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Abstract—We present a design for a real-time interactive 
block world that is rendered entirely on an FPGA, which 
implements a graphics pipeline not unlike the modern OpenGL 
graphics pipeline, as well as a physics engine to allow the world 
to be interacted with in real-time. The rendered frame is then 
transmitted over HDMI at 74.25MHz to render the world at 
60fps at a resolution of 320x180, upscaled to 1280x720. It utilizes 
the Bresenham Line Draw algorithm to render triangles and 
lines efficiently into one of two frame buffers and implements 
custom fixed-point vector math modules to perform perspective 
projection. It also features a barycentric coordinate 
computation module to perform screen-space vertex attribute 
interpolation, as well as a custom physics engine to handle 
movement, collision, and world editing. The main challenges 
with implementing a rendering engine include but are not 
limited to lack of native floating point support, limited memory, 
and fixed point precision loss. 

Keywords—Computer Graphics, Rendering, Real-Time, 
Interactive 

I. WORLD REPRESENTATION 
To render a block world, we must first define how it is to 

be represented in System Verilog.  
TABLE 1 World Block RAM Contents 

Memory 
Size 

Content Details 

4900 bits 100 Cube 
Positions 

1 valid bit 

3 * 16 bit for (x,y,z) 
coordinates of the cube in 
world space. We only allow 
integer positions. 

II. FRAME BUFFER 

A. Specifications 
- 320x180 
- Unsigned 8bit format, 3R3G2B 

B. Double Buffer 
To allow for simultaneous HDMI transmission and 

rendering, we will make use of a double buffer system, where 
the front buffer is a finished frame, while the back buffer is 
cleared and used for rendering the next frame.  

At the start of a new frame signal from the HDMI signal 
generator, the buffers will be swapped, and the new front 
buffer will be cleared and drawn to, while the back buffer will 
have its write port disabled and output pipelined to HDMI 
output. In total, we will require 320 ∗ 180 ∗ 8 ∗ 2	 =
	921600	bits of data to store both buffers. 

III. DEPTH BUFFER 

A. Specifications 
- 320x180 
- Unsigned 16bit format 

B. Details 
To render triangles in the correct order without requiring 

the polygons to be sorted and drawn in a specific order, we 
make use of a depth buffer to enable depth testing. This buffer 
has the same resolution as the frame buffer but uses 16 bits to 
store the depth of the triangles rendered; depth is defined as 
distance of where the pixel is in 3D space from the camera.  

The depth values are fixed points, with the upper 8 bits 
representing the integer part of the depth and the lower 8 bits 
representing the fractional part. High precision is needed to 
render objects close together in the correct order. 

 
Fig. 1. A world consisting of a grid of cubes being rendered by the FPGA 



We do not need to use a double buffer for this, since we 
only need one working depth buffer to store the depth of the 
triangles rendered so far to compare against when rendering 
new triangles. In total, the depth buffer will require 320 ∗
180 ∗ 16	 = 	921600 bits of the BRAM. 

IV. RENDERING 
The rasterizer models after the modern OpenGL 

rendering pipeline. Valid cubes to render are found by 
iterating through the world BRAM. To render an object 
composed of triangular meshes, each triangle in the object is 
rendered in sequence. The triangle is first projected from its 
object space to screen space using vector math, then it is 
drawn into the frame buffer with depth testing, such that the 
triangles have correct overlap according to their positions in 
the world. 

A. Main State Machine (Bowen) 
The primary rendering state machine works as follows: 

1. IDLE: wait for new_frame signal to go to INIT 

2. INIT: swap the front and back buffer and initialize 
clearing the new front buffer. Go to CLEARING. 

3. CLEARING: clear the front buffer and depth buffer 
over several cycles until we reach the end of the 
buffers. Go to DRAW 

4. DRAW: pulse start_render signal when view matrix 
finishes computing and render cubes into the world 
using the world drawer module. Wait for 
render_done signal from world drawer module and 
go to DONE. 

5. DONE: return to IDLE 

B. World Drawer (Ali) 
To draw multiple cubes and fill up the 3D world, we wrote 

a world drawer module that encapsulates the cube drawer 
module.  

It iterates through the world BRAM, terminating when the 
next cube is at WORLD_SIZE (which we set to 128, so 
maximum 128 blocks). It retrieves x, y, z of each block from 
the world BRAM as well as whether the block is valid. If the 

 
Fig. 2. High Level Diagram of the Modules 

 
Fig. 3. Detailed block diagram of the cube_drawer 



block is valid, then it proceeds by enabling the cube drawer 
on the read x, y, z. 

