
NeuroVision: A Neuromorphic Computing
Accelerator for Image Processing

1st Franck Belemkoabga
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

fnbelemk@mit.edu

Abstract—In image processing, the need for energy-efficient
and real-time solutions is important. NeuroVision explores the
integration of neuromorphic computing principles in image
processing tasks using Spiking Neural Networks (SNNs) on an
FPGA platform. By leveraging the asynchronous and event-
driven nature of SNNs, NeuroVision aims to deliver efficient and
scalable solutions for tasks such as simple pattern recognition in
images. NeuroVision seeks to bridge the gap between traditional
image processing techniques and the emerging field of neuro-
morphic computing. By employing an SNN implemented on an
FPGA, the project aims to do image-processing tasks in a way
that mimics the energy efficiency and parallel processing of the
human brain.

Index Terms—Spiking Neural Networks, Neuromorphic Com-
puting, Leaky Integrate-And-Fire, Convolution, MaxPool, Fully-
Connected layer

I. INTRODUCTION

In the field of digital image processing, the demand for
efficient and high-speed processing systems has never been
greater. Traditional computing methods, while effective, are
increasingly facing challenges in keeping up with the amount
of data and computational complexity of advanced signal
processing tasks. These challenges set the stage for neuromor-
phic computing: an approach that emulates the human brain’s
neural structure and processing techniques.

NeuroVision aims to develop a neuromorphic computing
accelerator tailored for image processing applications. Neuro-
morphic systems, characterized by their remarkable efficiency
and speed, offer a compelling solution to the limitations of
conventional computing methods in handling large-scale and
complex image datasets.

NeuroVision seeks to harness the unique advantages of
spiking neural networks (SNNs) - a key component of neu-
romorphic computing - to enhance the efficiency of image
processing while reducing power consumption. Our objective
is to design and implement a hardware accelerator that opti-
mizes computational tasks and is scalable and adaptable across
various imaging applications.

This report outlines the conceptual framework of NeuroVi-
sion, details our methodology, presents the preliminary results
from the testing of individual modules, and sets forth the

roadmap for the project’s future development, including plans
for FPGA implementation.

II. METHODOLOGY

A. Leaky Integrate-And-Fire Neuron

The LIF neuron model is a simplified representation of
a biological neuron and serves as a fundamental unit in
the architecture of Spiking Neural Networks (SNNs). In our
project, NeuroVision, we employ the LIF neuron model due
to its biological relevance and computational efficiency.

The LIF neuron integrates incoming electrical signals and
generates a spike (output signal) when its membrane poten-
tial exceeds a certain threshold. Post-spike, the membrane
potential resets, emulating the refractory period of biological
neurons [1]. Key parameters of the LIF model in our imple-
mentation include the membrane resistance and decay time
constant, which influence how the neuron integrates signals
over time, and the threshold potential, determining the spiking
behavior. The mathematical equation for the LIF Neuron is
shown:

Fig. 1. LIF Neuron Equation

U[t] is the membrane potential, W is the weight, X[t] is the
input data, S[t] is the output spike, Beta is the decay rate [1].

SNNs are a class of artificial neural networks that more
closely mimic the functioning of the human brain compared
to traditional neural networks. NeuroVision leverages SNNs
for their efficiency and potential in processing complex im-
age data. SNNs operate using discrete spikes, making them
inherently more energy-efficient and suitable for real-time
processing tasks [1].

Fig. 2. Neuron Models

In NeuroVision, we construct the SNN using multiple
layers of LIF neurons. The network topology and inter-
neuron connectivity patterns are designed to optimize image
processing tasks, with a focus on feature extraction and pattern
recognition.

B. SNNTorch Framework

For the development and training of our SNN model, we
utilize snntorch, a Python library designed to simulate and
train SNNs. snntorch is chosen for its seamless integration
with PyTorch, facilitating the use of GPU acceleration and a
wide range of optimization tools.

We use snntorch to train our SNN model on relevant image
datasets. The training process involves adjusting synaptic
weights based on learning algorithms, ensuring the network
effectively learns to recognize patterns and features in the input
data.

