
3D PONG!
Zitong Chen

EECS Department
MIT

Cambridge, MA
zitongc@mit.edu

Eugene Lee
EECS Department

MIT
Cambridge, MA
travisb@mit.edu

Abstract—We present a design for a 3D PONG game im-
plemented on FPGA and utilizing HDMI monitors alongside a
digital joystick and camera controller. This hardware utilizes
the SPI communication protocol to share information between
the two players and a simple switch to toggle between the
control mechanisms. We implement the 3D visual rendering of
the game through ray casting and the 3D logic with a module that
calculates collision physics and updates the game state. We did
not get to integrate the game logic modules with the 3D rendering
logic. The final output of each module are discussed separately
in Section IV. Control Mechanism and Section VI. 3D Display.
We evaluate the game quality through smoothness of gameplay,
hardware costs, and casework evaluation of game behavior both
in simulation and hardware. We evaluate the performance and
quality of the 3D pipeline design through the frame rate, latency,
and cleanness of the 3D rendering.

I. INTRODUCTION

Welcome to 3D PONG! In this project, we aim to elevate
the classic Pong game with a 3D twist implemented via 2
interconnected FPGAs. In 3D PONG!, you get to play Pong
with a friend from a first-person perspective. 3D PONG has
two modes of control, allowing you to control your paddle
using either the joystick or simply moving your hand in front
of a camera. With 3D PONG!, we aim to provide you with
high-quality 3D rendering on a 2D display and a smooth,
seamless gaming experience. With other key features like a
real-time scoreboard and a camera movement controller, we
believe you will have a wonderful time with 3D PONG!.

II. PHYSICAL CONSTRUCTION

The projector itself consists of:
• 2 Xilinx Spartan-7 XC7S50-CSGA324 FPGAs
• 2 digital joysticks
• 2 cameras
• 2 monitors
• 2 HDMI cables
• wires for SPI communication

The 2 FPGA game controllers are identical in their physical
construction. To distinguish the 2 controllers, we call Player
1’s controller ”Controller 1”, and Player 2’s controller ”Con-
troller 2”. Controller 1 will serve as the main controller that
initiates SPI communication between the 2 FPGAs (details in
the SPI Communication section).

Special thanks to Professor Joe, Darren, and Ivy, without whom this project
would be unthinkable.

III. BLOCK DIAGRAMS

A. System Block Diagram

As shown in Fig. 1, the player interacts with two different
types of paddle controls: the joystick controller and the camera
controller. Additionally, the player can set the x and y positions
of the camera from their perspective. The coordinates of the
paddle and camera are initialized to the center of the frame;
these values will not be 0, since all coordinates’ values are
positive. The controllers send the x and y coordinates values
of the paddle to the control selector, which then chooses one
set of values based on a single switch. The coordinates of
the paddle are then passed to the collision physics calculator,
which can then update the game state appropriately. The game
state controller contains information about the positions of
the objects(paddle, ball) and the scores of the players, which
it can then pass to the 3D Ray Caster and the renderer for
the ball, paddle, and scoreboard. In parallel with the system,
there is a camera position controller where the player can set
the camera perspective of their monitors on a smaller subset
of the entire frame. The information about the player camera
coordinates is relevant for all 3D objects in the game, so these
sets of coordinates are also passed to the appropriate modules
to produce the final visual output.

B. Block Diagram of Display Modules

Unfortunately, we were only able to deliver part of the
display pipeline in our original design. A detailed breakdown
of the original display modules at a sub-module level is shown
in Fig. 2. The Video Signal Generator iterates through a frame
pixel by pixel, prompting the 3D Ray Caster module to render
the background environment (floor, ceiling, and walls), which
is stored in a frame buffer. The Ball Renderer renders the
pong ball on top of the background. To ensure the game can
run smoothly, we decided to use a preloaded image sprite for
the pong ball. Instead of computing the lighting and shading
of the ball in each frame, we will calculate the projection
of the virtual 3D ball on our 2D game screen using the
Perspective Projector. The Image Scaler then rescales the ball
image to its corresponding size, which will be added to the
final display in Video Mux. The Scoreboard Renderer renders
the current player scores on screen using an image sprite
lookup mechanism. The Base 10 Converter converts the base 2
scores stored in game states to base 10 using the dabble double



Fig. 1. Block Diagram for Controller 1

algorithm, and Sprite Look UP finds the corresponding letters
and numbers on a preloaded sprite sheet. Similar to the pong
ball, the scoreboard is also added to the final display in Video
Mux. The Paddle Renderer shares a similar structure with the
Ball Renderer to render 2 paddles on screen.

