
FP-DJ – An FPGA-based Digital Workstation
6.205 Final Project: Final Report

Team 02

Kofi Agyepong
Department of Electrical Engineering and Computer Science

kba@mit.edu

Deepta Gupta
Department of Electrical Engineering and Computer Science

deeptag@mit.edu

Abstract—We propose a digital audio workstation on the
FPGA, with the ability to record digital instrument audio, apply
effects (such as delay, reverb, distortion, and bass boost), play
back modified sound, and display information to the user through
a visual UI. Real-time effects can be applied to the instrument
audio, or audio can be recorded, modified, layered together, and
played back at a later time. Live audio can also be simultaneously
played over pre-recorded tracks.

I. GOALS AND EVALUATION METRICS

Fig. 1: Project Goals.

Our ambitions were divided into ”commitment” objectives,
or what we envision as our minimum viable product, ”Goal”
objectives, the set of objectives we felt we could reasonable
complete, and ”stretch” objectives, objectives we felt would
be a challenge to implement but worthwhile to aim for. For
efficacy evaluation, we had three major metrics:

• Latency: For synchronous playback, we aimed for delays
imperceptible to the human ear (under 5 ms).

• Audio quality: we aimed to minimize unintended distor-
tion and achieve audio quality similar to that of phone
speakers.

• Resource usage: we aimed to make efficient use of FPGA
resources and to avoid logic with high dead-time (that is,
long periods where the logic is idle).

II. SYSTEM OVERVIEW

The high level function of each block of the system is as
follows:

• The I2S Decoder retrieves audio samples over I2S from
a MEMs microphone.

Fig. 2: Top Level.

• The UI FSM parses user input, enabling users to apply
effects to tracks and record sequences of audio.

• The Display Logic block presents useful information to
the user on the FPGA’s seven segment displays.

• The Record block, Traffic Generator, MIG, and DRAM
handle storing audio in memory, which enables recording.
The Retrieve block pulls stored samples from memory,
enabling asynchronous playback of audio.

• The Filter blocks apply effects to either asynchronous
audio retrieved from memory (filter blocks 0-2) or syn-
chronous audio freshly received from the I2S decoder
(filter block 3).

• The Mix block superimposes all tracks together to create
a single sample that will be sent to the output.

• The DAC Encoder, DAC, and Low Pass Filter translate
the digital samples to an analog waveform and send it to
the audio output (in this case a 3.5mm headphone jack).



Fig. 3: Audio Input and Output.

III. AUDIO

A. Input/Output

To acquire audio, we are using a MEMS microphone
that operates using the I2S communication protocol. The
microphone provides data in a 24-bit format, and we will
be using the 18 most significant bits to store our sample.
The microphone’s output will be fed through a decoder,
which will isolate the relevant bits from each sample at a
sampling frequency of 44.1 KHz (corresponding to a 2.8224
MHz clock). The I2S protocol consists of the following three
signals:

• SCK: the serial clock (in our case, will be ran at 2.8224
MHz)

• WS: word select, which determines whether the data
being transmitted is part of the left channel or the right
channel (in our case, we will use exclusively left channel)

• SD: the serial data
The SD output is our sample, which is what all of the sound

effects will be applied to. After the sample is modified and
mixed with other tracks, it will need to be outputted. The
FPGA’s audio jack is a standard analog AUX port, so we have
to convert our samples to an analog format before feeding them
into the audio jack. To accomplish this, we are using a DAC.
Since the DAC takes in 24-bit data, we first feed the 18-bit
sample through a DAC encoder module, which adds on the
necessary number of bits. This data then passes through the
DAC using a communication protocol similar to SPI, at the
same 2.8224 MHz clock rate used by the microphone. The
DAC’s control signals are as follows:

• SYNC: an active low signal that enables the transfer of
data

• SCLK: serial clock (in our case, we will output samples
at our original sampling rate of 44.1 KHz)

• DIN: the serial data
The output of the DAC is an analog voltage that can go

through an analog low-pass reconstruction filter to eliminate
any high-frequency noise that the DAC introduces. This filter
consists of an op-amp and an RC network. The output of this
filter will go to the audio jack, and is what the user will hear.
A flowchart of the I/O handling of our audio is shown in
Figure 3.