The performance of the SNN during training is evaluated
using metrics such as accuracy and loss, ensuring that the
network generalizes well to new, unseen data.

Post-training, we extract crucial parameters, namely the
synaptic weights and biases, from the snntorch model. These
parameters are integral in defining the behavior of the SNN
on hardware.

The extracted weights and biases are converted into a format
suitable for FPGA implementation. This conversion process
addresses challenges such as adapting floating-point weights
from snntorch into fixed-point representations for efficient
hardware utilization.

C. Convolutional Layer

The Conv layer serves as the cornerstone of our image
processing approach in NeuroVision, primarily tasked with
feature extraction from the input images.

The Conv Layer operates by applying multiple filters or
kernels to the input image. These filters are designed to detect
specific features, such as edges or textures. As they convolve
across the image, they generate feature maps – representations
that capture essential aspects of the image.

The effectiveness of the Conv Layer in extracting detailed
features makes it instrumental for the network’s ability to
recognize and interpret complex visual patterns.

In NeuroVision, the Conv Layers are configured with con-
siderations tailored to the nature of our input – small-sized
images (like 8x8 pixels). We employ filters with smaller kernel
sizes to suit these dimensions, ensuring an optimal balance
between feature detection capability and computational effi-
ciency.

D. MaxPoolLayer

MaxPool Layer In conjunction with the Conv Layers, the
MaxPool Layer plays a critical role in our network by reducing
the dimensionality of the feature maps.

The MaxPool Layer in NeuroVision functions by down-
sampling the feature maps generated by the Conv Layers. It
employs a window (typically 2x2) to scan through the feature
map and selects the maximum value within each window. This
process significantly reduces the spatial dimensions, leading to
a decrease in computational complexity and model parameters.
This layer enhances the network’s ability to generalize and
reduces its sensitivity to minor variations and distortions in
the input image.

Implementing the MaxPool Layer on an FPGA presents
unique challenges, particularly in handling parallel data
streams and efficient memory utilization. In NeuroVision, we
address these by employing optimized pooling algorithms that
maximize throughput while minimizing resource consumption.

The design ensures that pooling operations are performed
rapidly and accurately, a critical factor in maintaining the
overall processing speed of the network.

E. Fully-Connected Layer

The Fully Connected (FC) Layer is a crucial component in
NeuroVision, serving as the final stage in the neural network
where the high-level reasoning based on the extracted features
occurs.

The FC Layer in our neural network architecture takes
the flattened output from the previous layers and performs
classification tasks. Each neuron in this layer is connected to
every neuron in the preceding layer, allowing it to integrate
the global information extracted by earlier convolutional and
pooling layers.

This layer is instrumental in making final decisions or
predictions based on the cumulative knowledge gained through
the network. It is particularly adept at recognizing patterns and
making classifications.

In our implementation, the FC Layer is tailored to suit the
specific requirements of our image-processing tasks. Given the
compact nature of our input data (like 8x8 images), the layer
is designed to handle a smaller number of input features while
still being capable of accurate classification. We carefully
select the number of neurons in the FC Layer to balance
between computational efficiency and the network’s ability to
learn complex patterns.

The integration of the FC Layer with the spiking neural
network architecture poses unique challenges, particularly in
translating the continuous values into spike patterns suitable

for SNN processing. We employ specific encoding mecha-
nisms to ensure this translation is efficient and lossless.

Implementing the FC Layer on FPGA involves optimizing
for speed and resource usage. Given that fully connected op-
erations can be computationally intensive, we utilize strategies
like parallel processing and efficient memory access patterns
to maximize the throughput.

F. Leaky SNN Layer

The Leaky Spiking Neural Network (SNN) Layer is an
important component of the NeuroVision architecture, playing
an important role in handling the temporal dynamics of neural
information processing. This layer is specially designed to
mimic the leaky integrate-and-fire mechanism seen in biolog-
ical neurons, making it highly effective for tasks involving
temporal data patterns, such as in video or real-time image
processing scenarios.

