
3D Model Interfacing Final Report

Ryan Xiao
Department of Aeronautics and

Astronautics
Massachusetts Institute of

Technology
Cambridge, MA
ryxiao@mit.edu

Jessica Pan
Department of Electrical

Engineering and Computer Science
Massachusetts Institute of

Technology
Cambridge, MA
jnpan@mit.edu

Annie Giroux
Department of Electrical

Engineering and Computer Science
Massachusetts Institute of

Technology
Cambridge, MA
girouxa@mit.edu

Abstract—We present a design for a 3D graphics
pipeline implemented on a RealDigital Urbana FPGA,
capable of rendering and transforming a given 3D
model to a HDMI-connected screen. Users are intended
to input any low-poly 3D model via an obj file, then
interface with the model through translation and
rotation commands. The pipeline then performs all
necessary calculations to transform, rasterize, color and
display the given model. In this report, we discuss
design choices for our graphics pipeline, focusing on the
general procedure for transformation and rasterization
calculations and the decision to use a Z buffer to resolve
conflicts. In addition, we explore an evaluation of our
project, focusing on potential memory solutions.

Index Terms— Graphical user interfaces, Graphical
models, Field programmable gate arrays, Digital systems

I. PHYSICAL CONSTRUCTION

A. Overview of a general 3D Graphics Pipeline
Projecting a 3D model onto a 2D surface requires
approximating points and surfaces in the 3D object so
that they can be projected onto a 2D plane. 3D
models most often store this information as a
collection of triangles.
The triangles in a 3D model are rasterized by
projecting them onto the 2D viewing plane and
coloring them based on their angle to the light source.
In the case of two overlapping triangles in the 2D
projection, only the triangle closest to the camera
should be displayed.
Rendering these triangles requires a lot of
low-latency arithmetic that can be done
non-concurrently, allowing us to take advantage of
the FPGA’s parallel processing capabilities. Thus, our
FPGA could have a much lower energy consumption
than traditional GPUs. However, building a graphics

Fig 1. A high-level overview of our graphics system.
the full detail diagram is included on the next page
pipeline necessarily involves float calculations, which
must all match strict timing requirements.
B. Physical System
Our system is intended to be housed entirely within
the standard RealDigital Urbana FPGA, yet we were
not able to render a full object using only the FPGA.
We were able to achieve rotation with our project, but
further work would be necessary to render full
models.
Although many of our individual modules worked in
simulation on their own, modeling on the FPGA itself
required too much space for our design scheme.
Unfortunately, our group realized this error too late to
pivot away to an entirely different scheme, so this
report will focus on the tasks we were able to
accomplish during our project period.

II. PROCESSING INPUTS

A. Inputting the 3D Model
The system takes inputs directly through the switches
on the FPGA. The output is displayed on an external
monitor through an HDMI cable.

Fig 2. A block diagram for our full process up to the rasterizer (including tri handling video signals)

Our system receives low-poly 3D models via an obj
file. Obj files list all of the vertices and facets
(triangles) in the object in a human readable format.
We’ve written a python script to convert the obj file
to a format that can be uploaded directly onto the
BRAM of the FPGA. This script retains the facet
information for the model on the FPGA, in addition
to calculating the center of mass of the model for
theoretical ease of translation. This script only needs
to be run once per 3D model imported into the
system. The models we built and tested our project on
range from 12 vertices to ~1500 vertices.

B. Real-Time User Inputs
The on-board design is written such that the user
would directly give pitch, roll, and yaw instructions
on the FPGA. Our design receives input from the
buttons and switches; rotation commands (roll, pitch
and yaw) are taken from buttons 1 through 3. Though
our system did not meet our stretch goal of
translation and scaling, we wrote a module that
would have been used to parse system inputs (which
uses 12 switches on the board, one to increase and
one to decrease seven variables — x-axis and y-axis
translation, pitch, roll, yaw and scaling).

III. VERTEX TRANSFORMATIONS

The vertex shader applies transformations to modify
the vertices of the displayed model based on real-time
input.

