6.2050 Project Final Report — ByteBall

Srinidhi Venkatesh
Department of EECS

Justin Malloy
Department of EECS

Riley Contee
Department of EECS

Massachusetts Institute of Technology Massachusetts Institute of Technology — Massachusetts Institute of Technology

Cambridge, MA, USA
svenkat@mit.edu

I. INTRODUCTION - JUSTIN

We are designing a physics engine with a pool table applica-
tion. Our general goals include: 1) Modeling billiard ball mo-
tions and interactions with each other and their surroundings,
and 2) Utilizing image detection to take user input as a force
acting on a cue ball. To begin the project, we created a Python
simulation to validate our physics modeling of collisions and
to picture how the balls’ sprites will need to change based on
their rotational movement. The challenges in translating this
design to hardware lie in simulating the accuracy of collision
modeling, doing real-time data processing, synchronization,
and resource management.

Our system models the translational and rotational motion
of billiard balls, collisions with momentum transfers, and
frictional effects on the balls’ trajectories as they move across
the table and interact with walls. We want the final product to
include user interaction from a physical cue stick and image
detection with a camera. Our approach incorporates modules
to highlight collision detection, translational and rotational
dynamics, and position tracking. We are using BRAMs to
store image sprite information about our interacting billiard
balls and for a frame buffer. We evaluate the performance of
our physics engine via visual appearance and behavior of the
simulation and efficiency through BRAM and FPGA resource
usage.

II. PROJECT REQUIREMENTS - SRINIDHI

We will meet our project requirements by creating, testing,
and integrating modules dedicated to modeling the physical
components and interactions between balls.

A. Commitments

e Modeling translational motion in x and y dimension

e Modeling rotational motion about z axis

o Modeling translational collisions between multiple balls

o Modeling rotational collisions between multiple balls

e Modeling translational and rotational collisions with
walls

B. Goals

o Cue detection with camera above the monitor and image
detection of the cue stick

o Translating cue stick motion to cue ball motion

e Model striped balls on pool table, including mapping
rotations (ultimately, ended as a stretch goal)

Cambridge, MA, USA
jamalloy @mit.edu

Cambridge, MA, USA
ricontee @mit.edu

C. Stretch Goals

¢ 3D rolling animation for the balls.
« Nice to have: Add pockets and disappearing billiard balls.

III. HIGH LEVEL DESIGN OVERVIEW - RILEY

Figure 1 outlines our block diagram which represents the
modular design of our physics engine application, and Figure
2 outlines our FSM design to control the interactions between
the billiard balls and the pool table. The FSM closely resem-
bles the block diagram as it shows the interactions between
the modules we use to manage the physics calculations of the
billiard balls. The FSM begins with cue detection — once a
force is detected from our user, upon a successful collision,
it will be applied to our cue ball in the system, kicking off
the physics engine. It is important to note that the modules
are applied to all pairs of balls for collision check, colliding
pairs for momentum calculations, and individual balls for state
check, translation, and render.

Fig. 1. Block Diagram for ByteBall

IV. MODULES - ALL CONTRIBUTED

The following is an overview of the modules in our system.

RINDER

vedate_all
collision_
check + 190pairs
tate. chec! Du. Balls
/
4 \20 b moepnd
=S ball
oy

Fig. 2. General FSM Design for ByteBall

A. update_all_fsm - SRINIDHI

The update_all state machine has 6 main states:
IDLE, ENTER_FSM, STATE_CHECK, COLL_CHECK,
MOMENTUM, TRANSLATE. Most of these states directly
map to their namesake module. However, the IDLE state
manages when the system enters the FSM. It will move onto
the ENTER_FSM state, if and only if a cue hit is detected
while transfering the cue’s z,y, and z velocities to the cue
ball. Once in the ENTER_FSM state, we check for a new
frame and enter our FSM, beginning with STATE_CHECK.
In STATE_CHECK, we check the x,y, and z velocities of
each ball to determine if they have become stationary. If so,
we set our state check signal high, else it is low. Following
this stage, we move to COLL_CHECK. In the COLL_CHECK
state, we iterate through each pair of balls and check for
pairs that are actively colliding in the current frame. We store
those collisions using one hot encoding in a register to be
used in the following MOMENTUM stage. If no collisions are
found, we set our more collisions signal low. That said, if
the collision signal is low and the state check signal is high,
we are ready for a new turn and circle back to the IDLE
state. Else, we transition to MOMENTUM. In MOMENTUM, we
run both the t_momentum and r_momentum modules.
In these modules, we update the x,y, and z velocities of
balls that are colliding with each other. If a collision was
detected in the previous stage, we compute the new velocities
according to t_momentum and r_momentum descriptions
in following sections. Once we have calculated and stored
the updated velocities for the colliding pairs, we transition
to the TRANSLATE stage. The TRANSLATE module handles
the translational/rotational velocities and to account for wall
collisions and friction, as well as outputs the updated the
x,y, and z positions to render. TRANSLATE runs for each
individual ball on the screen. Once finished, we transition
back to STATE_CHECK to continue cycling through the
FSM, or exit and enter the IDLE state to wait for the next