In the layered structure of NeuroVision, the Leaky SNN
Layer is adeptly positioned to receive and process inputs from
earlier stages, typically following the initial feature extraction
through convolutional and pooling layers. Its ability to manage
the temporal aspect of the incoming data is a key requirement
for our image-processing tasks.

The layer is characterized by neurons with a ’membrane
potential’ that leaks over time, simulating the gradual loss
of electrical charge typical in biological neurons. When this
potential reaches a certain threshold due to incoming spikes,
the neuron fires, thereby generating a spike and resetting
its potential. This dynamic allows the Leaky SNN Layer to
process sequences of spikes over time, integrating temporal
information into the network’s decision-making process.

G. Flattening Layer

The Flattening Layer in the NeuroVision project plays a
fundamental role in transitioning from the spatially organized
layers, like convolutional and pooling layers, to the Fully
Connected (FC) Layer. It acts as a critical intermediary that
reshapes the data for subsequent processing.

In our neural network, this layer takes the multi-dimensional
output (such as 2D arrays from image data) from previous
layers and converts it into a one-dimensional array. This
conversion is essential because the FC Layer, which follows,
requires input in a linear format to perform classification tasks.

The transformation by the Flattening Layer is a simple yet
vital step. It allows the network to move from understanding
spatial features in the image, like edges and textures captured
by convolutional layers, to interpreting these features in a high-
level, holistic manner in the FC Layer.

This layer does not alter the data itself but reorganizes it,
ensuring that the intricate patterns learned in the convolutional
layers are not lost but are instead made accessible in a format
suitable for the complex pattern recognition tasks carried out
by the FC Layer.

H. Full Network Architecture for 28 by 28 MNIST Image
Dataset

This neural network architecture is a convolutional spiking
neural network as depicted in Figure 3. The network processes
28x28 pixel images from the MNIST dataset, following a
structured series of layers to extract and interpret features for
image recognition tasks.

Input Layer: The network begins with an input layer repre-
senting the 28x28 MNIST image, serving as the foundational
data input.

First Convolutional Layer (Conv1): This layer applies eight
filters of size 5x5 to the input image. Due to the filter size,
the output dimension is reduced to 24x24, capturing essential
spatial features from the image.

First MaxPooling Layer: Following Conv1, a MaxPooling
layer is applied, which effectively reduces the dimensions
by half, resulting in a 12x12 output for each of the eight
feature maps. This pooling process helps in reducing the
computational load while retaining significant features.

First Leaky Integrate-and-Fire (LIF) Layer: Next, the net-
work includes a LIF layer, maintaining the dimensions of
12x12x8. This layer introduces the spiking neural network
dynamics, crucial for temporal feature processing.

Second Convolutional Layer (Conv2): A second convolu-
tional layer is employed, utilizing 16 filters of size 5x5. This
layer further processes the data, reducing the output dimen-
sions to 8x8, enhancing the extraction of complex features.

Second MaxPooling Layer: This layer again halves the
dimensions, resulting in a 4x4 output for each of the 16
feature maps, further concentrating the important features and
reducing data volume.

Second LIF Layer: The network then includes another
LIF layer, with an output dimension of 4x4x16. This layer
continues the process of temporal feature integration.

Flattening Layer: The output from the second LIF layer
is transformed by the Flattening Layer, which converts the
4x4x16 tensor into a single vector. This step is crucial for
preparing the data for the final fully connected layer.

Fully Connected Layer with LIF Output: The network
concludes with a Fully Connected (FC) layer, integrated with
a LIF output layer. This combination allows the network to
perform final classification tasks based on both spatial and
temporal features extracted throughout the layers.

For testing and adaptability, this network architecture is also
reconfigured to accommodate an 8x8 input dataset, demon-
strating the flexibility and scalability of our design.

I. Full Network Architecture for 8 by 8 MNIST Image Dataset

This neural network processes 8x8 pixel images, using a
series of layers specifically designed for smaller datasets.