C. Cube Drawer (Ali) 
The cube drawer module to draw a cube given its (x,y,z) 

position in world space and a view matrix. The cube is hard 
coded as 12 triangles with their coordinates in object space 
along with their normal data. They are then rendered into 
screen space with the rasterizer module via the projection and 
triangle fill algorithms. 

D. View Matrix Calculator (Ali) 
The view matrix calculator computes the view matrix 

given the location (x_input, y_input, z_input) and orientation 
(rot_angle(yaw), side_angle(pitch)). First, it obtains the 
cosine and sine of the angles through two 8-bit lookup tables. 
Then, it instantiates two matrix multipliers to multiply the 
yaw matrix, pitch matrix, and translation matrix together. It 
also outputs the vector direction the camera is facing for the 
world controller. 

E. Vector Math (Bowen) 
To make the most out of each cycle, we implement vector 

math modules in a pipelined manner. We have the following 
modules: 

1. Vector4 Dot Product: 3 cycle delay 
2. Vector3 Dot Product: 3 cycle delay 
Matrix math modules are not pipelined, but make use of 

the pipelined vector math modules to achieve low latency. 
1. 4x4 Matrix Vector4 Multiplier: 6 cycle delay 
2. 4x4 Matrix Multiplier: 9 cycle delay 

F. Rasterizer: Projection (Bowen) 

 

When rendering a triangle, first we must project it into screen 
space. Our triangle projection module, it follows these steps 
in an FSM: 

1. The triangle’s vertices are transformed from object 
space to world space by multiplying its vertices with 
its Model Matrix. 

a. Each vertex is represented by a 4x1 vector 
{x,y,z,w}. for perspective division, w=1. 

b. Each matrix is 4x4 in dimension. 
2. The resulting vectors are transformed from world 

space to view space by multiplying them with the 
View Matrix. 

a. This matrix is recomputed at each frame to 
allow for movement and rotation of the 
camera, with camera position and yaw/pitch 
as input, computed over several cycles 
(Ali). 

b. Since computing rotation requires 
trigonometry, we opted to make use of a 
lookup table to quickly compute sin and cos 
values.  

3. Results from (2) are then multiplied with the 
Projection Matrix to transform them to clip space. 

a. Because we do not intend to modify the 
value of the near or far plane, nor change the 
field of view, the projection matrix is hard 
coded to have: 

i. FoV: 45 degrees 
ii. Near Plane: 0.1 

iii. Far Plane: 100 
4. In clip space, we then compare the x,y,z coordinate 

values to w.  
a. If 𝑎𝑏𝑠(𝑧) > 𝑤 for any vertex, then the 

triangle has parts outside of the near or far 
plane and is discarded.  

b. If 𝑎𝑏𝑠(𝑥) > 2𝑤	||	𝑎𝑏𝑠(𝑦) > 2𝑤 for all 
three vertices, then the triangle is discarded. 

5. Triangles that are not discarded are then transformed 
from clip space to Normalize Device Coordinates 
(NDC) using perspective division, where the x,y,z 
values are divided by w.  

a. As an optimization to reduce the number of 
divisions we need to do, we compute the 
reciprocal of w over multiple cycles via a 

 
Fig. 4. The view frustum used to render a 3D world. Objects within the 
near and far clipping plane are rendered, while anything outside of 
them are “clipped” and discarded from the final image.  

 
Fig. 5. Visualization of the rendering pipeline, courtesy of learnopengl.com 



fixed-point divider. Then, x,y,z are 
multiplied by the result.  

b. In our implementation, z values has the 
range of [0,1], and x,y values have the range 
of [-2,2] 

6. Finally, the NDC coordinates are linearly mapped to 
screen coordinates. 

a. -1 in x and y of NDC space maps to 0 on the 
screen. 

b. +1 in x and y of NDC space maps to 320 and 
180 on the screen, respectively 

c. 0 in z of NDC maps to 0.1, the value of the 
near plane. 

d. +1 in z of NDC maps to 100, the value of the 
far plane. 

G. Rasterizer: Rendering Triangles (Bowen) 
 After a triangle is projected, its screen space coordinates 
are known and can be used to render triangles into the frame 
buffer. The typical approach is to draw horizontal lines within 
the triangle row by row starting from the top of the triangle, 
until the entire triangle is filled. To do this, we chose 
Bresenham’s line algorithm [1] for its speed and simplicity, 
since it makes use of only integer addition, subtraction, and bit 
shifting to draw lines. 

