

Real-Time Interactive Block World Preliminary
Report

1st Bowen Wu
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

fsdi321@mit.edu

2nd Ali Cy
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, USA

califyn@mit.edu

Abstract—We present a design for a real-time interactive
block world that is rendered entirely on an FPGA, which
implements a graphics pipeline not unlike the modern OpenGL
graphics pipeline, as well as a physics engine to allow the world
to be interacted with in real-time. The rendered frame is then
transmitted over HDMI at 74.25MHz to render the world at
60fps at a resolution of 320x180, upscaled to 1280x720. It utilizes
the Bresenham Line Draw algorithm to render triangles and
lines efficiently into one of two frame buffers and implements
custom fixed-point vector math modules to perform perspective
projection. It also features a barycentric coordinate
computation module to perform screen-space vertex attribute
interpolation, as well as a custom physics engine to handle
movement, collision, and world editing. The main challenges
with implementing a rendering engine include but are not
limited to lack of native floating point support, limited memory,
and fixed point precision loss.

Keywords—Computer Graphics, Rendering, Real-Time,
Interactive

I. WORLD REPRESENTATION
To render a block world, we must first define how it is to

be represented in System Verilog.
TABLE 1 World Block RAM Contents

Memory
Size

Content Details

4900 bits 100 Cube
Positions

1 valid bit

3 * 16 bit for (x,y,z)
coordinates of the cube in
world space. We only allow
integer positions.

II. FRAME BUFFER

A. Specifications
- 320x180
- Unsigned 8bit format, 3R3G2B

B. Double Buffer
To allow for simultaneous HDMI transmission and

rendering, we will make use of a double buffer system, where
the front buffer is a finished frame, while the back buffer is
cleared and used for rendering the next frame.

At the start of a new frame signal from the HDMI signal
generator, the buffers will be swapped, and the new front
buffer will be cleared and drawn to, while the back buffer will
have its write port disabled and output pipelined to HDMI
output. In total, we will require 320 ∗ 180 ∗ 8 ∗ 2	 =
	921600	bits of data to store both buffers.

III. DEPTH BUFFER

A. Specifications
- 320x180
- Unsigned 16bit format

B. Details
To render triangles in the correct order without requiring

the polygons to be sorted and drawn in a specific order, we
make use of a depth buffer to enable depth testing. This buffer
has the same resolution as the frame buffer but uses 16 bits to
store the depth of the triangles rendered; depth is defined as
distance of where the pixel is in 3D space from the camera.

The depth values are fixed points, with the upper 8 bits
representing the integer part of the depth and the lower 8 bits
representing the fractional part. High precision is needed to
render objects close together in the correct order.

Fig. 1. A world consisting of a grid of cubes being rendered by the FPGA

We do not need to use a double buffer for this, since we
only need one working depth buffer to store the depth of the
triangles rendered so far to compare against when rendering
new triangles. In total, the depth buffer will require 320 ∗
180 ∗ 16	 = 	921600 bits of the BRAM.

IV. RENDERING
The rasterizer models after the modern OpenGL

rendering pipeline. Valid cubes to render are found by
iterating through the world BRAM. To render an object
composed of triangular meshes, each triangle in the object is
rendered in sequence. The triangle is first projected from its
object space to screen space using vector math, then it is
drawn into the frame buffer with depth testing, such that the
triangles have correct overlap according to their positions in
the world.

A. Main State Machine (Bowen)
The primary rendering state machine works as follows:

1. IDLE: wait for new_frame signal to go to INIT

2. INIT: swap the front and back buffer and initialize
clearing the new front buffer. Go to CLEARING.

3. CLEARING: clear the front buffer and depth buffer
over several cycles until we reach the end of the
buffers. Go to DRAW

4. DRAW: pulse start_render signal when view matrix
finishes computing and render cubes into the world
using the world drawer module. Wait for
render_done signal from world drawer module and
go to DONE.

5. DONE: return to IDLE

B. World Drawer (Ali)
To draw multiple cubes and fill up the 3D world, we wrote

a world drawer module that encapsulates the cube drawer
module.

It iterates through the world BRAM, terminating when the
next cube is at WORLD_SIZE (which we set to 128, so
maximum 128 blocks). It retrieves x, y, z of each block from
the world BRAM as well as whether the block is valid. If the

Fig. 2. High Level Diagram of the Modules

Fig. 3. Detailed block diagram of the cube_drawer

block is valid, then it proceeds by enabling the cube drawer
on the read x, y, z.