A. Rotation
We initially used on-board matrix multiplication to
transform the model based on pitch, roll and yaw,
however, after our preliminary findings, we realized
that we only needed matrices for rotation. To
complete rotation, we utilize matrix LUTs stored on
the board. We append a w coordinate of 1 to our
vertex data to convert it to a 4x1 matrix in
homogeneous coordinates, so that we can rotate the
vertex with respect to the origin by multiplying with
a 4x4 rotation matrix. The FPGA has the ability to
parallelize matrix multiplication, making it able to
rotate objects more efficiently than other computation
systems.
B. Translation
We apply translation after rotation (so that rotation
can be relative to the origin, simplifying calculations)
based on position data updated by our input controls.
The vertices will then be translated relative to the
object’s center of mass (pre-calculated in the vertex
BRAM).
For scaling, we multiplied the coordinates by the
requisite scale factor

IV. RASTERIZATION

The rasterization pipeline projects each triangle onto
the 2D plane and finds pixels within those triangles to
pass onto the coloring module.

A. FIFO Buffer
Because the rasterization pipeline takes a variable
number of clock cycles, a FIFO buffer would ensure
that the system is synchronized and no data is lost.
We intended for the buffer to receive and output
individual triangles (as a collection of transformed
vertices), utilizing Vivado’s AXIS Stream Data FIFO
IP. However, we had significant difficulty
implementing it and ended up deciding to instead
pipeline entirely with ready signals, which made
effective pipelining difficult.
B. Triangle Projection
First, we project the triangles in 3D space onto the
2D viewing plane. Because our camera is fixed in
space, we simply multiply our vertices in
homogeneous coordinates by the perspective
projection matrix. Then, we divide by the w
coordinate to convert back to positional coordinates.
The z coordinate will now be constant, so the x and y
coordinates will be their positions in the 2D viewing
plane. Finally, we map the x and y coordinates from
the domain (-1, 1) to their final positions on the
screen in the domain (0, 240). This module contains
the bulk of the rasterization pipeline, projecting a
triangle’s vertices in homogenous 4D coordinates to

their positions in the viewing plane. We pass forward
both these 2D vertex positions and the distance
between the original triangle and the camera to later
resolve overlapping triangle conflicts.
C. Determining Pixels Within Each Triangle
To color the pixels within each triangle, we must
determine which pixels in the 2D screen are inside of
the projected triangle. To do this, we begin by
creating a bounding box for the triangle (taking the
minimum and maximum value for each dimension) to
narrow the search space. Then, we iterate through
each pixel in the bounding box and use the Convex
Hull method to determine whether or not the current
pixel is inside of the triangle of interest.
In this method, v is the current pixel coordinate, v0 is
a vertex of the triangle and v1 and v2 are vectors
representing the sides of the triangle originating at v0.
We then calculate a and b:

𝑎 =
𝑑𝑒𝑡(𝑣 𝑣

2
) − 𝑑𝑒𝑡(𝑣

0
𝑣

2
)

𝑑𝑒𝑡(𝑣
1
𝑣

2
)

𝑏 = −
𝑑𝑒𝑡(𝑣 𝑣

1
) − 𝑑𝑒𝑡(𝑣

0
𝑣

1
)

𝑑𝑒𝑡(𝑣
1
𝑣

2
)

We will calculate a and b utilizing Vivado’s floating
point reciprocal ip, and taking the determinants of 2D
matrices will require only multiplication and
subtraction. If a > 0, b > 0 and a + b < 1, then the
pixel v is within the bounds of the triangle and should
be passed to the pixel shader. Because the bounding
box is different for every triangle received, the
rasterizer has a variable run time, which is most
effectively implemented as a state machine. The state
machine consists of 6 main stages.
We are using the swapping method for the frame
buffers, switching between BRAMs. For this reason,
we have an Erase and Next state, which iterates
through the entire BRAM after it has been swapped
from being read from and clears it to the default value
of black color and maximum depth.
Once this is completed, there is a Receive state where
the rasterizer is ready to receive a newly projected
triangle. The Iter and Check states are where the
rasterizer will spend the most time, as it needs to
iterate through the entire bounding box in order to get
all pixels that are within the triangle and check if they
are visible. We do this with the Z buffer method,
where the depth is stored with the color in the frame
buffer BRAM and if the object has a lower depth than
the existing value, it will be more visible, and its
value can replace the existing value in the frame
buffer.

V. COLORING

The pixel shader receives pixels on the 2D viewing
plane that are within the bounds of a given triangle. It

has two roles: coloring these pixels for the final
display and maintaining a Z buffer to resolve overlap
conflicts.
A. Pixel Coloration
This module receives a triangle and maps it to a
single one-byte grayscale color. We consider the light
source as coming straight out of the camera.
Because we define light source as constant and
uniform from a single direction (similar to sunlight),
we will color the pixels according to only the angle
between the projected triangle and the light source
(Fig. 3). We find the normal vector of the original
triangle from the cross product of its sides v1 and v2,
and then determine the angle between the normal
vector and the fixed light source. We define an
exponential dropoff of light as the angle gets larger,
and if the angle is more than 90° (i.e. the surface is
facing away from the camera), the triangle is colored
black.