B. Digital Signal Processing

Our system is intended to be able to apply four different
types of sound effect to our audio samples, namely reverb,
delay, distortion, and bass-boost. Each track will be assigned
a set of switches, and each effect will be assigned a switch, so
whether or not an effect is applied to a specific track will be
determined by the position of a set switch. This assignment
scheme allows for an effect to simultaneously be applied to
different tracks, and for multiple effects to simultaneously be
applied to one track. If all the switches are low for a given
track, the sample for that track will remain unmodified.

Fig. 4: Diagrams illustrating the four audio effects.
(a) Distortion. (b) Delay. (c) Bass-Boost. (d) Reverb.

The four sound effects will be implemented as follows:
• Distortion: To create a distortion effect, we will set an

upper and lower clip value to make the sine wave more
of a square wave, which introduces harmonics. In order
to mitigate high frequency from sharp changes in the
waveform, we divide the signal into bins and clip each
bin at an intermediate clipping value, creating a slightly
smoother signal. A graph of what this looks like is shown
in Figure 4(a).

• Delay: A delay effect can be made by adding clock cycles
in between inputting and outputting the sample through
the filter block. To do this, we store the sample in a
BRAM. We have a counter with a set number of cycles,
and after that number of cycles is reached, we retrieve the
sample from the BRAM and output it. A block diagram
of this is shown in Figure 4(b).

• Bass-Boost: A bass-boost effect can be achieved through
filtering out the higher frequencies and amplifying the
lower frequencies. In order to not lose resolution while
filtering, we first amplify the entire signal, and then feed it
through a low pass filter to eliminate the higher frequen-
cies. This low-pass filter can be digitally implemented
through IIR, or Infinite Impulse Response, techniques. A
block diagram of this is shown in Figure 4(c)

• Reverb: Reverb is essentially an echo effect, where the
sample is delayed several times and each delayed sample
is layered on top of the others. To accomplish this, we



repeatedly feed the sample through delay block, reduce
the volume of the delayed sample, and layer it on top of
the previously generated sample. This will ultimate cause
the echoes of the signal to fade away. We also have a feed-
forward portion that mitigates any filtering effects that the
feedback portion creates, ensuring that we preserve our
full frequency range. A control diagram of this effect is
shown in Figure 4(d).

IV. UI
The UI FSM handles parsing user input from buttons [3:1]

and translating it into commands for the Record Block and
Display Logic blocks. It also stores the information such as
the effects currently enabled on each track and their intensity.

Fig. 5: UI FSM.

The FSM begins in the PLAYBACK state; in this state no
commands are issued to the Record Block and the Display
block is commanded to display the current state (PLAY-
BACK), the currently selected track (either 0, 1, 2), and
the effects currently active on the selected track. While in
PLAYBACK, the FSM will transition to the RECORD state
upon a press of btnA.

In the Record state, the UI will command the Record
block to begin recording, wait until 10s of samples have
been collected (as indicated by the record done flag), and
then transition back to the PLAYBACK state. When the UI
FSM transitions back to playback, it will update the value
of track valid to inform the output circuitry that the data in
memory for the last recorded track is now valid. While in the
Record state, the Display Block is commanded to showcase a
timer with the amount of recording time remaining.

The UI FSM internally stores variables that track the
intensity of the effect applied to each track. In other words,
for each of the four tracks, the UI FSM keeps track of which
effects are enabled and, if enabled, the intensity of said effect
(which may be either Low, Medium, or High). The intensity
of effects applied to each track can me edited using the 3 user
input buttons. Each button has a function dependent on the
current state of the FSM, which is detailed in the following
diagram:

V. MEMORY

The memory interface consists of Record, which collects
samples from the I2S decoder and sends them to memory; the
Traffic generator, which handles generating memory read and

Fig. 6: UI Button Mappings

write request; the DRAM and MIG, which store the samples
and manage the DRAM, respectively; and Retrieve, which
pulls track samples from memory and sends them to the filter
blocks.

Fig. 7: Memory UI

A. Record

Record takes in 18 bit audio samples from the I2S decoder,
a record signal from the UI, and a track select signal from
the UI. If the record signal is low, then the Record block
ignores all incoming samples. If the record signal is high, the
Record block takes input samples and generates requests to
the traffic generator to write them to the location in memory
corresponding to the currently selected track. Record sends
data to the traffic generator through a FIFO, since the two
blocks run on different clocks.