To draw and fill a triangle onto a 2D screen, where (0,0) is 
defined to be at the top-left corner, we use the following 
algorithm. 

Algorithm 1: Bresenham Triangle Fill 

1. Sort the triangle’s vertices by Y value. 

2. Start drawing two lines from the vertex with the 
lowest Y value to the other two vertices. 

3. Whenever both lines have advanced 1 step in the Y 
direction, draw a horizontal line from the left line’s 
position to the right line.   Repeat from (2) until one 
of the two higher vertices is reached, in other words 
when a line has finished drawing. 

4. Once a line has reached its endpoint, begin drawing a 
new line between the two higher vertices. 

5. Repeat the same procedure as (3) between the two 
remaining lines until the triangle is filled, in other 
words when both lines are finished drawing. 

 

H. Rasterizer: Barycentric Coordinates (Bowen) 

 
Barycentric coordinates are necessary to perform 

interpolation of vertex attributes within a triangle. In 
triangles, barycentric coordinates are three numbers (u, v, w) 
that correspond to weight for vertices (a, b, c). These weights 

have the property that: 𝑢 + 𝑣 + 𝑤 = 1, and are usually in the 
range of [0,1] 

If all three weights are <1, then: 
𝑢 ∗ 𝑎! + 𝑣 ∗ 𝑏! +𝑤 ∗ 𝑐! = 𝑃, 

where ap, bp, cp represents the (x, y, z) coordinate of each 
vertex, and P represents a point that lies directly on the 
surface of the triangle.  

This property of triangles can be used to linearly 
interpolate any attribute of the three vertices. In this case, we 
use it to compute the depth of each pixel within the triangle 
by linearly interpolating the depth of the 3 vertices. 

We compute barycentric coordinates in a pipeline via the 
following algorithm, taken from Christer Ericson’s book [2]. 
This computation occurs in parallel with Algorithm 1 in a 
pipelined fashion, with the output of Algorithm 1 as input.  

Algorithm 2: Barycentric coordinates 

1. Given a triangle with 3 vertices a, b, c in screen space 
with (x,y,z) coordinates, precompute the following: 

a. 𝑣0 = 𝑏 − 𝑎 

b. 𝑣1 = 𝑐 − 𝑎 

c. 𝑑00 = 𝑑𝑜𝑡(𝑣0, 𝑣0) 

d. 𝑑01 = 𝑑𝑜𝑡(𝑣0, 𝑣1) 

e. 𝑑11 = 𝑑𝑜𝑡(𝑣1, 𝑣1) 

f. 𝑖𝑛𝑣_𝑑00 = 1/𝑑00 

g. 𝑖𝑛𝑣_𝑑01 = 1/𝑑01 

h. 𝑖𝑛𝑣_𝑑11 = 1/𝑑11 

2. Once precomputation is finished, compute the 
following in a pipeline to output a new set of 
barycentric coordinates per cycle: 

a. 𝑣2 = 𝑝 − 𝑎 

b. 𝑑20 = 𝑑𝑜𝑡(𝑣2, 𝑣0) 

c. 𝑑21 = 𝑑𝑜𝑡(𝑣2, 𝑣1) 

d. 𝑝𝑟𝑜𝑑" = 𝑖𝑛𝑣_𝑑11 ∗ 𝑑20 

e. 𝑝𝑟𝑜𝑑# = 𝑖𝑛𝑣_𝑑01 ∗ 𝑑21 

f. 𝑝𝑟𝑜𝑑$ = 𝑖𝑛𝑣_𝑑00 ∗ 𝑑21 

g. 𝑝𝑟𝑜𝑑% = 𝑖𝑛𝑣_𝑑01 ∗ 𝑑20 

h. 𝑣 = 𝑝𝑟𝑜𝑑" − 𝑝𝑟𝑜𝑑# 

i. 𝑤 = 𝑝𝑟𝑜𝑑$ − 𝑝𝑟𝑜𝑑% 

j. 𝑢 = 1 − (𝑣 + 𝑤) 
 

Note that we are computing barycentric coordinates in 
screen space, so the z value is always set to 1.  

This module was difficult to implement, because some of 
the values that it calculates would overflow a Q16.16 fixed 
point number. So, we had to make use of some high bit-width 
registers to store intermediate data, which required us to use 
a multiplier IP to keep our timing within constraints.  