C. Cube Drawer (Ali)
The cube drawer module to draw a cube given its (x,y,z)

position in world space and a view matrix. The cube is hard
coded as 12 triangles with their coordinates in object space
along with their normal data. They are then rendered into
screen space with the rasterizer module via the projection and
triangle fill algorithms.

D. View Matrix Calculator (Ali)
The view matrix calculator computes the view matrix

given the location (x_input, y_input, z_input) and orientation
(rot_angle(yaw), side_angle(pitch)). First, it obtains the
cosine and sine of the angles through two 8-bit lookup tables.
Then, it instantiates two matrix multipliers to multiply the
yaw matrix, pitch matrix, and translation matrix together. It
also outputs the vector direction the camera is facing for the
world controller.

E. Vector Math (Bowen)
To make the most out of each cycle, we implement vector

math modules in a pipelined manner. We have the following
modules:

1. Vector4 Dot Product: 3 cycle delay
2. Vector3 Dot Product: 3 cycle delay
Matrix math modules are not pipelined, but make use of

the pipelined vector math modules to achieve low latency.
1. 4x4 Matrix Vector4 Multiplier: 6 cycle delay
2. 4x4 Matrix Multiplier: 9 cycle delay

F. Rasterizer: Projection (Bowen)

When rendering a triangle, first we must project it into screen
space. Our triangle projection module, it follows these steps
in an FSM:

1. The triangle’s vertices are transformed from object
space to world space by multiplying its vertices with
its Model Matrix.

a. Each vertex is represented by a 4x1 vector
{x,y,z,w}. for perspective division, w=1.

b. Each matrix is 4x4 in dimension.
2. The resulting vectors are transformed from world

space to view space by multiplying them with the
View Matrix.

a. This matrix is recomputed at each frame to
allow for movement and rotation of the
camera, with camera position and yaw/pitch
as input, computed over several cycles
(Ali).

b. Since computing rotation requires
trigonometry, we opted to make use of a
lookup table to quickly compute sin and cos
values.

3. Results from (2) are then multiplied with the
Projection Matrix to transform them to clip space.

a. Because we do not intend to modify the
value of the near or far plane, nor change the
field of view, the projection matrix is hard
coded to have:

i. FoV: 45 degrees
ii. Near Plane: 0.1

iii. Far Plane: 100
4. In clip space, we then compare the x,y,z coordinate

values to w.
a. If 𝑎𝑏𝑠(𝑧) > 𝑤 for any vertex, then the

triangle has parts outside of the near or far
plane and is discarded.

b. If 𝑎𝑏𝑠(𝑥) > 2𝑤	||	𝑎𝑏𝑠(𝑦) > 2𝑤 for all
three vertices, then the triangle is discarded.

5. Triangles that are not discarded are then transformed
from clip space to Normalize Device Coordinates
(NDC) using perspective division, where the x,y,z
values are divided by w.

a. As an optimization to reduce the number of
divisions we need to do, we compute the
reciprocal of w over multiple cycles via a

Fig. 4. The view frustum used to render a 3D world. Objects within the
near and far clipping plane are rendered, while anything outside of
them are “clipped” and discarded from the final image.

Fig. 5. Visualization of the rendering pipeline, courtesy of learnopengl.com

fixed-point divider. Then, x,y,z are
multiplied by the result.

b. In our implementation, z values has the
range of [0,1], and x,y values have the range
of [-2,2]

6. Finally, the NDC coordinates are linearly mapped to
screen coordinates.

a. -1 in x and y of NDC space maps to 0 on the
screen.

b. +1 in x and y of NDC space maps to 320 and
180 on the screen, respectively

c. 0 in z of NDC maps to 0.1, the value of the
near plane.

d. +1 in z of NDC maps to 100, the value of the
far plane.

G. Rasterizer: Rendering Triangles (Bowen)
 After a triangle is projected, its screen space coordinates
are known and can be used to render triangles into the frame
buffer. The typical approach is to draw horizontal lines within
the triangle row by row starting from the top of the triangle,
until the entire triangle is filled. To do this, we chose
Bresenham’s line algorithm [1] for its speed and simplicity,
since it makes use of only integer addition, subtraction, and bit
shifting to draw lines.

