
FPGA QR Code Scanner
Final Report §

M.Subhi Abo Rdan
Department of EECS, Department of Physics

Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A

msubhi a@mit.edu

Ayana Alemayehu
Department of EECS

Massachusetts Institute of Technology
Cambridge, Massachusetts, U.S.A

ayana@mit.edu

Abstract—We present a QR Code scanner implemented
on an AMD Urbana FPGA, utilizing an OV7670 camera
module to identify QR Codes and transmit the decoded
information via HDMI to an external monitor. The OV7670
produces a 480x480 image that is subsequently converted
to black and white and smoothed through convolutions
to reduce graphical noise. Alignment patterns are used to
locate the code, determine the module size and generate
the downsampled QR code for decoding. Upon decoding,
the results are communicated to a computer via Manta.
Our scanner can decode QR codes as small as 240x240
pixels in as fast as .02 seconds with possible optimizations
to decrease the speed further.

Index Terms—Field Programmable Gate Arrays, QR
Code, Digital Systems, Pattern detection, Image Processing.

I. INTRODUCTION

Quick Response (QR) Codes are visual representations
used to encode various data types, such as text, images,
and raw bytes. These codes consist of black and white
modules, where black represents 1, and white represents
0. QR Codes are typically divided into three regions:

• Alignment & Metadata Region: Contains fig-
ures and information enabling the determination of
alignment, mask, format, and error correction level.

• Data Region: Holds information in the format
specified by the metadata.

• Error Correction Region: Contains error correc-
tion codes to recover a set number of lost or
misinterpreted modules.

QR Codes are categorized by their Version numbers,
where each Version specifies the size of the QR Code.
For instance, Version 1 is a 21 x 21 module QR Code,
and subsequent versions add four modules on each side,
with Version 40 resulting in a QR Code sized at 177 x
177 modules. Our QR Code scanner supports Version 1
QR Codes without error correction capabilities. Higher
QR code versions would require a higher resolution
camera to decode consistently, and supporting error

correction codes was outside of the scope of this project.
[1]

II. PHYSICAL SETUP

Our QR Code scanner consists of the following com-
ponents:

• AMD Urbana FPGA
• OV7670 Camera Module mounted onto a Seee-

duino XIAO SAMD21 microcontroller, connected
to an adapter.

• Black and White QR Code displayed on a white
background.

• Monitor that displays 720p HDMI output.
Memory contents and key stored values are multi-

plexed using the FPGA’s switches to display on the
monitor for debugging purposes. The FPGA’s LEDs
indicate the current stage and/or relevant numeric values
associated with that stage.

III. IMAGE PROCESSING AND DENOISING

The camera module generates a continuous stream of
image data, initially limited to a resolution of 320x240
due to the large size of a frame (150 kB), consuming a
significant portion of the available BRAM memory on
the board. To optimize memory usage, we implemented a
binarization threshold before saving the image data to the
BRAM. Binarizing the photo allowed us to upscale the
resolution to 640x480. To conform to the square nature
of QR Codes, the final stored image was truncated to
480x480, resulting in a frame occupying approximately
28 kB of memory.

Images can be captured by interrupting this data
stream when a user toggles a designated switch on the
FPGA. The initial raw image is often speckled with
noise. To remove this noise, we employ a simple con-
volution technique; A kernel is convolved on the stored
image, replacing each pixel with the most common value
within a 3x3 grid of neighbors. This process effectively
reduces the noise in the stored image. The denoising
step improves the odds of the scanner both detecting

https://github.com/AyanaAlemayehu/FPGA-QRCode-Reader


QR Code alignment patterns and decoding modules
correctly.

Both the original image and its denoised counterpart
are accessible for viewing through the HDMI output.

Figure 1. Image on the left: Before applying the denoising convolution
kernel. Image on the right: After applying the denoising convolution
kernel.

IV. QR CODE DETECTION AND DOWNSAMPLING

A. Pattern Detection

QR Codes utilize concentric black and white squares
located in the top left, top right, and bottom left corners
to localize and determine the code’s rotation, allowing
for the derotation of the scanned code if necessary.
In accordance with the QR Code specification, our
QR Code scanner identifies these alignment patterns
by scanning each line of the inputted image for the
occurance of a given ratio; When a ratio of 1:1:3:1:1
of black - white - black - white - black pixels is
detected (within a 50% tolerance) the scanner records
the horizontal and vertical location of the identified
alignment pattern. The horizontal and vertical detec-
tion of the alignment pattern is executed separately by
the horizontal_pattern_ratio_finder and
vertical_pattern_ratio_finder modules re-
spectively. Each module outputs a 480-bit number, where
each bit signifies the detection of the alignment pattern
within a row or column. The outputs of these modules
are then cleaned by removing lone positive and nega-
tive indicators within their output arrays to reduce the
number of false alignment patterns identified within the
image. Finally, the cleaned output is combined by the
cross_patterns module to verify the existence of
the alignment pattern at the indicated location.