cue input.

In terms of code organization, this FSM calls the needed
modules. Then, a combinational case statement assigns the
modules’ input variables to the appropriate input values using
a ball count that is incremented within each module. Addition-
ally, a sequential block assigns initial positions to the balls on
the game board and sets initial ball counts to loop through the
various combinations of objects. In this case statement, state
transitions are set up, valid signals are set, and ball counters
are incremented.

B. cue_detection - SRINIDHI

The cue_detection module takes camera input and
utilizes our center_of_mass module from previous labs to
detect the position of our cue stick at two different instances
in time as the user pushes the cue stick across the pool table.
The second instance is when the user’s cue stick crosses the
position and area on the screen that are attributed to the cue
ball. This position change is then divided by the time interval
for this motion to give us a horizontal and vertical velocity that
will be transferred to the cue ball. Additionally, this module
provides us the necessary data to draw a mask and cross hair
on our detected cue stick point. This additional functionality
allows for better user input to the system. An important
functionality here is the implementation of a Xilinx BRAM to
perform a clock domain crossing between our clk_camera
and clk_pixel. This clock crossing is necessary as we need
to scale our camera input positions to our pool table screen
positions such that our user input is accurately translated
between the two different frames. This scaling logic requires
a preset calibration of the pool table pixel width and length
in terms of the camera’s pixels. This scaled ball position
is then compared to our cue stick input positions to decide
if hit_detected goes high or low. All of the position
and velocity data for the cue ball is calculated and then
transferred to our state machine when a hit is detected. The
The cue_detection module is pictured in Fig. 3.

This module functions and is able to transfer an input
velocity to the cue ball from the cue stick’s motion. However,
the current implementation of the module struggles to take
a new input velocity using the cue stick movement after the
game state has come to rest and is ready for the next cue
detection check. The module instead moves the cue ball when
a hit is detected, but with the same velocity as the previous
hit. We have yet to resolve this integration bug for full game
board functionality.

C. collision_check - JUSTIN

The collision_check module takes in the positions of
a pair of balls and outputs whether they are colliding. This
module requires a check of the distance between the two
objects’ x and y positions and ensures that they are separated
by a distance of the sum of both balls’ radii. This check is
fully combinational and outputs a one bit high-low signal that
signifies whether there is a collision or not. This module allows
for confirmation of whether there needs to be a momentum

Fig. 3. Cue Detection: Cue detection mask (black blob below the cue stick
point) and crosshair showing mapping of cue stick to pool table

calculation for a pair of balls. If there is no collision, then
no momentum needs to be calculated for that specific pair of
balls.

D. state_check - JUSTIN

The state_check module takes in the x, y, and z
dimensional velocities of a ball and checks if each of those
velocities is 0. If the ball is completely at rest, it outputs a
one bit high-low signal that specifies whether the ball has
zero velocity. This module is also fully combinational and
allows for confirmation that every object on the table is at
rest, allowing the state machine to either continue checking
for collisions or transition to the idle state and wait for an
input stimulus from the cue stick.

E. t_momentum - RILEY

The t_momentum module is responsible for updating the
x and y velocities of a pair of colliding balls under the
assumption of perfectly elastic collisions.

In our initial implementation the module took the following
form: the module took in the x and y velocities and positions
of two colliding balls, and outputted their updated = and y
velocities as a consequence of their collision. The updated
velocities were initially calculated using the following steps
with sequential logic and extensive pipelining to account for
the use of sqrt and divider modules.

o Compute the distance between the = and y positions of
the colliding balls by subtracting the difference between
input positions, dx and dy, respectively.

o Calculate the magnitude of the distance between the balls
using an integer square root module [1]l, magnitude =
v/dx? + dy2. NOTE: The maximum sum of the distances
squared can be (2 BALL_RADIUS).

o Use our divider module from previous labs to find the
normalized vector for the x and y directions and extract
the normal components for the and y velocities.