Fig 3. A cube where faces are colored based only on
the angle between the face and the light source.
In practice, we implemented this with a pipelined
state machine, where each state interfaces with
several IP chips (Table. 1). In the first three states, we
calculate the vectors from the given coordinates, then
calculate their cross product using 6 IP multipliers
and 6 IP subtractors. We solve for the cos of this
angle using the dot product formula:

𝑐𝑜𝑠(θ) =
𝑣

1
ᐧ𝑣

2

|𝑣
1
| |𝑣

2
|

However, because we know the angle of the light
source is a fixed vector towards the camera (0, 0, -1),
this simplifies. We can also avoid calculating square
roots by squaring both sides. If the triangle’s normal
vector is , then we can use the following< 𝑎, 𝑏, 𝑐 >
formula:

𝑐𝑜𝑠2(θ) = 𝑐2

𝑎2+𝑏2+𝑐2

Once we’ve solved for the normal vector, we square
each component and get the magnitude (using 3 IP
multipliers and 2 IP adders).
Our ultimate goal is to map the angle to a color, so
we want to map the float 2 values to integer𝑐𝑜𝑠
indices. We do this by multiplying by 16 and
rounding to the nearest integer. To parallelize
computation, we can multiply 2 by 16 while taking 𝑐

the reciprocal of the magnitude, then multiply and
round the final result.
Finally, we use a lookup table to map the value of
cos2 to one of 16 one-byte grayscale color values.
Once we know the cos2 of the angle, we can
approximate the angle itself, and hardcode a value of
gray for each rounded cosine result.

Table 1. IP modules utilized in each stage of the pixel
shader.

B. Outputting to a Z Buffer
The pixel shader also resolves conflicts that arise
when two 3D triangles map to the same pixel location
when projected onto the 2D plane. We do not want to
display triangles that are hidden from view, so we
maintain a Z buffer as we iterate through each
triangle. For each pixel in the final output image, the
Z buffer holds the pixel color and distance between
the displayed triangle and the camera. Thus, if two
triangles map to the same pixel in the 2D image, the
output can display only the triangle closer to the
camera and discard the value of the triangle obscured
from view.
Maintaining the Z buffer was very memory intensive.
The system stores 240 x 240 pixels, each of which
requires two bytes — one for the grayscale color of
the pixel and one for the distance to the camera to
resolve conflicts. This is a total of 115,200 bytes of
memory. The FPGA has 75 BRAMs, each of which
stores 36 kbits, for a total of 337,500 bytes of
memory in the FPGA BRAMs. This leaves only
222,300 bytes for the rest of our processing,
buffering, and data storage, which was sadly not
enough for the final iteration of the project.

VI. OUTPUT

Finally, our Z buffer is passed to a frame buffer to be
displayed. Though we originally created a double
buffer in which one BRAM would accept
downstream data and copy it to another BRAM, we

elected to change this process to utilize a ping pong
buffer, in which two BRAMs can be both read from
and written to.
Using this approach, after receiving an obj-done
signal, the buffers will be swapped such that the
buffer that was being written to is now being read
from and the buffer that was being read from is now
being written to. Although this requires more
complexity to calculate where to read and write, it
allows dynamic flexibility in sending and receiving
data, in addition to lending itself well to an efficient
buffer clearing strategy.

Fig. 4: Ping Pong Buffer
This process works using two BRAMS with 240*240
17-bit entries each. In each entry, the most significant
8 bits are the greyscale color, while the least
significant 8 bits store the depth. This output is
projected onto an external monitor through the HDMI
protocol. Since the HDMI output is only read from
the video buffer, editing the frame buffer will not
cause artifacts. The goal was for the final screen to be
360 by 360 pixels in dimension, however, space
constraints limited us to 240 by 240.

VII. EVALUATION
A. Memory and Timing
Our extensive float arithmetic cost significant
overhead. In order to perform costly operations such
as in pixel shading, we chose to use 6 identical IP
modules in parallel instead of in series. This caused
the pixel shader alone to utilize 26.67% of the DSPs
on the FPGA. We feel that this choice was justified
by the decreased latency. The multiplier IP, for
instance, takes 12 clock cycles to complete, so
running the six multipliers in series would require 72
clock cycles to complete the multiplication step while
also requiring additional logic and storage. We were
able to parallelize the triangle projection and
transformation modules, one for each of the vertices
in the incoming triangles. Each module consisted of

multiple floating point IPs. In total, we used 65 of the
120 available DSPs, which means theoretically, we
would be able to double our throughput given more
parallelization.