B. Traffic Generator, MIG, & DRAM

The the traffic generator, MIG, and DRAM are largely be
built off of the memory interface used in lab 6. The notable
modifications are that:

• Each entry in memory is 18*3=54 bits wide (to hold
an 18 bit sample from each of the three channels).
There is a total of 10 [seconds of recording] * 44100
[samples/second] = 441,000 addresses. This corresponds
to 441000 * 54 = 23.814 Mb of memory.

• Since each entry in memory contains data from all three
channels, bit masking is enabled on the MIG so that
a subset of the bits in an address (specifically, [53:36],
[35:18], and [17:0]) can be modified without destroying
the rest of the data.



C. Retrieve

Retrieve is responsible for three functions: pulling samples
from memory, splitting them into three separate tracks, and
routing those tracks to the appropriate buffer blocks. Retrieve
perpetually cycles through the 441,000 memory address and
sends the corresponding samples to the filter blocks. Retrieve
accesses the data the traffic generator sends through a FIFO,
since the two blocks run on different clocks.

VI. PHYSICAL SYSTEM

Fig. 8: Diagram of Physical System

Our physical system contains a few components external to
the FPGA, shown in Figure 8. These are elaborated on below:

A: The 24-bit I2S microphone is interfaced with the FPGA
through the PMODA bus. The VDD and GND pins connect
to the port’s 3.3V and GND pins, and the WS, SCK, and SD
pins connect to the port’s I/O pins. L/R is tied low so that
mono input on only the left channel is received.

B: The 24-bit I2S Digital-to-Audio converter is interfaced
with the FPGA through the PMODB bus. The VDD and GND
pins connect to the port’s 3.3V and GND pins, and the LRC,
BCLK, DIN, and SD connect to the port’s I/O pins. Gain is
tied high to set the DAC to 6dB gain.

C: The Adafruit TRRS Audio Jack breakout board takes
in analog signals from the DAC output and feeds them to a
speaker. The TIP and RING1 pins are tied to each other and
connect to the DAC+ output. The RING2 pin is tied low and
connects to the DAC- output. The SLEEVE pin is left floating.

VII. EVALUATION

A. Audio

The audio pipeline comprising of reading information from
the microphone, writing information to the DAC, and transfer-

ring information from the DAC to the speaker/headphone input
was successfully completed. The system is successfully able to
take in external audio through the microphone and output that
audio through the DAC at a roughly 44 kHz audio sampling
rate. While there is some distortion observed in the output
audio, and the mic’s sensitivity prevents a clear recording of
only the desired signal, there is minimal delay in hearing the
audio being inputted into the system during live playback.

This pipeline utilized I2S, and thus the timing requirements
were primarily those imposed by this protocol. The word select
clock to indicate the transmission of a new data sample was
constrained to a period of 64 times that of the I2S clock. Thus,
to achieve a 44 kHz sampling rate, the I2S clock needed to
be run at roughly 2.8 MHz, which corresponded to about 36
cycles of the FPGA’s internal clock. Altogether, this means
that there were 64 → 36, or 2304, cycles between samples.
This high number of cycles meant that a sample could be
stored, modified, and retrieved without the danger of being
overridden somewhere in the process.

B. Filters

While initially we strived to implement four filters, namely
distortion, delay, reverb, and bass-boost, only three were
attempted and none of them were successful. Potential causes
of failure are elaborated on in Section VIII (Insights).

C. UI and Display

Both the UI and FSM met the basic functionality goals
for the project. The final implementation of the UI met the
goal of parsing user input, storing and adjusting user settings,
and issuing commands to the Record and Display blocks.
Similarly, the display block is able to display information to
the user on the seven-segment displays, although the stretch
goal of integration with the monitor was not implemented.

For efficacy evaluation, latency and audio quality were of
little concern with these modules, since any delays were well
below the perceptible limit for humans, and the user interface
and display circuitry had no impact on audio quality; the only
relevant metric was resource usage. In this regard, both the
UI and the Display block used a minimal amount of FPGA
resources (3. 37% of the total FPGA slices for both modules
combined). However, each module does spend the majority of
cycles in an idle state due to the slow timescale of human
perception relative to digital computation speed.

D. Memory

The memory interface met the functionality goal of being
able to record and play back 10s of audio for 3 independent
recordings. There are two major metrics for the efficacy of the
memory interface: high enough throughput to provide samples
at a sampling rate of 43.3 kHz and efficient memory usage.