Input Layer: The network begins with an 8x8 pixel image,
setting the stage for initial data processing.

Convolutional Layer (Conv1): The first layer employs eight
3x3 filters for convolution. This smaller kernel size is ideal for
the 8x8 input, allowing the network to capture spatial features

effectively. The output from this layer is a set of feature maps
with reduced dimensions.

MaxPooling Layer: Following Conv1, a MaxPooling layer
halves the dimensions of the feature maps, reducing them
further for efficient processing. This layer helps concentrate
essential features while minimizing data size.

Leaky Integrate-and-Fire (LIF) Layer: Next, the LIF layer
introduces the temporal processing characteristic of spik-
ing neural networks. It maintains the dimensions from the
MaxPooling layer, ensuring temporal features are integrated
without increasing data volume.

Flattening Layer: This layer converts the output from the
LIF layer into a one-dimensional vector. It prepares the multi-
dimensional feature maps for the final classification layer,
ensuring no critical information is lost in the transformation.

Fully Connected Layer with LIF Output: The network
concludes with a Fully Connected layer, adjusted to handle
the output size from the Flattening layer. Integrated with a
LIF output layer, it ensures effective classification based on
the spatial and temporal information processed through the
network.

Fig. 3. Convolutional Spiking Neural Network

III. RESULTS AND DISCUSSION

In this section, we detail the results obtained from the
individual testing of each module within the NeuroVision
project. These modules include the Leaky Integrate-and-Fire
(LIF) Neuron, Convolutional Layer (ConvLayer), MaxPool
Layer, and the Fully Connected Layer. The focus of our testing
was to validate each module’s functionality against theoretical
models and mathematical expectations.

A. Leaky Integrate-and-Fire (LIF) Neuron Module

To validate the functionality and accuracy of the LIF neuron
module, we conducted tests using predefined input parameters.
One example of The test involved stimulating the LIF neuron
with specific input values and observing its response. The
parameters used for this test were as follows:

Input Spike (x = 0.500): 32’d26214 (representing an exam-
ple of synaptic input)

Synaptic Weight (w = 0.4): 32’d32768 (representing the
strength of the synaptic connection)

Decay Factor (beta = 0.819): 32’d53673 (determining the
rate at which the neuron’s potential decays over time)

Firing Threshold (threshold = 1): 32’d65535 (the potential
at which the neuron fires)

Note that each number is in fixed point representation of
float value using 16 bits for the integer side and 16 bits for
the fractional bits. Later on, 1 bit is used for the integer part
and 15 bits for the fractional bits as the values range between
1 and -1. Upon applying these inputs to the LIF neuron
module, the observed responses were recorded. The behavior
of the neuron, including its membrane potential dynamics and
spiking behavior, was found to be consistent with the expected
theoretical outcomes based on the mathematical models of LIF
neurons in Figure 1.

The results from this test demonstrated that the LIF neuron
module in our NeuroVision system operates in alignment
with established theoretical models of spiking neurons. This
consistency is crucial as it validates the reliability and accuracy
of our neuron model implementation

B. Convolution Layer

The ConvLayer in our NeuroVision system was rigorously
tested to validate its convolutional processing capabilities. This
testing involved specific, predefined inputs and kernel weights
to simulate a typical scenario where the layer processes image
data. The setup for the test was as follows: The input data
was a 2x2 matrix with fixed-point values representing a small
section of an image. The values used were: 0.47, 0.78, 0.31,
0.59 Two sets of kernel weights were used, each forming a
2x2 matrix in Q1.15 format, with values such as -0.3, 0.8, 0.6,
-0.5, 0.1, -0.7, 0.4, and 0.2. Biases were set to 0.01 and -0.01
in two’s complement binary format.

The ConvLayer’s performance was evaluated based on its
ability to correctly apply these kernel weights to the input data
and add the respective biases. The results were as follows:

The output feature maps generated by the layer were in
precise agreement with the expected results which are respec-
tively 0.384 and -0.267, calculated using the specified input,
weights, and biases.

