that was coming out
of the FPGA. Oscilloscope triggers are a wonderful thing
but it also restricted us to analyzing four signals at a time
and it meant we had to deal with a rat’s nest of wires and
probes. Needless to say, we wish we had used PulseView
with the Logic Analyzer earlier on in our project.

o Start early or prioritize early. Though we were able to
implement and integrate all the features we laid out for
our VO, we weren’t able to get to the full integration
stage for all the features we wanted in V1, most notably
with the SD card feature. In addition to being tricky to
implement in isolation, it was even tricker to integrate
these into our existing system, as bugs inevitably popped
up that we had not anticipated for in our prior testing. As
the deadline approached, we did not prioritize having one

feature over another, which led to a number of features
that were close to working with our system, but not fully
integrated.

VIII. ACKNOWLEDGMENTS

We’d like to thank Joe for his guidance throughout this
entire project, and the entire teaching staff for getting us
through the debugging the final version of our synthesizer.