We were limited by the amount of BRAM available
on the FPGA. When doing early calculations, we
underestimated the amount of BRAM required for the
logic and double buffer, so we had to cut the output
resolution to 240 by 240 to be able to synthesize on
the FPGA (from 360 by 360 in our original design).
As described earlier, the FPGA has 337,500 bytes of
on-board BRAM space. In addition to the Z-buffer,
which takes up 115,200 bytes, the buffering scheme
results in an additional 122,400 additional bytes of
space as there are two BRAMs in our final buffer.

We did not give enough emphasis in our preliminary
report that the buffering mechanics of the system
would also cause a significant amount of overhead.
The Z-buffer, frame buffer, LUTS, and large amounts
of on-board memory required for large variables and
instruction storage resulted in a project that was
unable to fit on the FPGA. One point of insight is that
we did not necessarily need to have 32 bit precision
in our floats. These values take up a lot of space and
given our eventual mapping to an integer coordinate
on the screen, this preciseness of a coordinate value
was not entirely needed. Utilizing a 24 bit precision
float would free up more BRAM storage for us to
increase our resolution, which was another point of
issue. Especially with smooth objects, there are many
more smaller triangles on the object surface, so
projecting these small triangles may yield smaller and
finer areas, which low resolutions simply would not
be able to pick up. There is a possibility that this had
an affect on our final results.

Our current project iteration has 1.571ns of slack
from the pixel clock with period 13.468ns. Our logic
was mostly split IPs and accessing BRAMs.
However, calculations for the Convex Hull method
required more expensive calculations, necessitating
us to split those calculations into separate stages.
Notably, determinant calculations require two steps
of multiplication, which is already an expensive
operation to carry out in hardware.

Because of the difficulties with triangle projection
and rasterization, it is difficult to determine if other
modules are functioning as intended. With the
additional resources necessary to create a fully
rotating rendered object, we speculate that the design
could be easily modified to include translation and
scaling capabilities. In addition, it would be relatively
easy to add more complicated 3D models, since each
model only needs to be processed once to create a
parsed vertex file. With a larger amount of polygons,
however, we would have to be careful to adhere to
latency constraints.
B. Iteration and Process
Although our full project did not end up functioning,
our process built heavily upon what was taught

during the lab portion of the class. We created,
simulated, and tested nine different modules within a
single project, gaining new experience with 3D
rendering, function LUTs, parallelizing matrix
operations, and frame buffering. In addition, we got
extensive experience with integrating IP modules
(with modules like the pixel shader interfacing with
14 IP modules), pipelining finite state machines, and
writing test benches (both in Manta and system
Verilog). Through the process of implementation,
we also created several modules we did not end up
including in the final build scheme.

VIII. POSSIBLE FIXES AND FUTURE ITERATIONS

As discussed in evaluation, we realized after
Thanksgiving break that we could not fit 360*360
video on our FPGA without breaking space
limitations, and decided as a result to attempt to scale
down the video to 240*240. An ideal fix would
reintroduce our initial plan to set up an SD card or
off-board storage. Using this method, we could store
a portion of the project that required a large amount
of memory, like the Z-buffer, and load it into a
smaller cache BRAM as needed. In doing so,
however, we would introduce additional timing
concerns into the main pipeline.
Further iterations could include the use of 2 port
BRAMs to store vertices. Our current iteration only
used ROM through mem files exclusively. This is
simple, but requires us to apply each transformation
to every vertex for every render, which is very
inefficient. A future idea would be to only accept one
user inputted transformation at a time and once
transformed, we send the vertices both forward
through the pipeline as well as back into the BRAM.

VIII. INDIVIDUAL CONTRIBUTIONS

Ryan took point early on on researching 3D graphics
methods, and developing our transformation system,
triangle projection system and rasterizer. Jessica
designed and implemented our pixel shader and input
system, helped with transformations and took point
on our written reports. Annie investigated SD card
caching, researched and implemented a double buffer,
assisted with the pixel shader and wrote the shader
test bench and simulation script, assisted with signal
integration, and took point on system block diagrams
and state machine graphs.

IX. SOURCE CODE

Our code repository can be found at
https://github.com/ryxiao0/FPGA-3D.

https://github.com/ryxiao0/FPGA-3D