This included correct handling of the fixed-point arithmetic
in the Q1.15 format, ensuring accurate convolution operations.
The testing confirmed that the ConvLayer is capable of ac-
curately performing convolutions with fixed-point arithmetic.
This is crucial for the layer’s role in feature extraction from
image data within the NeuroVision system.

The ConvLayer’s ability to process inputs with precise
adherence to predefined weights and biases underscores the re-
liability of our system in handling image data. This accuracy is
fundamental for tasks that rely on detailed feature recognition
and extraction.

C. MaxPool Layer

The MaxPoolLayer in the NeuroVision system was tested
using a feature map with values normalized between -1 and 1.
This test aimed to validate the layer’s downsampling accuracy
under typical operating conditions. A 4x4 matrix with values
within the range of -1 to 1 was utilized to simulate a realistic
output from a preceding convolutional layer. Example input
(in normalized format): [[-0.5, 0.2, 0.8, -0.1], [0.7, -0.6, 0.4,
0.9], [-0.3, 0.5, -0.2, 0.1], [0.2, -0.8, 0.6, -0.4]]

A standard 2x2 max pooling operation with a stride of 2 was
applied to reduce the spatial dimensions. The MaxPoolLayer
accurately processed the input feature map. The resulting 2x2
matrix was consistent with the maximum values within each
2x2 window of the input. The output matrix was [[0.7, 0.9],
[0.5, 0.6]]

These results confirm that the MaxPoolLayer is effectively
performing max pooling on normalized data. The test val-
idated that our MaxPoolLayer can accurately downsample
feature maps with values in the typical range of -1 to 1,
an important aspect considering the normalization of data
in neural networks. The accuracy of the MaxPoolLayer in
processing normalized data ensures that the subsequent layers
receive correctly processed inputs, which is vital for the overall
functionality of the NeuroVision system.

D. Fully-Connected Layer

The Fully Connected Layer (FCL) in the NeuroVision
system was subjected to a test using input data normalized
between -1 and 1. This test aimed to assess the layer’s ability to
accurately integrate and classify such data. A small, flattened
array representing normalized feature map outputs was used
as the input to the FCL. The input data is [-0.5, 0.7, 0.2, -0.3,
0.6]. The layer was configured with predefined, normalized
weights and biases. The weights are [[-0.2, 0.4, -0.6, 0.8, -
0.1], [0.5, -0.3, 0.2, -0.4, 0.7]] and the biases are [0.1, -0.1].
For simplicity, let’s assume a small number of output neurons,
say 2, and corresponding weights and biases.

The FCL processed the input data by applying the weights
and adding the biases, producing an output that was then
compared with calculated expectations.

The output from the FCL, based on the given input, weights,
and biases, was computed and found to align with the expected
results which are respectively [0.19, 0.27] after calculation.

This test confirmed that the FCL is performing accurately
with normalized input data, effectively integrating the inputs
and producing an expected classification output. The ability
of the FCL to handle normalized data is crucial for its role in
making final decisions in the NeuroVision system. This test
demonstrates the layer’s reliability and precision in a typical
neural network context.

E. Full Network Simulation

Following the rigorous testing and verification of each in-
dividual module’s functionality, the complete network system
was implemented and simulated. This comprehensive simu-
lation, executed within the Vivado simulation environment,
leveraged the 8x8 MNIST dataset. The input data, along with
the network weights and biases, were hard-coded into the
simulation. These components were represented in fixed-point
format, comprising 16 bits in total, with 14 bits dedicated
to the fractional part. This level of precision was chosen to
strike a balance between computational efficiency and the
accuracy necessary for effective neural network operations.
The purpose of this simulation was to assess the integrated
performance of all modules operating together, ensuring that
the system is working. As illustrated in Figure 4, the output of
each layer within the simulation is displayed. These outputs
were meticulously compared with the corresponding outputs
of the SNNTorch neural network, on a layer-by-layer basis.
It was observed that each layer’s output within the simulation
aligns accurately with the outputs generated by the SNNTorch
layers, confirming the fidelity of the implemented model in
SystemVerilog.