Further, we also suffer from precision loss because of the 
inherent nature of fixed-point numbers. So, when a point 
lands on the edge of a triangle or a vertex, the precision loss 
would result in negative values close 0 to be calculated. We 

 
Fig. 6. Example of barycentric coordinates on a triangle.  



account for this by allowing negative barycentric coordinates, 
which would only result in slight deviation of the interpolated 
depth from its true value.  

I. Depth Testing (Bowen & Ali) 
During Algorithm 1, before we write a new pixel value to 

the frame buffer, we must check the depth value stored in the 
frame buffer and determine whether the new value goes in 
front of the existing pixel.  

When a new frame signal is received from the HDMI 
signal generator, the depth buffer is cleared and initialized 
with values of 0xFFFF. Before a new pixel with depth (DN) 
at screen coordinate (XS, YS) is written into the front buffer, 
we read the depth buffer at (XS, YS), and compare the existing 
depth value (DE) to DN. If DN < DE, that means the new pixel 
should be rendered as it is closer to the pixel.  

However, for this to work we must be able to compute the 
depth of each pixel within the triangle. We interpolate the 
depth of the pixel using the barycentric coordinates computed 
by Algorithm 2. 

Note: Since the output of Algorithm 2 is computing 
screen space barycentric coordinates, linear interpolation of 
depth, or any other vertex attributes, is not perspective 
correct. Perspective corrected barycentric coordinates can be 
computed but will require a pipelined division module to 
maintain throughput. This will result in some visual artifacts 
of colors and textures (if implemented) as the camera moves 
around. This is akin to the PlayStation 1, which also did not 
perform perspective correct interpolation of vertex attributes. 

J. Publishing Outputs (Bowen) 
To assist in the physics engine’s task of placing new 

blocks and destroying the block in the center of the screen, 
the rasterizer will also publish two pieces of information after 
each frame is finished rendering: 

1. The block ID of the current block that is currently at 
the center of the screen.  

2. The normal of the face at the center of the screen. 

K. Upscaling (Bowen) 
Since our frame buffer is 320x180 but our HDMI output is 
written for 1280x720, we need an upscale module to upscale 
our frame buffer to the output resolution. This can be 
achieved by dividing the hcount and vcount signals from the 
HDMI video signal generator by 4. 

L. HDMI Output 

For outputting the frame buffer into a monitor over HDMI, 
we will re-use existing code from week4’s lab assignment to 
generate the appropriate signals needed. 

M. Rendering Wireframes 
To render wireframes instead of triangles, we can simply 

draw 3 lines between the vertices of each triangle using 
Bresenham’s line algorithm. The drawback of this naïve 
approach is that we will be drawing lines that are already 
drawn (overdraw). For now, solving overdrawing is out of the 
scope of this project. 

Wireframe rendering is being worked on at time of 
writing.  
 

V. PHYSICS ENGINE (ALI) 
At each frame, the physics engine receives the following 

input: 
1. User input. There are nine possible user inputs (view up, 

view down, view left, view right, forward, backward, 
jump, place, destroy). 

2. A wire to read from the world BRAM. 
3. From the physics engine—the previous x, y, z, normal for 

the center of the screen. 
 
A. Movement 

Movement is basic. The camera can move forward, 
backward, and vertically up or down on the Y axis. We 
integrated code written for week 3’s labs to map inputs from 
a Roku remote to move and rotate the camera, as well as 
create and destroy cubes. 
 
B. View Controls 

The camera viewpoint can be controlled with pitch 
(horizontal) or yaw (vertical). The camera angle also controls 
which direction the player moves forward in. We enable 
wrapping around of pitch and yaw about 360deg=0deg. 
  
C. Placing and Destroying Blocks  

The x, y, z coordinates (as well as normal) published by 
the previous frame’s rasterizer are used to judge if the 
proposed block is too far away, or if the proposed block 
collides with the player, the block is not placed. Otherwise, 

 
Fig. 7. The world being rendered at 60 fps 



the world BRAM is updated upon the new_frame signal from 
the HDMI signal generator. 

First, the xyz of the block with the given block ID is 
retrieved. While iterating through the BRAM, the engine does 
two things. If a block is to be destroyed, it first obtains the xyz 
of each block, and if it is equal to the one to be destroyed, it 
removes it by setting its valid bit to zero. Second, if there are 
any invalid blocks, and a block is to be placed, the placed 
block is calculated and inserted at that position. 