To draw and fill a triangle onto a 2D screen, where (0,0) is
defined to be at the top-left corner, we use the following
algorithm.

Algorithm 1: Bresenham Triangle Fill

1. Sort the triangle’s vertices by Y value.

2. Start drawing two lines from the vertex with the
lowest Y value to the other two vertices.

3. Whenever both lines have advanced 1 step in the Y
direction, draw a horizontal line from the left line’s
position to the right line. Repeat from (2) until one
of the two higher vertices is reached, in other words
when a line has finished drawing.

4. Once a line has reached its endpoint, begin drawing a
new line between the two higher vertices.

5. Repeat the same procedure as (3) between the two
remaining lines until the triangle is filled, in other
words when both lines are finished drawing.

H. Rasterizer: Barycentric Coordinates (Bowen)

Barycentric coordinates are necessary to perform

interpolation of vertex attributes within a triangle. In
triangles, barycentric coordinates are three numbers (u, v, w)
that correspond to weight for vertices (a, b, c). These weights

have the property that: 𝑢 + 𝑣 + 𝑤 = 1, and are usually in the
range of [0,1]

If all three weights are <1, then:
𝑢 ∗ 𝑎! + 𝑣 ∗ 𝑏! +𝑤 ∗ 𝑐! = 𝑃,

where ap, bp, cp represents the (x, y, z) coordinate of each
vertex, and P represents a point that lies directly on the
surface of the triangle.

This property of triangles can be used to linearly
interpolate any attribute of the three vertices. In this case, we
use it to compute the depth of each pixel within the triangle
by linearly interpolating the depth of the 3 vertices.

We compute barycentric coordinates in a pipeline via the
following algorithm, taken from Christer Ericson’s book [2].
This computation occurs in parallel with Algorithm 1 in a
pipelined fashion, with the output of Algorithm 1 as input.

Algorithm 2: Barycentric coordinates

1. Given a triangle with 3 vertices a, b, c in screen space
with (x,y,z) coordinates, precompute the following:

a. 𝑣0 = 𝑏 − 𝑎

b. 𝑣1 = 𝑐 − 𝑎

c. 𝑑00 = 𝑑𝑜𝑡(𝑣0, 𝑣0)

d. 𝑑01 = 𝑑𝑜𝑡(𝑣0, 𝑣1)

e. 𝑑11 = 𝑑𝑜𝑡(𝑣1, 𝑣1)

f. 𝑖𝑛𝑣_𝑑00 = 1/𝑑00

g. 𝑖𝑛𝑣_𝑑01 = 1/𝑑01

h. 𝑖𝑛𝑣_𝑑11 = 1/𝑑11

2. Once precomputation is finished, compute the
following in a pipeline to output a new set of
barycentric coordinates per cycle:

a. 𝑣2 = 𝑝 − 𝑎

b. 𝑑20 = 𝑑𝑜𝑡(𝑣2, 𝑣0)

c. 𝑑21 = 𝑑𝑜𝑡(𝑣2, 𝑣1)

d. 𝑝𝑟𝑜𝑑" = 𝑖𝑛𝑣_𝑑11 ∗ 𝑑20

e. 𝑝𝑟𝑜𝑑# = 𝑖𝑛𝑣_𝑑01 ∗ 𝑑21

f. 𝑝𝑟𝑜𝑑$ = 𝑖𝑛𝑣_𝑑00 ∗ 𝑑21

g. 𝑝𝑟𝑜𝑑% = 𝑖𝑛𝑣_𝑑01 ∗ 𝑑20

h. 𝑣 = 𝑝𝑟𝑜𝑑" − 𝑝𝑟𝑜𝑑#

i. 𝑤 = 𝑝𝑟𝑜𝑑$ − 𝑝𝑟𝑜𝑑%

j. 𝑢 = 1 − (𝑣 + 𝑤)

Note that we are computing barycentric coordinates in
screen space, so the z value is always set to 1.

This module was difficult to implement, because some of
the values that it calculates would overflow a Q16.16 fixed
point number. So, we had to make use of some high bit-width
registers to store intermediate data, which required us to use
a multiplier IP to keep our timing within constraints.

Further, we also suffer from precision loss because of the
inherent nature of fixed-point numbers. So, when a point
lands on the edge of a triangle or a vertex, the precision loss
would result in negative values close 0 to be calculated. We

Fig. 6. Example of barycentric coordinates on a triangle.

account for this by allowing negative barycentric coordinates,
which would only result in slight deviation of the interpolated
depth from its true value.