IV. INTERPRETING PREDICTED OUPUT THROUGH SPIKE
COUNTING

In the final stage of processing within the convolutional
SNN implemented in SNNTorch, the output is represented in
the form of spikes. Each neuron in the output layer generates
spikes whose frequency or count is indicative of the network’s
decision-making process. To translate these spike patterns into
a meaningful predicted output, a method known as spike
counting is employed.

Spike counting is a technique used to interpret the output
of SNNs. It involves counting the number of spikes that each
neuron in the output layer generates over a certain period. This
count is directly related to the neuron’s activation level; the
more spikes a neuron generates, the higher its activation for a
specific input.

In the context of image classification tasks, like those
involving the MNIST dataset, each neuron in the output layer
typically corresponds to a specific class or digit. The class
represented by the neuron that generates the highest spike
count is considered the predicted class for the given input
image. For example, in a network trained on the MNIST
dataset, if the neuron corresponding to the digit ’3’ generates
the highest spike count when an image is inputted, the network
predicts that the image represents the digit ’3’.

Spike counting is a natural and effective way to decode
the output of SNNs because it leverages their inherent tem-
poral dynamics. Unlike traditional neural networks, where the
output is a continuous value representing class probabilities,
SNNs communicate information via discrete spikes over time.
Therefore, counting these spikes provides a straightforward
and intuitive measure of the network’s output.

In the simulation environment, such as the one illustrated in
Figure 4, spike counting shows the output of each layer. For

example, the highest spike here is 37, and counting the index
from 0 to 9, one can see that the network predicted number
7. Compared with the real data, the number is also 7.

The Spike count data is then graphically depicted as a
histogram, where each bar’s height is proportionate to the
spike count from a specific neuron as shown in Figure 5. This
approach enables a real-time, visually intuitive insight into the
neural network’s functioning.

Fig. 4. Simulation of 8 by 8 network in Vivado simulation of the first version
of design

Fig. 5. Snapshot of Histogram Display in HDMI. Over time the bars grow
showing the neural activity. Image tilted due to phone incline

V. OPTIMIZATION AND RESULTS

The initial design aimed to implement a digital processing
system comprising multiple layers, including Convolutional
Layers (ConvLayer), MaxPooling Layers (MaxPoolLayer),
and others. While simulation results showed accuracy of
this first design, it faced critical challenges: High Resource
Utilization: Preliminary synthesis indicated that the design’s
complexity led to excessive usage of logic cells and memory
blocks, surpassing the FPGA xc7s50csga324-1 capacity. The
initial design used 685% of LUTs, and 14% of Slice Registers
as shown in Figure 6. These challenges required a strategic
optimization approach to make the design feasible.

Fig. 6. LUTs, Slice Registers and Muxes Utilization for Second Version of
Design

To address these issues, an optimization strategy was used:
Transitioning from parallel to sequential execution in cer-
tain layers effectively reduced resource demands, particularly
in the ConvLayer and MaxPoolLayer, without significantly
impacting overall performance. Pipelining Adjustments: Re-
working the pipelining stages in the data processing flow
helped balance the load, improving timing characteristics
and throughput. Simplifying the Verilog code and removing
redundant logic operations contributed to a more resource-
efficient design. Certain algorithmic modifications were made
to ensure computational tasks were more hardware-friendly,
focusing on reducing complexity and enhancing parallelism
where feasible.

After implementing these optimizations, the final design fit
within the FPGA resource constraints. As shown in figure
7, This design used 38% of LUTs as logic, 15% of Slice
Registers. And 4% of Muxes. Compared to the first design,
there is a reduction of 95% in LUTs usage.

A. Design

The FPGA design’s core is governed by a finite state
machine (FSM), important for making the sequential flow of
operations. The FSM’s primary role is to manage the execution
of various processing layers, ensuring efficient use of the
FPGA’s resources.