 

VI. EVALUATION 

A. FPS 
The primary performance of this project will be evaluated 

by maintaining a moving average of the number of cycles 
between each frame’s finish signal and displaying it on the 
FPGA’s eight segment modules. These values can then be 
manually converted to average frame time by dividing it by 
the clock frequency, then converted to average frames per 
second by taking its reciprocal.  

We take the moving average over two frames and found 
that the average cycles between each frame is either 
1237499	(12𝐸1𝐹𝐵)  (Figure 6) or 2474999	(25𝐶3𝐹7) 
(Figure 7),  which is about 16.67ms and 33.33ms, which 
corresponds to 60 frames per second and 30 frames per 
second, respectively. This meets our initial throughput goal 
of at least 20-30 frames per second. 

 

B. Timing  
In terms of timing, we aimed to avoid negative slack. 

However, some small negative slack is acceptable since it 
would at most result in minor visual artifacts. We were able 
to stay within timing constraints, with a WNS (Worst 
Negative Slack) of 0.201, TNS (Total Negative Slack) of 0, 
WHS (Worst Hold Slack) of 0.014, and THS (Total Hold 
Slack) of 0.  

C. Resources 
In terms of resources, we aimed to stay within the budget 

of 75 BRAM blocks. We were successful in that we used 66 
out of 75 BRAM blocks for the double frame buffer, depth 
buffer, and world BRAM. 

D. Usecase and Goals 
Since our design is written to render general triangle 

meshes, with support for vertex attribute interpolation, we 
can do more than just render cubes. In fact, given enough 
memory, we can render any triangle mesh with support for 
vertex colors and minimal changes to our design.  

As for goals, we have reached our minimal goal. We can 
render our cube world at 60fps most of the time at 320x180, 
and we are able to allow the user to interact with the world by 
deleting or creating blocks.  

We have also partially reached one of our stretch goals: 
an efficient barycentric coordinate calculator. Designing this 
module such that it pipelines the calculation allowed us to 
achieve a high throughput to not slow down the triangle 
rendering process and allowed us to implement vertex 
attribute interpolation to calculate depth per pixel.  

VII. INSIGHTS & REFLECTION 
Writing a rasterizer on an FPGA was indeed no trivial 

task. The most surprising part of this was learning that the 
triangle fill is the part of the rendering process that takes the 
most time, so optimizing our program for that was the most 
important part. Everything that came before we start drawing 
a triangle can take more cycles, but we must maintain a 
throughput of at about one new pixel every cycle once a 
triangle fill starts, otherwise the cost of filling triangles will 
significantly increase the more triangles we have to render. 
Pipelining the barycentric coordinate computation module 
was crucial to this, since there was no possibility of spending 
twelve cycles (the latency of the barycentric module) per 
pixel to compute them. 

If we had another chance or more time, we would have 
pursued perspective correct barycentric coordinates to 
interpolate vertex attributes correctly. This would require a 
division to be performed on every pixel output after its screen 
space barycentric coordinate is computed, so we would have 
needed a pipelined division module to maintain our pixel 
throughput. The PlayStation 1 also did not have perspective 
correct interpolation, so if we would see some of the same 
visual artifacts present on the console. 

 
Another direction we can take if there was another 

opportunity, was to write the FPGA such that it behaves like 
a GPU and draws pixels in parallel. Perhaps the FPGA itself 
can connect to an external device such as a computer and 
receive data over seral via Manta as commands to render 
things onto the screen. 

Alternatively, we could have gone in the direction of 
rendering vector graphics instead of rasterizing triangles next 
time. 

 
Fig. 9. Screen space (Affine) interpolation of UVs vs perspective 
correct interpolation. Ours and the PS1 would look like the Affine one.  

 
Fig. 8. The world being rendered at 30 fps 



VIII. SOURCE CODE 
The source code for the project can be found here: 

https://github.com/19829984/6.111_Final_Project  

IX. CONTRIBUTIONS 
Bowen worked on writing the skeleton of the 

rendering pipeline, specifically the vector math modules, 
projection module, triangle fill and line draw modules, 
barycentric module. 

Ali worked on building the cube world and 
implementing interactivity, specifically the world BRAM, 
world drawer and cube drawer, view matrix calculator, sin 
and cos lookup table, and remote-control input.  

Both Bowen and Ali worked on getting the depth 
buffer to work and contributed to writing the report.   

Thanks for Project F for providing source code for a 
floating point divider: https://projectf.io/posts/division-in-
verilog/  

We also made use of the Multiplier IP from Vivado 
to pipeline high bit-width multiplication within the 
barycentric module.  
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