« Finally, calculate the updated velocities where if one ball
is stationary, the velocity is evenly split in the same
direction among the balls, else send each ball in the
opposite direction with other’s velocity.

During integration, we found some bugs and difficulty in

using the positions of the colliding balls to update their depart-
ing velocities as we did in our Python simulation. We instead

focused on creating the “bounce away” effect and ignored
the vector normalization using the balls’ positions. However,
we used the same behavior to transfer and split velocities to
maintain the elastic collisions where vy ; +v2; = v1, 5 +v2 7,
since our balls have equal mass. These changes allowed for
the module to become fully combinational.

F r momentum - RILEY

The r_momentum module is responsible for updating the
z rotational velocities (spin) for a pair of colliding balls under
the assumption of a perfectly elastic collision. The module
takes in the current z velocities of the two colliding balls, and
outputs their updated z velocities as a consequence of their
collision. The updated velocities are calculated by considering
3 cases: 1) BALL_A is spinning and BALL_B is not, 2) both
balls are spinning, and 3) both balls are not spinning. In Case
1, the z velocity from the spinning ball will be split evenly
among the two colliding balls. In Case 2, even if the balls
are spinning in the same or opposite direction, we want to
average their z velocities and split among the two balls. In
Case 3, after the collision, both balls will continue with no
spin.

G. translate - RILEY

The translate module takes in the ball’s current z, y
and z positions and velocities, and outputs its updated z, y
and z positions and velocities as affected by wall collisions
and friction. The module is responsible for checking boundary
conditions using the calculated next position of the ball (taken
from the current position and velocity). The module will then
ensure visually, that the ball remains within the boundary and
also flips the direction of the velocity to bounce off the walls.
Additionally, the module factors in translational friction as the
balls move across the table (acting on the x and y velocities)
and collide with walls (acting as rotational dampening on the
z velocity). Given the updates to the x, y and z velocities, we
can compute the next x, y and z positions to output.

H. rotational_mapping - RILEY

The rotational_mapping is responsible for handling
sprite rotation mapping, so as we render sprites it can visually
appear to be rolling. The module takes in the x, y position
of a pixel in the sprite and the current z rotational velocity
and outputs the updated x, y position and a valid signal. The
module will include a variation of the CORDIC Algorithm
[2] (currently under ¢rig_funcs in the repo) to produce the
vector rotation for the sprites.

It is important to note that in our final design we did not
have the chance to fully integrate rotational_mapping
into the FSM, and instead used multiple rotated sprites and
swapped between them based on the z position of the ball.

l. render - JUSTIN

The render module manages the pipelining of video
signals such as h_count, v_count, h_sync, v_sync, and
pixel values to be output via HDMI. This module also has the

responsibility of maintaining a copy of the position of each
ball in order to display the sprite in the appropriate position
on the screen. The module will also keep track of how each
ball should be rotated to properly animate the spinning effect
when displayed.

Fig. 4. Render Module Output on a Monitor

A sub-module of render, display_ball, computes the
updated location of the number sprite on a ball based on the
current x and y location of the sprite and the updated position
using the ball’s velocity. If the sprite reaches the edge of the
ball, we signal that it has crossed the edge and needs to be
rendered at a new location from the opposite edge of the ball.
Given that the position is updated using the ball’s velocity, the
rotational motion is based on the x and y directions the ball
moves in. Additionally, we want to note that each number to
render is stored in BRAM, with a total of 8 physical BRAMS
(we store two sprites per BRAM by taking advantage of the
two read ports) dedicated to the balls. Figure 4 shows the
render of a typical 16 ball set up of pool.

J. top_1level - SRINIDHI

The top level takes in camera inputs and 12C lines, as well
as a 100mHz clock and physical inputs. The module outputs
HDMI signals for the monitor. In this module, we first call the
cue detection module with the various camera modules fed in.
We also create our camera and pixel clocks that we feed into
cue detection to transfer information between the camera on
the camera clock and our monitor on the HDMI clock. We
create an instance of pixel_reconstruct in this module
before feeding its outputs to cue_detection. We then feed
the output velocity from this module into our update_all
FSM. Additionally, we create our rendering and video signals
and call our video_sig_gen module and render module
to render our balls to the monitor. Additional signals include
checking for our crosshair pixels and setting the mask color
for that accordingly. This module also contains all our camera
registers and TMDS modules. Overall, this module houses
camera signals, cue_detection, and the update_all
FSM to interface with user inputs.