The FSM is structured with several distinct states, includ-
ing IDLE, STARTCONV, WAITCONV, STARTPOOL, WAIT-
POOL, and so forth, culminating in a DONE state. Transitions
between these states are triggered by specific conditions, such
as the completion of a task in a layer or a change in input
signals (like user-operated switches).

In the IDLE state, the FSM awaits a start condition, typically
a specific switch configuration. Upon this trigger, it transitions
to STARTCONV, initiating the convolution layer’s processing.
The subsequent WAITCONV state ensures the FSM remains
in a holding pattern until the convolution operation completes,
indicated by a doneconv signal, before proceeding to the next
layer.

The FSM is implemented in SystemVerilog using always
ff blocks, ensuring synchronous operation with the FPGA’s
clock. Transitions and state maintenance are managed using
case statements, providing clear and efficient state progression.

Fig. 7. LUTs, Slice Registers and Muxes Utilization for Second Version of
Design

VI. FUTURE EXPLORATION

One of the primary areas of future exploration involves
scaling the network to handle more complex and larger
datasets. This could entail increasing the depth and breadth of
the network, experimenting with different layer configurations,
or integrating more advanced types of neural layers. Scaling
up the network has the potential to enhance its capability to
process more intricate and higher-resolution images, making
it suitable for a broader range of applications.

Further optimization of the network is important for future
work. This could involve fine-tuning existing layers, exploring
different learning algorithms, or employing novel methods
of spike coding and decoding. Optimization efforts would
aim to improve the accuracy, learning efficiency, and overall
performance of the network, making it more effective and
practical for real-world applications.

Another critical aspect for future research is the evaluation
of the efficiency of spiking neural networks in comparison
to traditional neural networks. This includes assessing aspects
such as computational cost, energy consumption, and process-
ing speed. Detailed studies could be conducted to quantify
the benefits of SNNs in terms of their biologically-inspired
processing mechanisms, particularly in tasks where temporal
dynamics are crucial.

VII. ACKNOWLEDGMENTS

Firstly, thanks to Professor Steinmeyer, whose guidance, and
insights have been instrumental. Thanks to all the Teaching
Assistants and Lab Assistants for their help and support.

VIII. CONCLUSION

NeuroVision uses the emerging field of neuromorphic com-
puting to accelerate and optimize computational tasks. This
project aims to design and develop a specialized hardware
accelerator based on neuromorphic principles. Individual mod-
ules, each integral to the whole system, have been imple-
mented and tested. These modules have been tested in sim-
ulation environments for functionality and performance, with
preparations underway for subsequent FPGA implementation.
Going forward, these individual modules will be put together
for a fully functional neural network system.

A significant achievement was the adaptation of these
designs to fit within the resource constraints of the Xilinx
Spartan-7 XC7S50 FPGA. This was accomplished through

a series of optimizations, including sequential execution and
code refactoring, which addressed initial resource utilization
challenges. Future works will explore further optimizations,
new neural network architectures, and more complex applica-
tions.

REFERENCES

[1] Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and
Wei D. Lu “Training Spiking Neural Networks Using Lessons From
Deep Learning”. Proceedings of the IEEE, 111(9) September 2023.
Jason K. Eshraghian et al. report on their work training spiking neural
networks using lessons from deep learning, in Proceedings of the IEEE
(September 2023).

[2] S. Barchid, J. Mennesson, J. K. Eshraghian, C. Djéraba, M. Bennamoun,
“Spiking Neural Networks for Frame-based and Event-based Single
Object Localization”, Neurocomputing, Sep. 2023.

[3] F. Ottati, C. Gao, Q. Chen, G. Brignone, M. R. Casu, J. K. Eshraghian,
L. Lavagno, “To Spike or Not to Spike: A Digital Hardware Perspective
on Deep Learning Acceleration”, arXiv preprint arXiv:2306.15749, June
2023.

[4] A. Mehonic, J. K. Eshraghian, “Brains and bytes: Trends in neuromor-
phic technology”, APL Machine Learning, 1(2), June 2023.