In our final implementation, the 3D pipeline functions as
shown in Fig. 3. Using the camera position and camera
direction information, the Ray Caster computes the new scene
on each new frame signal from the Video Signal Generator.
The scene information is stored in the Frame Buffer, and the
Background Painter reads from the Frame Buffer to render the
RGB color for each pixel on the screen. The detailed design of
the Ray Caster is discussed in Section VI. B. Second Attempt:
Raycasting.

IV. CONTROL MECHANISM

A. Joystick Control

We use a digital joystick control corresponding to one of the
values of a single switch on the FPGA. This is functionally
identical to the movement of image sprites on a 2D plane
corresponding to four directions controlled by four switches.
Based on the state of the joystick, the control module outputs
two values, pj1x and pj1y , to the control selector(x being 10
bits and y being 9). These values correspond to the vertical
and horizontal coordinates of the player’s paddle. Currently,
we allow for diagonal movement of the paddles, but fix the
paddles in the z-direction.

B. Camera Control

We use a module for controlling the camera and refactoring
the camera output similarly as used in the lab previously. We
then have a dual-port BRAM functioning as a frame buffer,
where the camera writes data on one side and the rendering
stream pulls out the color channel data from the other. For
the camera-controlled paddle, we have a standardized paddle
object that we use to threshold the camera output with the
color channels. The output of the camera doesn’t have to be
displayed on the screen at any point, but it must use a center of
mass calculation to decide the coordinates of the paddle and

pass the coordinates to the control selector(similarly to the
joystick). If the paddle’s center moves off the screen, it will
only allow for re-entry back into the frame from the same
location, so that the player won’t be allowed to “teleport”
the control through a different side of the screen. The output
coordinates of the camera will be re-factored to match the
HDMI frame size.

C. Control selector
Based on the output of a single switch on the FPGA board,

the mux selects one of the joystick or camera to use as the
control, saving the corresponding x and y values. It then sends
the final coordinates of the paddle to the game state controller
so that it can update properly.

D. Perspective Position Controller
We also plan to control the position of the camera from the

player’s perspective(the in-game POV). We do this with the use
of 4 switches on the FPGA. Whereas the paddles can move
horizontally or vertically across the entire frame display, the
camera can move within a limited subset of the space. If the
possible values for the paddle is (0, 1280) for x and (0, 720)
for y, the possible values for the camera center position would
be (400, 880) for x and (200, 520) for y. This is an additional
feature that is to be implemented for the sake of showing the
efficacy of ray casting. If the camera were at a single fixed
location, the walls and background would remain the same
the entire time, and therefore there would be no need for this
feature of 3D rendering. The four switches function as “on”
and “off” settings for each of the four directions, allowing
for diagonal movement. If opposing(left/right or up/down)
switches are both activated, the system will handle this by
selecting one over the other. Across the z-axis, the camera
position will remain fixed at 0. These coordinates are then
sent to the 3D Ray Caster and the ball and paddle rendering
where the calculations are done.

V. SPI COMMUNICATION

Player 1’s FPGA board serves as the main controller that
initiates communication between the two FPGAs(the player

2



Fig. 2. Original Block Diagram for 3D and 2D Display Modules

number choice is arbitrary). The system follows the clock
cycle of the data coming in and sends the data bit by bit on
each clock cycle. FPGA1(main controller) pulls the selector
signal low to indicate that it expects incoming data. At the
same time, the data is passed from FPGA1 to FPGA2 on one
line and from FPGA2 to FPGA1 on one line. The relevant
information that must be shared between the board is the x
and y coordinates of the paddle; these are passed consecutively
with the first 10 bits corresponding to the x coordinate and
the final 9 bits corresponding to the y coordinate. In the
general protocol, the width of the data expected can also be
specified. For each player, since the coordinates of the player’s
own paddle are handled through the controller-selector-game
state pipeline, the coordinates of the other player’s paddle are
passed directly to the game state controller.

VI. 3D DISPLAY

An essential feature of 3D PONG! is its 3D display. We
established a universal 3D coordinate system as shown in
Fig. 5. For Player 1, the x coordinate points to the right, and
the z coordinate points into the screen. For Player 2, the x
coordinate points to the left and the z coordinate points out
of the screen. For ease of computation, all objects have x, y,
and z coordinates in the positive region.