The throughput requirement for the memory interface was
easily satisfied. The system clock was running at 100 MHz;
at a sample rate of 43.3 kHz this means there are about 2300
system clock cycles between each sample. This was ample
time to retrieve samples from memory.



The minimum theoretical memory size of the system was
43.4 samples/sec * 10s * 16 bits per samples * 3 tracks =̃
20.8 Mb. In the end, around 27.8 Mb were actually used. This
is because each entry in memory was 128 bits, enough to
start 8 samples total. There were 3 tracks to be recorded, so
each address in memory had room for 2 samples from each
track. The leftover 32 bits in each memory location could
have been used to store additional samples, but this would
have required asymmetric numbers of samples per track to be
stored at each location in memory. This in turn would have
required additional logic and/or metadata stored along with
the samples to realign the data before it was sent to the filter
blocks. Because the DRAM had ample memory space, we
made the decision to simply leave 32 bits at each address in
memory empty. While easier to implement, this does mean
that around 25% of the memory used is not actually storing
any meaningful data.

VIII. INSIGHTS

A. Audio

The main improvement we would like to see within our
audio pipeline is noise reduction. This would allow us to get
a much clearer signal, and would help with the evaluation
of any effects that we apply to the signals. In addition, the
noise seems to get scaled at the same or higher magnitude as
the desired signal when the sample is modified. This posed
problems when attempting to add samples in any way, to the
detriment of our filters.

A lot of this noise appeared to stem from the physical
connections, as even slightly twisting or moving certain wires
led to sharp increases or decreases in the background audio and
the microphone sensitivity. Several solutions were investigated
to try to reduce this effect. First, we observed that there
was a lot of noise within the I2S clock itself, which could
easily conflate low and high signals and cause new data to be
transmitted before the previous sample had finished being sent.
To solve this problem, a small capacitor was added between
the clock and ground to dampen the oscillations around the
clock transitions. In addition, bypass capacitors were added to
the microphone and DAC to reduce any noise on the power
rails. In addition, digital methods were explored, such as
adding an FIR low-pass filter to block out higher frequencies,
and altering the bits that were written to the DAC to try to
increase the number of dynamic data bits being transmitted.

However, these solutions reduced noise pretty minimally.
With more time, we would have liked to further investigate
the source of this noise and try to mitigate it, as this would
greatly increase the quality of our system.

B. Filters

We think that one of the biggest culprits of our filters not
working was signed vs. unsigned numbers. The microphone
and DAC expect and output signed numbers because I2S is a
signed protocol, but we think we might have lost parts of our
sample or added unwanted garbarge bits while attempting to
shift and add these numbers.

The problem of losing data while attempting to bit-shift
impacted the performance of our delay and bass-boost filters,
as well as our mix block while trying to combine the samples
from the three recorded tracks.

Although we had issues developing the filters themselves,
we were able to successfully integrate the filter modules for
each track along with the mix module within our top level.
With our skeleton complete, we believe that given more time
to debug the individual filters, we would have been able to
accomplish a system that contained the functionality of both
our commitment and our goal, as per Figure 1.

C. Memory

The primary improvement to the memory interface would be
increasing efficiency of memory usage. In our case, this could
be achieved fairly easily by adding another track and using
the extra 32 bits at each location in memory to store 2 of
its samples. Additionally, since there is ample time to retrieve
samples from memory before the next sample is requested,
some of the logic surrounding the traffic generator could be
trimmed down. For example, the FIFOs between the traffic
generator, Record, and Retrieve could likely be replaced by
a buffer of a few registers: this would still enable the clock
domain crossing but eliminate the need for AXI and use less
resources overall.

IX. CONTRIBUTIONS AND ACKNOWLEDGMENTS

Deepta’s contributions to the project include: writing the
code for the audio pipeline (I2S decoder, DAC encoder, filter
block module), constructing the physical hardware setup, and
writing the code for 2 out of 3 of the attempted effects. Kofi’s
contributions include: writing the UI, Display, and memory
interface code (UI FSM, Display logic, Record, Retrieve) and
writing the code for 1 out of 3 of the attempted effects.
Both of us contributed equally to system design, research,
documentation, and integration. For the final report, Deepta
wrote the sections and developed the figures relating to the
audio pipeline, filters, and hardware setup. Kofi wrote the
sections and developed the figures relating UI, display, and
memory interface.

Many thanks to the 6.205 teaching staff for your support,
guidance, and patience in debugging.