I. Depth Testing (Bowen & Ali)
During Algorithm 1, before we write a new pixel value to

the frame buffer, we must check the depth value stored in the
frame buffer and determine whether the new value goes in
front of the existing pixel.

When a new frame signal is received from the HDMI
signal generator, the depth buffer is cleared and initialized
with values of 0xFFFF. Before a new pixel with depth (DN)
at screen coordinate (XS, YS) is written into the front buffer,
we read the depth buffer at (XS, YS), and compare the existing
depth value (DE) to DN. If DN < DE, that means the new pixel
should be rendered as it is closer to the pixel.

However, for this to work we must be able to compute the
depth of each pixel within the triangle. We interpolate the
depth of the pixel using the barycentric coordinates computed
by Algorithm 2.

Note: Since the output of Algorithm 2 is computing
screen space barycentric coordinates, linear interpolation of
depth, or any other vertex attributes, is not perspective
correct. Perspective corrected barycentric coordinates can be
computed but will require a pipelined division module to
maintain throughput. This will result in some visual artifacts
of colors and textures (if implemented) as the camera moves
around. This is akin to the PlayStation 1, which also did not
perform perspective correct interpolation of vertex attributes.

J. Publishing Outputs (Bowen)
To assist in the physics engine’s task of placing new

blocks and destroying the block in the center of the screen,
the rasterizer will also publish two pieces of information after
each frame is finished rendering:

1. The block ID of the current block that is currently at
the center of the screen.

2. The normal of the face at the center of the screen.

K. Upscaling (Bowen)
Since our frame buffer is 320x180 but our HDMI output is
written for 1280x720, we need an upscale module to upscale
our frame buffer to the output resolution. This can be
achieved by dividing the hcount and vcount signals from the
HDMI video signal generator by 4.

L. HDMI Output

For outputting the frame buffer into a monitor over HDMI,
we will re-use existing code from week4’s lab assignment to
generate the appropriate signals needed.

M. Rendering Wireframes
To render wireframes instead of triangles, we can simply

draw 3 lines between the vertices of each triangle using
Bresenham’s line algorithm. The drawback of this naïve
approach is that we will be drawing lines that are already
drawn (overdraw). For now, solving overdrawing is out of the
scope of this project.

Wireframe rendering is being worked on at time of
writing.

V. PHYSICS ENGINE (ALI)
At each frame, the physics engine receives the following

input:
1. User input. There are nine possible user inputs (view up,

view down, view left, view right, forward, backward,
jump, place, destroy).

2. A wire to read from the world BRAM.
3. From the physics engine—the previous x, y, z, normal for

the center of the screen.

A. Movement

Movement is basic. The camera can move forward,
backward, and vertically up or down on the Y axis. We
integrated code written for week 3’s labs to map inputs from
a Roku remote to move and rotate the camera, as well as
create and destroy cubes.

B. View Controls

The camera viewpoint can be controlled with pitch
(horizontal) or yaw (vertical). The camera angle also controls
which direction the player moves forward in. We enable
wrapping around of pitch and yaw about 360deg=0deg.

C. Placing and Destroying Blocks

The x, y, z coordinates (as well as normal) published by
the previous frame’s rasterizer are used to judge if the
proposed block is too far away, or if the proposed block
collides with the player, the block is not placed. Otherwise,

Fig. 7. The world being rendered at 60 fps

the world BRAM is updated upon the new_frame signal from
the HDMI signal generator.

First, the xyz of the block with the given block ID is
retrieved. While iterating through the BRAM, the engine does
two things. If a block is to be destroyed, it first obtains the xyz
of each block, and if it is equal to the one to be destroyed, it
removes it by setting its valid bit to zero. Second, if there are
any invalid blocks, and a block is to be placed, the placed
block is calculated and inserted at that position.

VI. EVALUATION

A. FPS
The primary performance of this project will be evaluated

by maintaining a moving average of the number of cycles
between each frame’s finish signal and displaying it on the
FPGA’s eight segment modules. These values can then be
manually converted to average frame time by dividing it by
the clock frequency, then converted to average frames per
second by taking its reciprocal.