B. Pattern Verification

Due to the nature of our identification of the alignment
patterns within the QR code, at least one of the potential
alignment pattern locations (when the horizontal and
vertical locations are combined) is incorrect. To address
this, our cross_patterns module cross-references
the potential horizontal and vertical locations of the
alignment patterns with the denoised original image.

This verification process begins by segmenting the
potential alignment pattern locations into nine zones,

Figure 2. Left: Captured and denoised image of the QR code.
Right: The results of horizontal_pattern_ratio_finder
and vertical_pattern_ratio_finder. Despite the absence of
an alignment pattern in the bottom-right of the QR code, a white square
is present due to the cross of top-right and bottom-left patterns.

each containing at most one potential alignment pattern.
The cross_patterns module iterates through all the
pixels within each zone. Upon encountering a white
pixel in the zone, it retrieves the pixel value at that
location within the original, denoised image from the
BRAM. As it collects the requested pixel values, it tallies
the number of black and white pixels it encountered.
Upon completing the zone, the tally of black and white
pixels is compared to determine if the ratio aligns with
that expected for an alignment pattern within a certain
tolerance. Since the center of the alignment patters is
a 3x3 module black square, we required that at least
87.5% of the requested pixels were black. We used the
percentage 87.5% as it could be determined via powers
of two, enabling us to calculate this tolerance using bit
shifts rather than using a divider module, ensuring the
calculation could be done within a clock cycle.

Figure 3. The results of the bounds and cross_patterns
modules: dividing the image into nine zones, finding and verifying
potential alignment patterns, and locating their centers. These zones
are then visually examined to confirm their representation of alignment
patterns, where red, green and blue squares correspond to the centers
of alignment patterns in the actual image.

As the cross_patterns module identifies valid
alignment patterns, it color codes the locations of each
alignment pattern according to its position within the
QR Code. Assuming the QR code is non rotated when
photographed, the cross_patterns module would
display the bottom left alignment pattern as red, the



upper left pattern as green, and the upper right pattern as
blue. We chose to color code the identified positions of
the alignment patterns to visually validate the orientation
determined by the QR Code scanner. Upon completion,
the cross_patterns module outputs the horizontal
and vertical locations of the three alignment patterns to
the downsampling modules.

C. (Not Implemented) QR Code De-Rotation

Our original project goal was to support the detection
and decoding of both translated and rotated QR Codes.
However, accurate downsampling of the detected QR
Code proved to be a difficult task. Any errors in the
calculation of the centers of the alignment patterns could
throw off our accuracy in downsampling the QR Code
image into its pure form; Even errors on the order of
one or two pixels could cause the downsample to fail by
incorrectly reading modules at the extremities of the QR
Code.

Likewise, supporting rotations would have com-
pounded the errors greatly. Just the determination of
the QR Code’s rotation requires both precise data on
the centers of the alignment patterns and fine-grained
implementations of inverse trigonometric functions to
ensure the calculations are accurate enough to avoid
destroying the image post-rotation. The subsequent ro-
tation matrix would again rely on the accuracy of the
implementations of the trigonometric functions to rotate
the image accurately. Thus, supporting rotations would
have introduced a fair amount of obstacles that we
decided to avoid given our project’s time constraint.

D. Downsampling

Once the locations of the three alignment patterns is
determined, the scanner proceeds to convert the 480x480
image of the QR code into its pure 21x21 form. We
chose to convert the image such that we can flatten and
store the information of the QR Code in a single variable
441 bits long, enabling downstream modules to lookup
the QR Code data combinationally (avoiding the 2 cycle
delay BRAM’s introduce).

This conversion begins by first determining the pixel-
to-module ratio, done by the the find_module_size
module. This module divides the average distance be-
tween two adjacent alignment patterns by the number of
modules between two alignment patterns in a Version
1 QR Code, that is 15 modules. This division is done
sequentially using the provided divider module from
previous labs.