V. DESIGN EVALUATION - ALL CONTRIBUTED

Due to the physics calculations being done during the long
frame blanking region, timing and throughput is not something
to be concerned about for the design. We take advantage of this

A Pool ball table
Cue stick with pink L
foam tip ———

Fig. 5. General Set Up for ByteBall

time to reuse many resources such as the translate and
momentum modules to be efficient on the number of LUTSs
in use and the amount of data being transmitted at any one
time.

Unfortunately, this design philosophy fails in one place, and
that is, with render. With rendering needing a high throughput,
we must use a BRAM for each ball, making the total number
of BRAMs in use 16 for the whole design. All BRAMs use a
single read port so Vivado will optimize pairs of BRAMs into
one physical BRAM, leaving us using 8 BRAMs for rendering.
This problem is also apparent for DSP usage as calculating the
address for the sprite BRAMs requires a DSP which means
that we use 16 DSPs for the rendering module.

Our previous design which only contained translate
and render did not use any DSPs outside of the render
module. At that moment, we anticipated the other mod-
ules would need to use DSPs such as translate and
rotational_mapping. Also, when those modules would
integrated into the design, we would see the benefit of our
design based on the number of DSPs used.

According to the Synthesis Report of our build, we utilized
a total of 22 DSPs for the modules associated with cue
detection, collision check, and render. Additionally, we utilized
8 BRAMs for ball rendering, 1 BRAM to account for clock
crossing between our clk_camera and clk_pixel, and
another 29 BRAMs for cue detection frame buffer.

Fig. 6. Utilized BRAM

VI. IMPLEMENTATION INSIGHTS - ALL CONTRIBUTED

We began the design of our physics engine with a Python
simulation to understand the foundations of the physical inter-
actions between balls. This approach allowed us to focus on

Fig. 7. Utilized DSPs

the physics of the collisions, momentum transfers, and how to
visualize the moving sprites with the balls’ movements. In the
Python simulation, we were able to refine our collision detec-
tion and momentum transfer calculations to be implemented
on the hardware. This step was beneficial in having a baseline
to verify the correctness of our physics model without initially
dealing with hardware integration.

When we transitioned to the FPGA implementation, the
foundational physics calculations remained the same for the
translational and rotational motion and momentum transfers.
However, moving those algorithms into hardware introduced
other challenges and implementation insights.

One of the most noticeable insights was the need for
synchronization and pipelining, especially in the translational
momentum module. To calculate the updated velocities for a
pair of balls during a collision, we needed several intermediate
calculations. In the module, we used square root and divide
operations to compute the normal vector, so we needed to use
integer square root and divider modules. Using those required
us to complete extensive testing to pipeline the module to
ensure minimal delay between calculations and accuracy.

We also worked to integrate translational momentum which
proved challenging since it was one of our few sequential
modules that also required multiple dividers and square root
modules. We wrote this module based on vector math and
attempted to pipeline it. We also incorporated a version of
shifted fixed point math to get normal vectors. However, as
we robustly test benched this module, it failed certain edge
cases. In attempting to fix this module, we changed various
variable lengths, performed simplifications to our calculations,
and rewrote our square root module from scratch. However,
we eventually switched over to an estimation of momentum
behavior rather than using exact vector math. This new logic
we implemented and integrated is the same as the core of
our Python simulation’s logic. If one ball is stationary, we
would like to simply split the moving balls velocity between
the two in opposite directions. Else, when both balls are
moving towards each other, we want to send them in opposite
directions with the other’s velocity.

Another challenging implementation process was from our
integration of cue detection into our system. We had to modify
our camera code from previous labs to incorporate it into our
existing module structure. We set up a BRAM for storing our

mask pixel data and pipelined all of our addresses and valid
signals. We initially planned to use a FIFO to pass through
our mask signals for rendering but eventually switched to the
xilinx BRAM for simplicity. The overall application of this
module was challenging as it involved many inputs being
moved around while we were also performing output data
calculations. We also realized that we would need to scale our
camera pixel based center of mass calculation to correspond
with the right position on our screen’s pixels. This scaling
logic required additional calibration and fine tuning to find an
optimal position for our monitor set up. As we implemented
this interaction, we also realized we had to handle clock
domain crossings. This module ended up being much more
involved in its creation than we originally planned, which led
to a more involved debugging and integration process.