We take the moving average over two frames and found
that the average cycles between each frame is either
1237499	(12𝐸1𝐹𝐵) (Figure 6) or 2474999	(25𝐶3𝐹7)
(Figure 7), which is about 16.67ms and 33.33ms, which
corresponds to 60 frames per second and 30 frames per
second, respectively. This meets our initial throughput goal
of at least 20-30 frames per second.

B. Timing
In terms of timing, we aimed to avoid negative slack.

However, some small negative slack is acceptable since it
would at most result in minor visual artifacts. We were able
to stay within timing constraints, with a WNS (Worst
Negative Slack) of 0.201, TNS (Total Negative Slack) of 0,
WHS (Worst Hold Slack) of 0.014, and THS (Total Hold
Slack) of 0.

C. Resources
In terms of resources, we aimed to stay within the budget

of 75 BRAM blocks. We were successful in that we used 66
out of 75 BRAM blocks for the double frame buffer, depth
buffer, and world BRAM.

D. Usecase and Goals
Since our design is written to render general triangle

meshes, with support for vertex attribute interpolation, we
can do more than just render cubes. In fact, given enough
memory, we can render any triangle mesh with support for
vertex colors and minimal changes to our design.

As for goals, we have reached our minimal goal. We can
render our cube world at 60fps most of the time at 320x180,
and we are able to allow the user to interact with the world by
deleting or creating blocks.

We have also partially reached one of our stretch goals:
an efficient barycentric coordinate calculator. Designing this
module such that it pipelines the calculation allowed us to
achieve a high throughput to not slow down the triangle
rendering process and allowed us to implement vertex
attribute interpolation to calculate depth per pixel.

VII. INSIGHTS & REFLECTION
Writing a rasterizer on an FPGA was indeed no trivial

task. The most surprising part of this was learning that the
triangle fill is the part of the rendering process that takes the
most time, so optimizing our program for that was the most
important part. Everything that came before we start drawing
a triangle can take more cycles, but we must maintain a
throughput of at about one new pixel every cycle once a
triangle fill starts, otherwise the cost of filling triangles will
significantly increase the more triangles we have to render.
Pipelining the barycentric coordinate computation module
was crucial to this, since there was no possibility of spending
twelve cycles (the latency of the barycentric module) per
pixel to compute them.

If we had another chance or more time, we would have
pursued perspective correct barycentric coordinates to
interpolate vertex attributes correctly. This would require a
division to be performed on every pixel output after its screen
space barycentric coordinate is computed, so we would have
needed a pipelined division module to maintain our pixel
throughput. The PlayStation 1 also did not have perspective
correct interpolation, so if we would see some of the same
visual artifacts present on the console.

Another direction we can take if there was another

opportunity, was to write the FPGA such that it behaves like
a GPU and draws pixels in parallel. Perhaps the FPGA itself
can connect to an external device such as a computer and
receive data over seral via Manta as commands to render
things onto the screen.

Alternatively, we could have gone in the direction of
rendering vector graphics instead of rasterizing triangles next
time.

Fig. 9. Screen space (Affine) interpolation of UVs vs perspective
correct interpolation. Ours and the PS1 would look like the Affine one.

Fig. 8. The world being rendered at 30 fps

VIII. SOURCE CODE
The source code for the project can be found here:

https://github.com/19829984/6.111_Final_Project

IX. CONTRIBUTIONS
Bowen worked on writing the skeleton of the

rendering pipeline, specifically the vector math modules,
projection module, triangle fill and line draw modules,
barycentric module.

Ali worked on building the cube world and
implementing interactivity, specifically the world BRAM,
world drawer and cube drawer, view matrix calculator, sin
and cos lookup table, and remote-control input.

Both Bowen and Ali worked on getting the depth
buffer to work and contributed to writing the report.

Thanks for Project F for providing source code for a
floating point divider: https://projectf.io/posts/division-in-
verilog/

We also made use of the Multiplier IP from Vivado
to pipeline high bit-width multiplication within the
barycentric module.

ACKNOWLEDGMENT
Thanks to Project F for inspiring this project and providing

reference material for graphics on a FPGA:
https://projectf.io/posts/fpga-graphics

REFERENCES
[1] J. E. Bresenham “Algorithm for computer control of a digital plotter”,

IBM Systems Journal. 4 (1): 25–30, 1965
[2] Christer Erison “Real-Time Collision Detection”, 2004.
https://gamedev.stackexchange.com/questions/23743/whats-the-most-
efficient-way-to-find-barycentric-coordinate