Once the module size is determined, our downsam-
pling algorithm begins by splitting the QR Code into
three zones, where each zone is defined by an alignment
pattern and the modules closest to it. Within the zones,
the downsample modules combine the pre-determined

centers of the alignment patterns with the module size to
index into the QR Code image stored in the BRAM and
determine the module values within the zone. Finally,
the values in these three zones are combined to form
the pure, downsampled 21x21 QR Code. We decided to
split the downsampling of the QR Code into these three
zones to help mitigate the potential errors mentioned
previously; By using the closest alignment pattern center
to determine the downsampled value of a certain module,
we greatly reduce the chances of incorrectly reading
modules at the extremities of the QR Code, and we
experimentally noticed an increase in reliability and
performance in our QR Code scanner after implementing
this optimization.

Similar to earlier BRAM contents, the final downsam-
pled QR Code is available for display through HDMI by
flipping the relevant switches on the board.

Figure 4. Illustration of module value determination for the downsam-
pled QR Code. The coordinates of each module are derived from the
center of the closest alignment pattern. Each alignment pattern center
serves as the origin of a coordinate space, and each coordinate space
is represented by its highlighted region within the QR Code.

V. QR CODE DECODING

The process of decoding QR code modules involves
following a predefined pattern of reads to extract in-
formation such as data type, length, mask type, and
the actual contents within the QR Code. QR Codes
are masked upon creation to minimize the occurrence
of special patterns, such as alignment patterns, within
the data. This reduces the chance scanners misinterpret
parts of the data as a feature. However, our scanner
still sometimes misinterprets certain QR Codes due to
alignment patterns occuring within the data (they are
not always completely removable). In these scenarios,
we recreate the QR Code with slightly altered data to
remove the unwanted features. Given more time on this
project, we could make our pattern detection algorithm



less susceptible to these errors by better specifying the
requirements for a valid alignment pattern in our state
machines.

As mentioned previously, our scanner does not sup-
port error correction capabilities due to the complexity
associated with implementing a Reed Solomon decoder
module, the time constraints this project entailed, and
our lack of access to Xilinx’s Reed Solomon Decoder IP.
Consequently, the accuracy of the downsampling process
is crucial for reliable QR code decoding in this project.

Our decoding process begins by identifying the ap-
plied mask type. The mask type is encoded as a 3-
bit number that first must be XOR’ed with the number
”101” to uncover the actual mask. This results in eight
possible mask variations, described in Table I. Once the
mask type is determined, our unmask module sequen-
tially traverses the downsampled QR Code and XORs
each QR Code module according to the mask value at
that location. Once finished, the unmasked QR Code is
ready for decoding.

The decode module combinationally reads the un-
masked QR Code to determine the data type, length and
the values within each data block. We decided to only
support the bytes data type as this is the most common
and versatile data type. These values are then packaged
into 32 bit chunks and fed into a Manta module to be
interpreted by a python script and displayed within a
terminal.

Table I
MASK PATTERN GENERATION CONDITIONS

Mask Pattern Reference Condition
000 (i+j) mod 2 = 0
001 i mod 2 = 0
010 j mod 3 = 0
011 (i + j) mod 3 = 0
100 ((i/2) + (j/3)) mod 2 = 0
101 (i j) mod 2 + (i j) mod 3 = 0
110 ((i j) mod 2 + (i j) mod 3) mod 2 = 0
111 ((i j) mod 3 + (i+j) mod 2) mod 2 = 0

VI. PERFORMANCE

We achieved our project goal, creating a QR Code
scanner capable of reading QR codes without rotations.
Experimentally, the smallest QR Code our system can
read is 240 by 240 pixels, constituting roughly a quarter
of our 480 by 480 pixel frame. Our scanner can decode
up to 19 bytes worth of information, as that is the most
dense form of a Version 1 QR Code.

A. Timing

Our system runs at 74.25 MHz, constrained by the
720p HDMI output. We have zero negative slack across
all paths. The total decoding process takes 8,102,220
cycles or around .1 seconds. Much of this time is spent

Figure 5. Specifications for QR Code Version 1 data encoding. The
highlighted area in gold represents the constant alignment patterns
present in every QR code. The four bits at the bottom right, labeled
”Enc,” indicate the type of encoded data (bytes, numeric, alphanumeric,
or kanji). The following byte, labeled ”Len,” specifies the number of
data bytes in the QR code. The three red-surrounded bits indicate the
applied mask type on the data. The blue-surrounded bytes, with an
arrow indicating the reading direction from the Most Significant Bit
(MSB) to the Least Significant Bit (LSB). Green-highlighted blocks
are reserved for error correction and are not addressed in this project.

on the denoising convolution. Our scanner can be ran
without this convolution applied, and in this configu-
ration the decoding process takes 1,651,020 cycles or
around .02 seconds, comparable to a handheld barcode
scanner.