A. Inital Attempt: Raytracing
In our initial system design, we decided to render 3D objects

using raytracing, a commonly used rendering technique that

simulates the behavior of light in a 3D environment to generate
realistic 2D images [1]. The process of raytracing starts by
casting rays from a virtual camera (a fictional point in 3D
space) through each pixel of a virtual image plane (the display
screen) in 3D space into the scene. The rays intersect with
virtual objects. In 3D PONG!, these objects include the pong
ball and the planes in the background. The 3D positions of
these intersections with surfaces are calculated to determine
the color and brightness of the corresponding pixels on the
display screen.

Using Numpy and Matplotlib, we were able to implement
raytracing with sophisticated lighting effects, shadows, and
reflections as shown in Fig. 6. However, the program was
computation-intensive and involved complex math operations
like taking square roots and vector normalization.

When we tried to convert the algorithm in Verilog, we
found raycasting difficult to implement as it involved heavy
manipulation of signed fixed-point numbers. In addition, we
realized that raytracing would likely result in a timing violation
if we set the frame rate to be 60Hz. After evaluating the cost
of implementing raytracing, we decided to switch to a simpler
rendering algorithm, raycasting.

B. Second Attempt: Raycasting

Unlike raytracing, raycasting is a semi-3D algorithm that
renders a scene using simple trigonometry. In raycasting, rays
are cast for each column of pixels on the view plane, making

3



Fig. 3. Current Block Diagram for 3D Display Modules

Fig. 4. SPI communication protocol

Fig. 5. 3D Coordinate System

Fig. 6. Example of 3D Raytracing Implemented in Python

it faster, less resource-intensive, and easier to implement than
raytracing. Although raycasting doesn’t consider lighting ef-
fects like reflections and refractions, it is suitable for rendering
simple game scenes in 3D PONG!.

Fig. 7 is a 3D environment of bounded walls rendered
using raycasting. The cryo wall is facing the camera view
plane directly, and the navy blue walls are on the sides. To
implement raycasting in Verilog, we designed a 7-state finite
state machine as shown in Fig. 8.

The 3D map is stored as a grid-like 2D array of 0s and
1s where 1s represent the wall and 0 is empty space. When
receiving a new frame signal, the Ray Caster starts its
internal counter x range from [0, 1279] to cast 1280 rays for
each pixel column on the 1280-pixel-wide screen. For each
ray, the program calculates the direction of the ray and its
unit distance to the edge of the grid it’s in. The program
then increments the ray’s traveled distance until the ray hits a
wall. If the ray hits a vertical wall, the color of that wall is
cryo, if the ray hits a horizontal wall, the color of that wall
is navy. Using the final distance the ray traveled, the program
calculates the projected height of the wall. Finally, it calculates
the vertical range of pixels in that column to be colored as the
wall and outputs the value of x, the range of wall pixels, and
the corresponding wall color to the Frame Buffer.

Fig. 7. Example of 3D RayCasting Implemented in Python

C. Background Painter

The Background Painter is a simple combination circuit that
interprets the output from the Frame Buffer and determines
the color of the pixel at (hcount,vcount). If the pixel is not

4



Fig. 8. FSM of the Verilog Raycaster

located in the range of wall pixels, it outputs the color black;
if the pixel is on the vertical wall, it outputs navy, and if
the pixel is on the horizontal wall, it outputs cryo. The color
information is transmitted to the TMDS pipeline to render on
the HDMI screen.

D. Camera Controllers

Finally, we integrated a module for controlling the position
and direction of the ”virtual” camera in the 3D environ-
ment to allow players to experience movements in the game
environment like a first-person game. At each new frame
signal, camera controllers read signals from switches of the
FPGA and increment/decrement the position coordinates or
direction vector correspondingly. The updated camera position
and direction are used by the Ray Caster to calculate the new
image. There is a 1/60 second delay of the new image, but it
is not observable by human eyes.

E. Display Pipeline Evaluation

A demo video of our final display pipeline is uploaded to
https://youtu.be/pM02JGbsXXc [2]. Our final display pipeline
renders at a frame rate of 60Hz and 100mHz clock cycle with
no significant delay from camera controllers.

The pipeline uses a 32 by 1280 BRAM for storing the
display information of a 1280 by 720-pixel screen. The width
of the BRAM could be further optimized to be 21 bits as we
can use the hcount of each pixel as the address and only store
the 10-bit ystart, 10-bit yend, and 1-bit color.

The most noticeable area of improvement for the pipeline
is its rendering quality. There are observable zig-zag patterns
on the edges of the rendered side walls. This could be a
result of having not enough fractional bits and rounding errors
snowballed through calculations. The poor resolution of the
image can be improved by using 48-bit numbers with 16
integer digits and 32 fractional digits.