The integration process required slow additions of each
module into our top-level code with much debugging required
for edge cases and unforeseen interactions. We discovered
many bugs throughout this integration process and had to
revisit many of our modules to edit or even rewrite them to
better match our needs. The debugging process also became
much lengthier during integration as it required many builds
to be able to see how different modules interacted. Overall,
we met most of our module implementation goals and many
of our integration goals.

If we were to do such a project again, we would shift
our design process away from writing all the modules first
and then integrating to integrating each module as we write
them. We ended up needing to rewrite or majorly edit many
of our original modules again during our integration process
anyways. Knowing what integration looks like as we write
the modules would allow us to be more efficient in our design
flow.

Additionally, it would have been beneficial to get a jump
start on the rotational mapping logic to fully implement and in-
tegrate it properly into our system. To implement the CORDIC
algorithm for our system it needed a few alterations to account
for the centering offset of the image sprite. Next time, early
on we could spend time debugging the normalization for the
offset, adjusting the quadrant logic, and assessing the edge
cases.

VII. CODE REPOSITORY - JUSTIN

The following repository contains Verilog for the design in
progress, as well as the Python code for testing the hardware,
and for simulating the physics.

XXX XX
VIII. CONTRIBUTIONS - ALL CONTRIBUTED

First, and foremost, we would like to acknowledge Stephen
Kandeh, our mentor, for his guidance throughout the project
when refining our design approach. We’d also like to express
our gratitude to the entirety of the 6.2050 course staff for
the support and feedback provided in office hours to help our
project come to life. We would like to also acknowledge the
academic references and documentation that helped inform our

design approach and implementation of foundational modules
such as divider, square root, and CORDIC algorithm, as cited.

This project was a collaborative effort by Justin Malloy,
Srinidhi Venkatesh, and Riley Contee. All three of us played
a critical role in the design, implementation, and evaluation
stages of creating our FPGA-based physics engine. We divided
the work among the essential modules needed to complete
the engine. In the design stage, when creating the Python
simulation, Justin focused on the updating of the balls’ sprites
based on the movement of the ball, Srinidhi focused on estab-
lishing the physics needed to implement simplified momentum
calculations, and Riley focused on implementing the rotational
and translation momentum transfers between colliding balls.
When we transitioned to hardware, Justin focused heavily
on creating and testing the complex render module (sprite
generation, sprite overlay, etc.), module integration, and on
the image detection aspect of the project. Justin played a large
role in integration and testing of the physics engine. Srinidhi
focused on implementing and testing the critical translation
module for wall collisions, friction modeling, translational
position updates, as well as determining data structures and
methodologies for intermediate storage of values within one
play of the game. Riley focused on the collision check, state
check, and rotational momentum module. Riley and Srinidhi
also collaborated on writing and testing the translational mo-
mentum module which had several versions across debugging
attempts. Srinidhi also mainly worked on setting up and testing
camera usage for cue detection, center of mass calculations,
and camera to screen scaling. She also worked on integration
of cue detection into the overall engine at large. As this was
a team effort, we all shared the responsibility of debugging
modules and helping out where needed.

REFERENCES

[1] “Square Root in Verilog.” Project F - FPGA Development, 22 Dec. 2020,
[projectf.io/posts/square-root-in-verilog/,

[2] “Verilog code for sine cos and arctan using CORDIC Algorithm.” VLSI
Universe , 3 June 2021, https://www.vlsiuniverse.com/verilog-code-for-
sine-cos-and-tan-cordic/.

https://www.vlsiuniverse.com/verilog-code-for-sine-cos-and-tan-cordic/
https://www.vlsiuniverse.com/verilog-code-for-sine-cos-and-tan-cordic/

	Introduction - JUSTIN
	Project Requirements - SRINIDHI
	Commitments
	Goals
	Stretch Goals

	High Level Design Overview - RILEY
	Modules - ALL CONTRIBUTED
	update_all_fsm - SRINIDHI
	cue_detection - SRINIDHI
	collision_check - JUSTIN
	state_check - JUSTIN
	t_momentum - RILEY
	r_momentum - RILEY
	translate - RILEY
	rotational_mapping - RILEY
	render - JUSTIN
	top_level - SRINIDHI

	Design Evaluation - ALL CONTRIBUTED
	Implementation Insights - ALL CONTRIBUTED
	Code Repository - Justin
	Contributions - ALL CONTRIBUTED
	References