The average module, responsible for the
denoising convolution, accounts for 80% of
the decoding process time, making it the most
time-consuming module. Following that, the
horizontal_pattern_ratio_finder and
vertitcal_pattern_ratio_finder modules
each take 8.5% of the computing time when including
the average module. Excluding the average
module, they each take 42% of the time.

As many of our algorithms adhere to the QR Code
spec, there are not many changes we can make to the
scanning and decoding process to substantially decrease
runtime. A possible optimization includes improving
the horizontal patterns and vertical patterns algorithms
to eliminate the need for the cross patterns module.
However, this would save at most 260400 cycles, or
.003 seconds, but would likely involve other algorithms
increasing in complexity which may ruin the potential
time save.

Increasing the clock rate, however, serves as an easy
way to extract more speed. Our HDMI pixel serializers,



Figure 6. Illustration of the complete QR code decoding process. From left to right: (1) The original captured image of the QR code. (2) A
denoised version obtained as explained in Section 3. (3) Visualization of raw horizontal and vertical patterns. (4) Cleaned visualization with error
thin lines removed. (5) Division of the image into nine zones, each potentially containing an alignment pattern. (6) Identification of the centers
of actual alignment patterns by analyzing each zone from (5). (7) The raw 21 by 21-bit result of the QR code downsampled, representing the
same code shown in the image (1). (8) The QR code after the unmasking process, reveals the actual encoded data. Note: The decoded output
of this QR code is output through Manta as ”wikipedia.org.”

used to communicate with an external monitor, constrain
our systems speed as they require a clock rate 5x
faster than the system’s 74.25 MHz. Thus, eliminating
the HDMI output completely would free us from this
bottleneck and could speed up our system anywhere
between 2 - 5 times faster.

B. Memory

We utilize two 480*480 bits-depth BRAMs, each
roughly 28 kBs in size, totaling 56 kBs. The first BRAM,
(frame buffer), buffers the camera’s data stream and
stores the raw image of the QR code. The second
BRAM, (BRAM1), stores the QR code image after the
denoising convolution.

VII. CONCLUSION

We have successfully implemented an FPGA-based
QR code scanner capable of decoding Version 1 QR
codes. Our system includes image processing algorithms,
pattern detection, downsampling, and QR code decoding.
Though we achieved our primary project goals, there are
opportunities for future enhancements, such as optimiz-
ing algorithms for speed improvements and supporting
rotated QR codes.

Given the linear nature of the decoding process and
reliance on previous working modules to develop later
ones, we developed this project via the peer program-
ming technique. We alternated who coded and who

oversaw the coding throughout the development of the
project. From their state machines to data structures, all
algorithms to port the QR Code decoding process to
hardware were developed together.

For the reports, Ayana wrote most of the content and
Subhi created all of the visuals, including the block
diagrams.

REFERENCES

[1] IEC 18004:2000.
[2] Moseley, F.Fischer, (2023). ”Manta: An In-Situ Debugging Tool

for Programmable Hardware”. Massachusetts Institute of Tech-
nology. Retrieved from https://dspace.mit.edu/bitstream/handle/
1721.1/151223/moseley-fischerm-meng-eecs-2023-thesis.pdf?
sequence=1&isAllowed=y.

[3] https://blog.qartis.com/decoding-small-qr-codes-by-hand/

VIII. APPENDIX: BLOCK DIAGRAMS

The block diagrams for all stages are provided on the
next page.

https://dspace.mit.edu/bitstream/handle/1721.1/151223/moseley-fischerm-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/151223/moseley-fischerm-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/151223/moseley-fischerm-meng-eecs-2023-thesis.pdf?sequence=1&isAllowed=y


Figure 7. Block Diagram, Stage 1: streaming, capturing, and storing the image.



Figure 8. Block Diagram Stages 2 and 3. Image processing, finding the QR Code, and downsampling the data then decoding it.


	Introduction
	Physical Setup
	Image Processing and Denoising
	QR Code Detection and Downsampling
	Pattern Detection
	Pattern Verification
	(Not Implemented) QR Code De-Rotation
	Downsampling

	QR Code Decoding
	Performance
	Timing
	Memory

	Conclusion
	References
	Appendix: Block Diagrams