Although the pipeline is not complete, its core calculation
modules can be adapted to project a moving pong ball on
the screen. Given a ball’s 3D position, we can treat the ball
as an extremely narrow wall and calculate its corresponding
position and radius on the screen. The Background Painter
can be modified to display the ball on top of the background
environment.

F. Implementation Insights

Unfortunately, we are unable to deliver the full project as
planned. We reflected on our collaboration process, and these
are the key lessons we learned.

• Set up a weekly in-person work session. Working together
in person is the most efficient way of communicating and
solving problems.

• Have a Python/JS/C... implementation of complex mod-
ules makes debugging 100 times easier. Printing interme-
diate signal values will help you verify at what stage the
calculation goes wrong.

• The project is only going to be harder than you think.
Calculations as simple as a division can manifest into an
ugly form with fractions representation, signed/unsigned
numbers, response time of IP modules, etc. Plan for buffer
time.

• Don’t be afraid to write MORE test benches. The only
way to catch a tiny bug in a massive system is to run
each module through unit tests.

G. Individual Contribution

• Zitong: Sketched the overall system block diagram and
ray casting pipeline block diagram. Built the 3D render-
ing pipeline using ray casting. Built the camera controller
to allow the camera plane to perform pseudo-3D move-
ment in the game space. Wrote Abstract, Introduction,
Physical Construction, Block Diagram of Display Mod-
ules, and Project Reflection.

• Eugene: Designed game state module for handling game
logic and transfer of coordinates between two FPGA
boards. Built control mechanism for using either camera
or joystick as player controls and designed pipeline for
translating the camera, ball, paddle coordinates onto ren-
dering. Wrote Abstract, System Block Diagram, Control
Mechanism, SPI communication, and Display.

H. Appendix

• Zip file of raycasting code: https://drive.google.com/file/
d/1DbcsNAVQMjozsTmUAd hv nDms5ZQ8Xh/view?
usp=drive link

• Python implementation of raycasting rendering on
Google Colab: https://colab.research.google.com/drive/
1dZQiFOILDI6GhUnRaqcBRGg2Si1r8rk9?usp=sharing

• Python implementation of raytracing on Google
Colab: https://colab.research.google.com/drive/
1Ssu4u3OROdKQiQOKey7qOPLosvozyTI6?usp=
sharing

5

https://youtu.be/pM02JGbsXXc
https://drive.google.com/file/d/1DbcsNAVQMjozsTmUAd_hv_nDms5ZQ8Xh/view?usp=drive_link
https://drive.google.com/file/d/1DbcsNAVQMjozsTmUAd_hv_nDms5ZQ8Xh/view?usp=drive_link
https://drive.google.com/file/d/1DbcsNAVQMjozsTmUAd_hv_nDms5ZQ8Xh/view?usp=drive_link
https://colab.research.google.com/drive/1dZQiFOILDI6GhUnRaqcBRGg2Si1r8rk9?usp=sharing
https://colab.research.google.com/drive/1dZQiFOILDI6GhUnRaqcBRGg2Si1r8rk9?usp=sharing
https://colab.research.google.com/drive/1Ssu4u3OROdKQiQOKey7qOPLosvozyTI6?usp=sharing
https://colab.research.google.com/drive/1Ssu4u3OROdKQiQOKey7qOPLosvozyTI6?usp=sharing
https://colab.research.google.com/drive/1Ssu4u3OROdKQiQOKey7qOPLosvozyTI6?usp=sharing


REFERENCES

[1] Introduction to ray tracing: A simple method for creating 3d
images. https://www.scratchapixel.com/lessons/3d-basic-rendering/
introduction-to-ray-tracing/ray-tracing-practical-example.html.
Accessed: November 21, 2023.

[2] Zitong Chen. 3d pong! partial demo, 2023. YouTube video.

6

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/ray-tracing-practical-example.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-ray-tracing/ray-tracing-practical-example.html

	Introduction
	Physical Construction
	Block Diagrams
	System Block Diagram
	Block Diagram of Display Modules

	Control Mechanism
	Joystick Control
	Camera Control
	Control selector
	Perspective Position Controller

	SPI Communication
	3D Display
	Inital Attempt: Raytracing
	Second Attempt: Raycasting
	Background Painter
	Camera Controllers
	Display Pipeline Evaluation
	Implementation Insights
	Individual Contribution
	Appendix

	References

